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Abstract

We study the problem of learning one-
hidden-layer neural networks with Recti-
fied Linear Unit (ReLU) activation function,
where the inputs are sampled from standard
Gaussian distribution and the outputs are
generated from a noisy teacher network. We
analyze the performance of gradient descent
for training such kind of neural networks
based on empirical risk minimization, and
provide algorithm-dependent guarantees. In
particular, we prove that tensor initialization
followed by gradient descent can converge to
the ground-truth parameters at a linear rate
up to some statistical error. To the best of
our knowledge, this is the first work char-
acterizing the recovery guarantee for practi-
cal learning of one-hidden-layer ReLU net-
works with multiple neurons. Numerical ex-
periments verify our theoretical findings.

1 INTRODUCTION

Deep neural networks have achieved lots of break-
throughs in the field of artificial intelligence, such as
speech recognition (Hinton et al., 2012), image pro-
cessing (Krizhevsky et al., 2012), statistical machine
translation (Bahdanau et al., 2014), and Go games
(Silver et al., 2016). The empirical success of neu-
ral networks stimulates numerous theoretical studies in
this field. For example, in order to explain the superi-
ority of neural networks, a series of work (Hornik, 1991;
Barron, 1993; Daniely et al., 2016; Cohen et al., 2016;
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Arora et al., 2016; Mukherjee and Basu, 2017; Hanin,
2017; Hanin and Sellke, 2017; Yarotsky, 2017, 2018) in-
vestigated the expressive power of neural networks. It
has been proved that given appropriate weights, neu-
ral networks with nonlinear activation function can ap-
proximate any continuous function.

In practice, (stochastic) gradient descent remains one
of the most widely-used approaches for deep learning.
However, due to the nonconvexity and nonsmoothness
of the loss function landscape, existing theory in op-
timization cannot explain why gradient-based meth-
ods can e↵ectively learn neural networks. To bridge
this gap, a line of research (Tian, 2017; Li and Yuan,
2017; Du et al., 2017a,b) studied (stochastic) gradi-
ent descent for learning shallow neural networks from
a theoretical perspective. More specifically, by assum-
ing an underlying teacher network, they established re-
covery guarantees for applying gradient-based learning
algorithms to the population loss function (a.k.a., ex-
pected risk function). Another line of research (Zhong
et al., 2017; Soltanolkotabi, 2017; Soltanolkotabi et al.,
2017; Fu et al., 2018; Ge et al., 2019) investigated us-
ing (stochastic) gradient descent to minimize the em-
pirical loss function of shallow neural networks, and
provided theoretical guarantees on sample complexity,
i.e., number of samples required for recovery.

Our work follows the second line of research, where we
directly study the empirical risk minimization of one-
hidden-layer ReLU networks, and characterize the re-
covery guarantee using gradient descent. More specif-
ically, we assume the inputs {xi}Ni=1 ✓ Rd follow stan-
dard multivariate Gaussian distribution, and the out-
puts {yi}Ni=1 ✓ R are generated from the following one-
hidden-layer ReLU-based teacher network (see Figure
1 for graphical illustration)

yi =
KX

j=1

�(w⇤>
j xi) + ✏i, for any i 2 [N ]. (1.1)

Here, w⇤
j 2 Rd is the weight parameter of the j-th neu-

ron, �(x) = max{x, 0} is the ReLU activation func-
tion, and {✏i}Ni=1 are i.i.d. zero mean sub-Gaussian
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random noises1 with sub-Gaussian norm ⌫ > 0.
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Figure 1: Illustration of one-hidden-layer ReLU-based
teacher network (1.1).

Our goal is to recover the unknown parameter matrix
W

⇤ = [w⇤
1, . . . ,w

⇤
K ] 2 Rd⇥K based on the observed N

examples {(xi, yi)}Ni=1. The recovery problem can be
equivalently formulated as the following empirical risk
minimization problem using square loss

min
W2Rd⇥K

bLN (W) =
1

2N

NX

i=1

✓ KX

j=1

�(w>
j xi)� yi

◆2

,

(1.2)
where W = [w1, . . . ,wK ]. In this paper, we show that
with good starting point and sample complexity linear
in d, using gradient descent to solve (1.2) is guaranteed
to converge to W

⇤ at a linear rate. To the best of our
knowledge, this is the first result of its kind to prove
the theoretical guarantee for learning one-hidden-layer
ReLU networks with multiple neurons based on the
empirical loss function. We believe our analysis on
one-hidden-layer ReLU networks can shed light on the
understanding of gradient-based methods for learning
deeper neural networks. The main contributions of
this work are summarized as follows:

• We consider the empirical risk minimization prob-
lem (1.2) for learning one-hidden-layer ReLU net-
works. Compared with existing studies (Tian,
2017; Li and Yuan, 2017; Du et al., 2017a,b) that
consider the ideal population risk minimization,
our analysis is more aligned with the practice of
deep learning that is based on the empirical loss
function. More specifically, the empirical opti-
mization problem in (1.2) is nonconvex and non-
smooth (ReLU-activation), which has not been
studied in previous work.

