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Abstract

We develop an optimal primal-dual first-
order algorithm for a class of stochastic
three-composite convex minimization prob-
lems. The convergence rate of our method not
only improves upon the existing methods, but
also matches a lower bound derived for all first-
order methods that solve this problem. We
extend our proposed algorithm to solve a com-
posite stochastic program with any finite num-
ber of nonsmooth functions. In addition, we
generalize an optimal stochastic alternating
direction method of multipliers (SADMM) al-
gorithm proposed for the two-composite case
to solve this problem, and establish its con-
nection to our optimal primal-dual algorithm.
We perform extensive numerical experiments
on a variety of machine learning applications
to demonstrate the superiority of our method
via-à-vis the state-of-the-art.

1 INTRODUCTION

Consider the three-composite convex minimization
problem (TCMP)

min
x∈Rd

[
P (x),f(x) + g(x) + h(Ax)

]
, (1)

where f, g :Rd→R , R ∪ {+∞} and h :Rm→R are
convex, closed, and proper (CCP) functions, and the
linear operator A :Rd→Rm has operator norm B>0.
(Throughout this work, both Rd and Rm are Euclidean
spaces.) In addition, f is continuously differentiable
with L-Lipschitz gradient (L>0) on Rd, and g and h
have “simple” proximal operators, e.g., those that can
be evaluated in closed forms. We denote the solution set
of Problem (1) by X ∗ and assume that X ∗ 6= ∅. We also
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assume that Slater’s condition holds for Problem (1),
i.e., ri (domP ) 6= ∅.

We focus on the stochastic setting in which f(x) ,
Eξ∼ν [F (x, ξ)], where ξ is a random variable with dis-
tribution ν. We assume that there exists a stochastic
first-order oracle SFO(f, σ) that upon a query at x∈Rd,
returns an unbiased estimate of ∇f(x) with variance
σ2, conditioned on past history. (See Assumption 1 for
precise statements.)

In statistical learning, Problem (1) represents a doubly
regularized expected risk minimization problem that
includes many important instances, such as (graph-
guided) fused lasso [1,2], matrix completion [3], port-
folio optimization [4] and graph-guided sparse logistic
regression [5]. Note that if we set the distribution ν
to be the empirical distribution defined on the train-
ing data, we indeed recover the empirical risk mini-
mization problem. In this case, the oracle SFO(f, σ)
simply returns the stochastic gradient obtained by ran-
dom mini-batch sampling. Beyond statistical learning,
Problem (1) also arises in many other important ar-
eas, such as two-stage stochastic programming [6] and
constrained TV-denoising [7]. Such wide applications
are due to the flexibility of the (possibly nonsmooth)
functions g and h, i.e., they can either be regulariz-
ers or encode constraints (e.g., linear (in-)equalities or
ellipsoidal constraints).

Due to its wide applicability, Problem (1) has recently
received considerable attention. When ξ is determinis-
tic, many algorithms have been developed to solve (1).
These methods include [8–17]. However, the studies
of the stochastic setting are relatively limited. In par-
ticular, it is unclear whether there are any existing
stochastic methods for solving Problem (1) that are
(minimax) optimal. In this work, we show that the
answer to this question is indeed negative. We do so
by developing an optimal algorithm with a superior
convergence rate compared to the existing methods.

1.1 Saddle-Point Form

Let h∗ : Rm → R denote the Fenchel conjugate of h.
To use the proximal operator of h (or h∗), we need



An Optimal Algorithm for Stochastic Three-Composite Optimization

to decouple the function h and the linear operator A.
To achieve this, we introduce the saddle-point form of
Problem (1), i.e.,

min
x∈Rd

max
y∈Rm

[S(x,y) , f(x) + g(x)

+ 〈Ax,y〉 − h∗(y)]. (2)

By [18, Theorem 36.6], under Slater’s condition, x∗

is an optimal solution of Problem (1) if and only if
there exists y∗ ∈ Rm such that (x∗,y∗) is a saddle
point of Problem (2). Thus, to find an optimal solution
of Problem (1), it suffices to find a saddle point of
Problem (2).