• We analyze the performance of gradient descent
based algorithm for minimizing the empirical loss

1
The formal definitions of sub-Gaussian random vari-

able and sub-Gaussian norm can be found in Section 4.

function. We demonstrate that, provided an ap-
propriate initial solution, gradient descent can lin-
early converge to the ground-truth parameters of
the underlying teacher network (1.1) up to some
statistical error. In particular, the statistical er-
ror term depends on the sample size N , the input
dimension d, the number of neurons in the hidden
layer K, as well as the magnitude of the noise dis-
tribution ⌫. In addition, we show that the sample
complexity for recovery required by our algorithm
is linear in d up to a logarithmic factor.

• We provide a uniform convergence bound on the
gradient of the empirical loss function (1.2). More
specifically, we characterize the di↵erence between
the gradient of the empirical loss function and the
gradient of the population loss function, when the
parameters are close to the ground-truth parame-
ters. This result enables us to establish the linear
convergence guarantee of gradient descent method
without using resampling (i.e., sample splitting)
trick adopted in Zhong et al. (2017).

The remainder of this paper is organized as follows:
In Section 2, we discuss the most related literature to
our work. We introduce the problem setup and our
proposed algorithm in Section 3. We present the main
theoretical results and their proof in Sections 4 and 5
respectively. In Section 6, we conduct experiments to
verify our theory. Finally, we conclude our paper and
discuss some future work in Section 7.

Notation. We use [d] to denote the set {1, 2, . . . , d}.
For any d-dimensional vector x = [x1, ..., xd]>, let

kxk2 = (
Pd

i=1 |xi|2)1/2 be its `2 norm. For any ma-
trix A = [Aij ], denote the spectral norm and Frobe-
nius norm of A by kAk2 and kAkF , respectively. Let
�max(A), �min(A) be the largest singular value and
smallest singular value of A, respectively. Given any
two sequences {an} and {bn}, we write an = O(bn)
if there exists a constant 0 < C < +1 such that
an  C bn, and we use eO(·) to hide the logarithmic
factors. We use 1{E} to denote the indicator func-
tion such that 1{E} = 1 if the event E is true, oth-
erwise 1{E} = 0. For two matrices A,B, we say
A ⌫ B if A � B is positive semidefinite. We use
Br(B) = {A 2 Rd⇥K : kA �BkF  r} to denote the
Frobenius norm ball centering at B with radius r.

2 RELATED WORK

To better understand the extraordinary performance
of neural networks on di↵erent tasks, a line of research
(Hornik, 1991; Montufar et al., 2014; Cohen et al.,
2016; Telgarsky, 2016; Raghu et al., 2016; Poole et al.,
2016; Arora et al., 2016; Daniely et al., 2016; Pan and
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Srikumar, 2016; Zhang et al., 2016; Lu et al., 2017)
has studied the expressive power of neural networks.
In particular, Hornik (1991) showed that, with su�-
cient number of neurons, shallow networks can approx-
imate any continuous function. Cohen et al. (2016);
Telgarsky (2016) proved that a shallow network re-
quires exponential size to realize functions that can
be implemented by a deep network of polynomial size.
Raghu et al. (2016); Poole et al. (2016); Arora et al.
(2016) characterized the exponential dependence on
the depth of the network based on di↵erent measures
of expressivity. Recently, Zhang et al. (2016) empiri-
cally demonstrated that neural networks can actually
memorize the training samples but still generalize well.
Daniely et al. (2016); Lu et al. (2017) showed how the
depth and width can a↵ect the expressive power of
neural networks.

However, the expressive power of neural networks can
only partially explain the empirical success of deep
learning. From a theoretical perspective, it is well-
known that learning neural networks in general set-
tings is hard in the worst case (Blum and Rivest, 1989;
Auer et al., 1996; Livni et al., 2014; Shamir, 2016;
Shalev-Shwartz et al., 2017a,b; Zhang et al., 2017; Ge
et al., 2017). Nevertheless, a vast literature (Kalai and
Sastry, 2009; Kakade et al., 2011; Sedghi and Anand-
kumar, 2014; Janzamin et al., 2015; Zhang et al., 2015;
Goel et al., 2016; Arora et al., 2016) developed ad hoc
algorithms that can learn neural networks with prov-
able guarantees. However, none of these algorithms is
gradient-based method, which is the most widely-used
optimization algorithm for deep learning in practice.

Recently, a series of work (Tian, 2017; Brutzkus
and Globerson, 2017; Li and Yuan, 2017; Du et al.,
2017a,b) studied the recovery guarantee of gradient-
based methods for learning shallow neural networks
based on population loss function (i.e., expected risk
function). More specifically, Tian (2017) proved that
for one-layer one-neuron ReLU networks (i.e., ReLU
unit), randomly initialized gradient descent on the
population loss function can recover the groundtruth
parameters of the teacher network. In a concurrent
work, Brutzkus and Globerson (2017) considered the
problem of learning a convolution filter and showed
that gradient descent enables exact recovery of the true
parameters, provided the filters are non-overlapping.
Later on, Li and Yuan (2017) studied one-hidden-layer
residual networks, and proved that stochastic gradient
descent can recover the underlying true parameters in
polynomial number of iterations. Du et al. (2017a)
studied the convergence of gradient-based methods for
learning a convolutional filter. They showed that un-
der certain conditions, performing (stochastic) gradi-
ent descent on the expected risk function can recover

the underlying true parameters in polynomial time.
Du et al. (2017b) further studied the problem of learn-
ing the one-hidden-layer ReLU based convolutional
neural network in the no-overlap patch setting. More
specifically, they established the convergence guaran-
tee of gradient descent with respect to the expected
risk function when the input follows Gaussian distri-
bution. Nevertheless, all these studies are based on
the population loss function.

In practice, training neural networks is based on the
empirical loss function. To the best of our knowl-
edge, only several recent studies (Zhong et al., 2017;
Soltanolkotabi, 2017; Soltanolkotabi et al., 2017; Fu
et al., 2018) analyzed gradient based methods for
training neural networks using empirical risk mini-
mization. More specifically, under condition that the
activation function is smooth, Zhong et al. (2017);
Soltanolkotabi et al. (2017); Fu et al. (2018) estab-
lished a locally linear convergence rate for gradient
descent with suitable initialization scheme. However,
none of their analyses are applicable to ReLU net-
works since ReLU activation function is nonsmooth2.
Soltanolkotabi (2017) analyzed the projected gradient
descent on the empirical loss function for one-neuron
ReLU networks (i.e., ReLU unit). Yet the analysis re-
quires a projection step to ensure convergence, while
the constraint set of the projection depends on the un-
known ground-truth weight vector, which makes their
algorithm less practical. Our work also follows this line
of research, where we investigate the theoretical per-
formance of gradient descent for learning one-hidden-
layer ReLU networks with multiple neurons.

Inspired by the success of first-order optimization algo-
rithms (Ge et al., 2015; Jin et al., 2017) for solving non-
convex optimization problems e�ciently, some recent
work (Choromanska et al., 2015; Safran and Shamir,
2016; Mei et al., 2016; Kawaguchi, 2016; Hardt and
Ma, 2016; Soltanolkotabi et al., 2017; Soudry and Car-
mon, 2016; Xie et al., 2017; Nguyen and Hein, 2017;
Ge et al., 2017; Safran and Shamir, 2017; Yun et al.,
2017; Du and Lee, 2018; Gao et al., 2018) attempted
to understand neural networks by characterizing their
optimization landscape. Choromanska et al. (2015)
studied the loss surface of a special random neural
network. Safran and Shamir (2016) analyzed the geo-
metric structure of the over-parameterized neural net-
works. Mei et al. (2016) studied the landscape of the
empirical loss of the one-layer neural network given
that the third derivative of the activation function
is bounded. Kawaguchi (2016) showed that there is

2
While many activation functions including ReLU are

discussed in Zhong et al. (2017), their locally linear conver-

gence result for gradient descent is not applicable to ReLU

activation function.
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no spurious local minimum for linear deep networks.
Hardt and Ma (2016) proved that linear residual net-
works have no spurious local optimum. Soudry and
Carmon (2016); Xie et al. (2017); Nguyen and Hein
(2017); Yun et al. (2017) also showed that there is
no spurious local minimum for some other neural net-
works under stringent assumptions. Soltanolkotabi
et al. (2017) studied the global optimality of the over-
parameterized network with quadratic activation func-
tions. On the other hand, Ge et al. (2017); Safran
and Shamir (2017) showed that ReLU neural networks
with multiple neurons using square loss actually have
spurious local minima. To address this issue, Ge et al.
(2017) proposed to modify the objective function of
ReLU networks, and showed that the modified objec-
tive function has no spurious local minimum, thus per-
turbed gradient descent can learn the groundtruth pa-
rameters. Compared with Ge et al. (2017), we directly
analyze the objective function of ReLU networks based
on square loss using gradient descent without modify-
ing the loss function, but needing a special initializa-
tion.