1.2 Related Works

We first review the methods that solve Problem (1). If
we disregard the specific structure of Problem (1), then
it can be solved by methods involving the stochastic
subgradient. Concretely, we can apply the stochastic
subgradient method [19–22] to P , by treating it as a
general nonsmooth function. As for more sophisticated
approaches, we can view f̂ , f + h◦A as a nonsmooth
function, and apply stochastic proximal subgradient [23,

24] or regularized dual averaging [25] to P = f̂ + g.
However, to use these methods, we need to assume that
the (stochastic) subgradients of P or f̂ are uniformly
bounded. This may fail to hold in general. In addition,
subgradient-based methods converge slowly in practice.

When A = I, i.e., the identity operator, two special-
ized methods have been recently proposed. Specifi-
cally, [26] proposed an accelerated stochastic gradient
method with proximal average [27], and [28] developed
a stochastic gradient method based on three-operator
splitting [29]. However, these two methods fail to han-
dle the general linear operator A. Additionally, the
method in [28] can only handle strongly convex f .

Next, we turn our attention to the methods that solve
Problem (2). Similar to the discussions above, for a gen-
eral nonsmooth convex-concave function, we can apply
the stochastic primal-dual subgradient method [20, 30]
to find its saddle point. These methods suffer from the
same problems as the subgradient-based methods men-
tioned above. When g ≡ 0 (or the indicator function
of a linear subspace), many algorithms [31–33] based
on the primal-dual hybrid gradient (PDHG) frame-
work [34,35] have been proposed to solve Problem (2).
However, these methods cannot handle a general non-
smooth function g. This limitation has been recently
overcome by [36], wherein a three-composite stochastic
PDHG algorithm was proposed.

Finally, we note that by introducing a slack variable
y = Ax, Problem (1) can be rewritten as a linearly
constrained composite stochastic program. This pro-

gram can be solved via SADMM algorithms [37–39],

by regarding f̃ , f + g as a nonsmooth function and
leveraging its stochastic subgradient. To exploit the
composite structure of f̃ , [40] develop a new SADMM
algorithm that makes use of the proximal operator of
g, rather than its subgradient.

1.3 Lower Bound and Optimality

We measure the convergence rate of any stochastic
method that solves Problem (2) by the expected primal-
dual gap (see (18) for its definition). Let K be the
total number of iterations. When g ≡ 0, a lower bound
on the convergence rates of all the methods that solve
Problem (2) under SFO(f, σ) has been derived in [31],
i.e.,

Ω
(
L/K2 +B/K + σ/

√
K
)
. (3)

This bound clearly holds for Problem (2) when g is a
general nonsmooth function.1 Since we focus on the
methods whose number of iterations is proportional to
the number of oracle queries, the convergence rate re-
flects the oracle complexity. All of the existing methods
(including the ones in this work) have this property.

However, to the best of our knowledge, none of
the existing (stochastic) methods achieves (3). The
state-of-the-art method in [36] has convergence rate
O(L/K + B/K + σ/

√
K), when K is known a pri-

ori and used in setting the parameters in the algo-
rithm. However, in many scenarios, the algorithm
is terminated by other criteria other than the total
number of iterations, so the knowledge of K may be
unavailable. If K is unknown, the rate degrades to
O(L/K +B logK/K + σ logK/

√
K).

We remark that while many previous works only focus
on achieving the optimal dependence on σ (which dom-
inates asymptotically), obtaining optimal dependence
on L (and B) is important as well. This is because
in many practical applications, due to ill-conditioned
data, the value of L can be significantly larger than B
and σ. Hence the term involving L dominates for mod-
erate K, which often appears due to time constraints or
low-accuracy requirements. The benefits of achieving
optimal dependence on L yielded by our method will
be illustrated through the extensive numerical experi-
ments in Section 5.

1.4 Main Contributions

Our main contributions are threefold.

1Due to the equivalence of Problems (1) and (2), the
lower bound (3) also applies to all the methods for solving
Problem (1). In this case, the convergence is measured by
the expected primal sub-optimality gap.
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First, we develop an optimal primal-dual algorithm for
solving Problem (2) whose convergence rate in expec-
tation matches the lower bound (3), even when K is
unknown a priori. (See Remark 2 for the innovations
and technical difficulties to achieve this.) This also im-
plies that the lower bound derived for g ≡ 0 is indeed
tight for the more general Problem (2). Additionally,
we also derive large-deviation-type convergence results
for the primal-dual gap. Such results complement the
convergence in-expectation results and have practical
significance. See Remark 8 for details.