It is worth noting that very recently there is a line of
research that studies the global convergence of gradi-
ent descent and stochastic gradient descent for training
(deep) neural networks (Li and Liang, 2018; Du et al.,
2018, 2019; Allen-Zhu et al., 2018b; Zou et al., 2018),
and their generalization performance (Li and Liang,
2018; Allen-Zhu et al., 2018a; Cao and Gu, 2019), in
the over-parameterized regime where the width of the
neural network is much larger than the training set
size. We would like to point out that these results are
not directly comparable with our result, because we
considered the setting where the training set size is
larger than the number of neural network parameters.

3 PROBLEM SETUP AND
ALGORITHM

In this section, we present the problem formulation
along with a gradient descent-based algorithm for
learning one-hidden-layer ReLU networks. Recall that
our goal is to recover the unknown parameter matrix
W

⇤ based on the empirical loss function in (1.2). For
the ease of later analysis, we define the corresponding
population loss function as follows

L(W) =
1

2
EX⇠DX

⇣ KX

j=1

�(w>
j X)�

KX

j=1

�(w⇤>
j X)

⌘2
,

(3.1)
whereDX = N(0, I) denotes the standard multivariate
Gaussian distribution. In addition, let �1 � �2 �
. . . � �K > 0 be the sorted singular values of W

⇤,
and  = �1/�K be the condition number of W⇤, and

� = (⇧K
j=1�j)/�K

K .

In this work, we focus on minimizing the empirical loss
function in (1.2) instead of the population loss function
in (3.1), because in practice one can only get access to
the training data {(xi, yi)}Ni=1. Witnessing the empiri-
cal success of the widely-used gradient-based methods
for training neural networks, one natural question is
whether gradient descent can recover W⇤ based on the
empirical loss function in (1.2). In later analysis, we
will show that the answer to the above question is af-
firmative. The gradient descent algorithm for solving
the nonconvex and nonsmooth optimization problem
(1.2) is demonstrated in Algorithm 1.

Algorithm 1 Gradient Descent

Require: empirical loss function bLN ; step size ⌘; it-
eration number T ; initial estimator W0.
for t = 1, 2, 3, . . . , T do

W
t = W

t�1 � ⌘r bLN (Wt�1)
end for

Ensure: W
T

It is worth noting that the gradient descent algorithm
shown in Algorithm 1 does not require any resampling
(a.k.a., sample splitting) procedure (Jain et al., 2013)
compared with the gradient descent algorithm ana-
lyzed in Zhong et al. (2017). More specifically, the
gradient descent algorithm in Zhong et al. (2017) re-
quires a fresh subset of the whole training sample at
each iteration in order to establish the convergence
guarantee. In sharp contrast, Algorithm 1 analyzed
in this paper does not need resampling. The reason
is that we are able to establish a uniform convergence
bound between the gradient of the empirical loss func-
tion and the gradient of the population loss function,
as will be illustrated in the next section. Furthermore,
we lay out the explicit form of the derivative of bLN (W)
with respect to wk as follows

h
r bLN (W)

i

k
=

KX

j=1

⇣
b⌃(wj ,wk)wj � b⌃(w⇤

j ,wk)w
⇤
j

⌘

� 1

N

NX

i=1

✏ixi · 1{w>
k xi � 0}, (3.2)

where b⌃(wj ,wk) and b⌃(w⇤
j ,wk) are defined as

b⌃(wj ,wk) =
1

N

NX

i=1

h
xix

>
i · 1{w>

j xi � 0,w>
k xi � 0}

i
,

b⌃(w⇤
j ,wk) =

1

N

NX

i=1

h
xix

>
i · 1{w⇤>

j xi � 0,w>
k xi � 0}

i
.

(3.3)
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4 MAIN THEORY

In this section, we present our main theoretical results,
including the local convergence result and the initial-
ization result. Before presenting our main theoretical
results, we first lay out the definitions of sub-Gaussian
random variable and sub-Gaussian norm.

Definition 4.1. (sub-Gaussian random variable) We
say X is a sub-Gaussian random variable with sub-
Gaussian normK > 0, if (E|X|p)1/p  K

p
p for all p �

1. In addition, the sub-Gaussian norm of X, denoted
kXk 2 , is defined as kXk 2 = supp�1 p

�1/2(E|X|p)1/p.

The following theorem shows that as long as the initial
estimator W

0 falls in a small neighbourhood of W⇤,
gradient descent algorithm in Algorithm 1 is guaran-
teed to converge to W

⇤ with a linear rate of conver-
gence.

Theorem 4.2. Assume the inputs {xi}Ni=1 are sam-
pled from standard Gaussian distribution, and the
outputs {yi}Ni=1 are generated from the teacher net-
work (1.1). Suppose the initial estimator W

0 satis-
fies kW0 � W

⇤kF  c�K/(�3
K

2), where c > 0 is a
small enough absolute constant. Then there exist ab-
solute constants c1, c2, c3, c4 and c5 such that provide
the sample size satisfies

N � c1�
4

10
K

9
d

�2
K

log

✓
�Kd

�K

◆
· (kW⇤k2F + ⌫

2),

the output of Algorithm 1 with step size ⌘ 
1/(c2K2) satisfies

kWT �W
⇤k2F 

✓
1� c3⌘

�2

◆T

kW0 �W
⇤k2F

+
c4�

2

4
K

5
d logN

N
· (kW⇤k2F + ⌫

2)

(4.1)
with probability at least 1� c5/d

10.

Remark 4.3. Theorem 4.2 suggests that provided
that the initial solution W0 is su�ciently close to W

⇤,
the output of Algorithm 1 exhibits a linear convergence
towards W⇤, up to some statistical error. More specif-
ically, the estimation error is bounded by two terms
(see the right hand side of (4.1)): the first term is
the optimization error, and the second term represents
the statistical error. The statistical error depends on
the sample size N , the input dimension d, the num-
ber of neurons in the hidden layer K and some other
problem-specific parameters.

Remark 4.4. In addition, due to the existence of sta-
tistical error, we are only able to achieve at best

" = c�
2

4
K

5(kW⇤k2F + ⌫
2) · d logN

N

estimation error, where c is an absolute constant. Be-
cause of the linear convergence rate, it is su�cient to
perform T = O

�
�

3
K

2 · log(1/")
�
number of iterations

in Algorithm 1 to make sure the optimization error is
less than ". Putting these pieces together gives the
overall sample complexity of Algorithm 1 to achieve
"-estimation error:

O

✓
C · d log

✓
�Kd

�K

◆
log

✓
1

"

◆◆
,

where C = poly
�
�,,K,�K , ⌫, kW⇤kF

�
. Appar-

ently, it is in the order of eO
�
poly(K) · d

�
if we treat

other problem-specific parameters as constants. Cor-
respondingly, the statistical error is in the order of
eO
�
poly(K) · d/N

�
.

The remaining question is how to find a good initial
solution W

0 for Algorithm 1, which satisfies the as-
sumption of Theorem 4.2. We propose to use ten-
sor initialization, which is proposed by Zhong et al.
(2017). Here we briefly introduce the procedure of
tensor initialization. The basic idea of tensor initial-
ization is to obtain an estimator W0 that has the same
column space as the ground-truth parameter W

⇤ of
the teacher network. In detail, it first constructs two
matrices P1 = CI + P and P2 = CI � P, where
P =

PN
i=1 yi(xix

>
i � I), C � 2EkPk2 and the ex-

pectation is taken over the randomness of the input
data. Given P1 and P2, it then estimates their top-K
eigenvalues in terms of magnitude and corresponding
eigenvectors. Next, it combines these 2K eigenvectors
and select K eigenvectors with top K eigenvalues. Fi-
nally, it performs an orthogonalization procedure to
get the desired initial estimator W

0. The following
lemma, proved in Zhong et al. (2017), shows that ten-
sor initialization can give us desired initial estimators.

Lemma 4.5. (Zhong et al., 2017) Consider the em-
pirical risk minimization in (1.2), if the sample size
N � ✏

�2 ·d ·poly(,K, log d), with probability at least
1� d

�10, the output W0 2 Rd⇥K of the tensor initial-
ization satisfies

kW0 �W
⇤kF  ✏ · poly(,K)kW⇤kF .

Remark 4.6. According to Lemma 4.5, if we set the
approximation error ✏ such that

✏  c1�K

�3K2poly(,K)kW⇤kF
,

where c1 is an absolute constant, the initial es-
timator W

0 satisfies the assumption of Theorem
4.2. The corresponding sample complexity require-
ment for tensor initialization is in the order of
O
�
poly(�,,K, kW⇤kF , log d) · d

�
. Therefore, com-

bining Lemma 4.5 with Theorem 4.2, we conclude
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that tensor initialization followed by gradient descent
can learn one-hidden-layer ReLU networks with lin-
ear convergence rate and overall sample complexity
eO
�
poly(K) · d

�
.

5 PROOF OF THE MAIN THEORY

In this section, we lay out the proof of our main result.
To prove Theorem 4.2, we need to make use of the
following lemmas. The first lemma characterizes the
local strong convexity of the population loss function
around W

⇤.

Lemma 5.1. For any W 2 Rd⇥K such that kW �
W

⇤kF  c�K/(�3
K

2), the Hessian of the population
loss function L(W) satisfies

r2L(W) ⌫ µI,

where µ = c/(�2) and c > 0 is an absolute constant.

Next lemma characterizes the local strong smoothness
of the population loss function around W

⇤.

Lemma 5.2. The gradient of the population loss
function rL(·) is L-Lipschitz within the region ⌦ =
{W 2 Rd⇥K | kW � W

⇤kF  �K/2}, i.e., for any
W1,W2 2 ⌦

krL(W1)�rL(W2)kF  LkW1 �W2kF ,

where L = cK
2, and c > 0 is an absolute constant.

Lemma 5.3. Consider the empirical loss function
bLN (W) in (1.2). For all W 2 Rd⇥K such that
kW �W

⇤kF  c�K/(�3
K

2), where c is an absolute
constant, there exists absolute constants c1, c2 such
that with probability at least 1� c1/d

10, we have

kr bLN (W)�rL(W)kF  c2

r
dK5 logN

N
(kW⇤kF + ⌫),

where ⌫ is the sub-Gaussian norm of the additive noise
in the teacher network.

Lemma 5.3 provides a uniform convergence bound on
the di↵erence between the gradient of the empirical
loss function and the gradient of the population loss
function in terms of Frobenius norm.

Proofs of the above three lemmas can be found in the
appendix. Based on these three lemmas, we are ready
to prove the main theorem.

Proof of Theorem 4.2. We prove it by induction. We
make the following inductive hypothesis

kWt �W
⇤kF  c�K

�3K2
. (5.1)

Note that based on the assumption of Theorem 4.2,
the initial estimator W0 satisfies (5.1), thus it remains
to prove the inductive step. In other words, we need
to show that Wt+1 satisfies (5.1), provided that (5.1)
holds for Wt. Consider the gradient-based Algorithm
1 at the (t+ 1)-th iteration, we have

W
t+1 = W

t � ⌘r bLN (Wt),

which implies that

kWt+1 �W
⇤k2F = kWt �W

⇤k2F + ⌘
2kr bLN (Wt)k2F

� 2⌘hr bLN (Wt),Wt �W
⇤i.

Therefore, by adding the term rL(Wt) into the above
inequality, we can obtain

kWt+1 �W
⇤k2F � kWt �W

⇤k2F
 �2⌘hrL(Wt),Wt �W

⇤i+ 2⌘2krL(Wt)k2F| {z }
I1

�2⌘hr bLN (Wt)�rL(Wt),Wt �W
⇤i| {z }

I2

+2⌘2kr bLN (Wt)�rL(Wt)k2F| {z }
I2

,

where the inequality follows from (a� b)2  2a2+2b2.

In the following discussions, we are going to bound the
terms I1 and I2, respectively. Consider the first term
I1. Note that according to the population loss function
(3.1), we have rL(W⇤) = 0. Thus, we have

vec
�
rL(Wt)

�
= vec

�
rL(Wt)�rL(W⇤)

�
,

by the fundamental theorem of calculus, we have

vec
�
rL(Wt)�rL(W⇤)

�

=

Z 1

0
r2L

�
W

⇤ + ✓(Wt �W
⇤)
�
d✓ · vec(Wt �W

⇤),

which implies

vec
�
rL(Wt)

�
= Htvec(W

t �W
⇤),

whereHt =
R 1
0 r2L

�
W

⇤+✓(Wt�W
⇤)
�
d✓ 2 RdK⇥dK .

Note that by the inductive assumption, we have

kWt �W
⇤kF  c�K

�3K2
 �K

2
.

Thus, according to Lemma 5.2, we obtain the upper
bound of I1

I1 = �2⌘ · vec(Wt �W
⇤)

>
Htvec(W

t �W
⇤)

+ 2⌘2 · vec(Wt �W
⇤)

>
H

>
t Htvec(W

t �W
⇤)

 2(�⌘ + L⌘
2) · vec(Wt �W

⇤)
>
Htvec(W

t �W
⇤),



Xiao Zhang
*
, Yaodong Yu

*
, Lingxiao Wang

*
, Quanquan Gu

0 200 400 600 800 1000

number of iterations

10-15

10-10

10-5

100

105

lo
ss

 fu
nc

tio
n 

va
lu

e

Tensor Initialization
Random Initialization

(a) convergence rate

0 10 20 30 40 50
N/d

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y 
of

 s
uc

ce
ss

fu
l r

ec
ov

er
y

 d=20
 d=50
 d=100

(b) sample complexity d

0 10 20 30 40 50
N/K

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y 
of

 s
uc

ce
ss

fu
l r

ec
ov

er
y

 K=5
 K=10
 K=15

(c) sample complexity K

40 50 60 70 80
N/d

0.04

0.05

0.06

0.07

0.08

0.09

av
er

ag
ed

 e
st

im
at

io
n 

er
ro

r

 d=10
 d=25
 d=50

(d) statistical rate

Figure 2: (a) Comparison of convergence rate for gradient descent based algorithm using di↵erent initialization
procedures. Here, we set input dimension d = 10, sample size N = 5000 and number of neurons K = 5. (b)
Plot of successful recovery probability versus the ratio between sample size and input dimension N/d, which
illustrates that the sample complexity scales linearly with d. (c) Plot of successful recovery probability versus
the ratio between sample size and the number of neurons K, which demonstrates that the sample complexity
scales linearly with K. (d) Plot of averaged estimation error versus the rescaled sample size N/d based on our
method under di↵erent settings.

where the inequality follows from Lemma 5.2 and
L = c1K

2 is the Lipschitz parameter of rL(·). On
the other hand, as for the term I2, we have with prob-
ability at least 1� c3/d

10 that

I2  2(⌘� + ⌘
2)kr bLN (Wt)�rL(Wt)k2F

+
2⌘

�
kWt �W

⇤k2F ,

where the inequality holds due to the Young’s inequal-
ity, � > 0 is a constant that will be specified later.
Thus according to Lemma 5.3, we can further obtain

I2  (⌘� + ⌘
2)
2c22K

5
d logN

N
(kW⇤kF + ⌫)2

+
2⌘

�
kWt �W

⇤k2F .

If we choose ⌘  1/(2L) and � = 4/µ, under condition
that kWt �W

⇤kF  c�K/(�3
K

2), we can obtain

kWt+1 �W
⇤k2F �

✓
1 +

2⌘

�

◆
· kWt �W

⇤k2F

 (�2⌘ + 2L⌘2) · vec(Wt �W
⇤)

>
Htvec(W

t �W
⇤)

+ 2(⌘� + ⌘
2) · c

2
2K

5
d logN

N
(kW⇤kF + ⌫)2,

which implies that

kWt+1 �W
⇤k2F �

✓
1 +

2⌘

�

◆
· kWt �W

⇤k2F

 9c22⌘K
5
d logN

µN
(kW⇤kF + ⌫)2

+ 2(�⌘ + L⌘
2) · vec(Wt �W

⇤)
>
Htvec(W

t �W
⇤),

where µ is the lower bound of the smallest singular
value of r2L(W) as in Lemma 5.1, the inequality is
due to the selection of �, ⌘ and the fact that L > µ.

According to Lemma 5.1, we can obtain

kWt+1 �W
⇤k2F 

✓
1� µ⌘

2

◆
· kWt �W

⇤k2F

+
18c22⌘K

5
d logN

µN
(kW⇤k2F + ⌫

2)

(5.2)

holds with probability at least 1� c3/d
10.

Hence, as long as the sample size satisfies

N � c4�
2

6
K

9
d

�2
Kµ2

log

✓
�Kd

�Kµ

◆
· (kW⇤k2F + ⌫

2),

we have W
t+1 satisfies (5.1). Thus, we proved the

inductive hypothesis. Finally, we conclude that with
probability at least 1� c3/d

10

kWT �W
⇤k2F 

✓
1� µ⌘

2

◆T

kW0 �W
⇤k2F

+
c5K

5
d logN

µ2N
· (kW⇤k2F + ⌫

2).

This completes the proof.

6 EXPERIMENTS

In this section, we perform several experiments on syn-
thetic datasets to justify our theory. In particular,
we investigate the convergence rate of our algorithm
under di↵erent initializations, the sample complexity
dependence with respect to dimension d and the num-
ber of hidden neurons K, and the statistical error. We
sample the input data {xi}Ni=1 from standard Gaussian
distribution, and generate the output labels {yi}Ni=1

based on the teacher network (1.1). The number of
neurons in the hidden layer is set as K = 5. We gen-
erate the underlying parameter matrix W

⇤ 2 Rd⇥K
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such that W⇤ = U⌃V
>, where U, V are the left and

right singular matrices of a d ⇥K standard Gaussian
matrix, and ⌃ is a diagonal matrix. The smallest sin-
gular value of W⇤ is to be 1 and the largest one is set
to be 2, and thus the condition number  = 2.

To begin with, we study the convergence rate of our
proposed Algorithm 1 in the noiseless case using dif-
ferent initialization procedures. In particular, we com-
pare the tensor initialization algorithm proposed in
Zhong et al. (2017) and random initialization proce-
dure, where the initial estimator W0 is generated ran-
domly from a standard Gaussian distribution. We
choose the dimension d as 10 and sample size N as
5000. The step size ⌘ is set to be 0.5. For each interme-
diate iterate Wt returned by Algorithm 1, we compute
the empirical loss function value bLN (Wt). The loga-
rithm of the empirical loss function value is plotted in
Figure 2(a) against the number of iterations. It can be
seen that both initialization methods, followed by gra-
dient descent, achieve linear rate of convergence after
a certain number of iterations, but tensor initialization
leads to faster convergence than random initialization
at early stage.

Moreover, we investigate the sample complexity re-
quirement of the gradient descent algorithm in the
noiseless setting. In particular, we consider three
cases: (i) d = 20; (ii) d = 50; (iii) d = 100. For each
case, we vary the sample size N , and repeat Algorithm
1 for 10 trials. A trial is considered to be successful if
there exists a permutation matrix3 M⇡ 2 RK⇥K such
that the returned estimator WT satisfies

kWT �W
⇤ ·M⇡kF /kW⇤kF  10�3

.

The results of successful recovery probability of W⇤

under di↵erent ratio N/d are reported in Figure 2(b).
It can be seen from the plot that the sample complexity
required by tensor initialization followed by gradient
descent for learning one-hidden-layer ReLU networks
is linear in the dimension d, which is in agreement with
our theory.

We also investigate the dependence of the sample com-
plexity requirement in terms of the number of neurons
K. To this end, we generate the underlying parame-
ter matrix W

⇤ 2 Rd⇥K with d = 20, and we consider
three cases: (i) K = 5; (ii) K = 10; (iii) K = 15. Fig-
ure 2(c) shows the sample complexity comparison for
di↵erent K under random initialization. It suggests
that the sample complexity is linear to the number of
hidden units. Although our theoretical results require
higher order dependence on K, the simulation results

3
A permutation matrix is a square binary matrix that

has exactly one entry of 1 in each row and each column

and 0’s elsewhere.

suggest that our method can achieves the linear de-
pendence on K.

Finally, we study the statistical rate of our method in
the noisy setting. In particular, we consider the fol-
lowing three cases: (i) d = 10, (ii) d = 25, (iii) d = 50.
Each element of the noise vector ✏ = [✏1, ..., ✏N ]> is
generated independently from Gaussian distribution
N (0, 0.1). We run Algorithm 1 with tensor initial-
ization for each case over 10 trials, and report the av-
eraged estimation error of the final output W

T , i.e.,
kWT � W

⇤
M⇡kF . Recall that M⇡ denotes the op-

timal permutation matrix with respect to W
T and

W
⇤. The results are displayed in Figure 2(d), which

demonstrates that the averaged estimation error is well
aligned with the rescaled sample size under di↵erent
cases, which confirms that the statistical rate of the
output of gradient descent for training one-hidden-
layer ReLU networks is indeed in the order of eO(d/N).

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we studied the empirical risk minimiza-
tion for training one-hidden-layer ReLU networks us-
ing gradient descent. We proved that gradient descent
can converge to the ground-truth parameters at a lin-
ear rate up to some statistical error with sample com-
plexity eO(d). While the presented results are specific
to shallow neural networks, we believe that they can
shed light on understanding the learning of deep net-
works.

As for future work, one important but challenging di-
rection is to study the global optimization landscape
and learning guarantees for deeper neural networks
with more than one hidden layers. Another future
direction is to investigate whether the Gaussian input
assumption can be relaxed to more general distribution
assumption as done by Du et al. (2017a) for learning
one convolutional filter. Last but not least, it would
be interesting to study the theoretical guarantee for
learning ReLU networks using random initialized gra-
dient descent.
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