Second, we extend our proposed algorithm to handle
the sum of any finite number of nonsmooth functions,
each coupled with a linear operator. This formulation
subsumes many important applications, e.g., (sparse)
overlapping group lasso [41,42]. We also provide con-
vergence analysis for this extension.

Third, we generalize the optimal SADMM algorithm
in [39] to solve Problem (1), and establish the connec-
tion of this generalized algorithm to our primal-dual
method for solving Problem (2).

Notations. Denote the set of nonnegative integers
by Z+ and define N , Z+ \{0}. We denote the Eu-
clidean inner product by 〈·, ·〉 and ‖ · ‖ the norm in-
duced by 〈·, ·〉. We use bold lowercase letters and bold
uppercase letters to denote vectors and matrices, re-
spectively. For a (bounded) linear operator A, we
use AT to denote its adjoint and |||A||| its operator
norm. For any n ∈ N, define [n] , {1, . . . , n}. For
any CCP function h : Rm→R, define domh, {y ∈
Rm |h(y) < +∞} and for any t > 0 and x ∈ Rm,

proxth(x) , arg minz∈domh h(z) + ‖x− z‖2/(2t). Fi-
nally, all the sections and lemmas with indices begin-
ning with ‘S’ will appear in the supplemental material.

2 ALGORITHMS
The pseudo-code of our algorithm is shown in Algo-
rithm 1. Algorithm 1 includes six sequences of iterates,
namely {xk}k∈Z+ , {x̃k}k∈Z+ , {xk}k∈Z+ , {yk}k∈Z+ ,
{yk}k∈Z+ and {zk}k∈Z+ . Among them, {xk}k∈Z+ and
{yk}k∈Z+ are the primal and dual iterates respectively,
and {xk}k∈Z+ and {yk}k∈Z+ are their weighted aver-
ages (see (8) and (9)). At each iteration k ∈ Z+, we
first construct an interpolated point x̃k between xk and
xk, and then obtain a stochastic gradient of f at x̃k

from SFO(f, σ), denoted by vk. After that, we perform
dual ascent, primal descent and extrapolation steps
in (5), (6) and (7) respectively. Finally, we obtain the
weighted averages xk+1 and yk+1.

We then choose the input sequences {βk}k∈Z+ ,
{αk}k∈Z+ , {τk}k∈Z+ and {θk}k∈Z+ as

θk =
k + 1

k + 2
, βk =

(k + 1)(k + 4)

2(k + 2)
, αk = ρ′/B (11)

Algorithm 1 Optimal Stochastic Primal-Dual Algo-
rithm for TCMP

Input: Interpolation sequence {βk}k∈Z+ ,
dual stepsizes {αk}k∈Z+ , primal stepsizes
{τk}k∈Z+ , extrapolation sequence {θk}k∈Z+

Initialize: x0 ∈ dom g, y0 ∈ domh∗,
x0 = x0, y0 = y0, z0 = x0, k = 0
Repeat (until a convergence criterion is met)

x̃k := β−1
k xk + (1− β−1

k )xk (4)

Sample ξk∼ν and vk , ∇xF (x, ξk)|x=x̃k

yk+1 := proxαkh∗
(yk + αkAzk) (5)

xk+1 := proxτkg(x
k − τk(ATyk+1 + vk)) (6)

zk+1 := xk+1 + θk+1(xk+1 − xk) (7)

xk+1 := β−1
k xk+1 + (1− β−1

k )xk (8)

yk+1 := β−1
k yk+1 + (1− β−1

k )yk (9)

k := k + 1 (10)

Output: (xk,yk)

γk = k + 1, τ−1
k =

4L

k + 2
+ 2ρ′B + ρσ

√
k + 2 (12)

for any k ∈ Z+, where ρ, ρ′ > 0 are constants (in-
dependent of k). Note that the convergence rate of
Algorithm 1 matches the lower bound (3) for any values
of ρ and ρ′. See Section 3 for details.

Remark 1. We can easily extend Algorithm 1 to the
case where x in Problems (1) or (2) is minimized over
a closed convex set X . Indeed, we only need to replace
step (6) with

xk+1 := arg minx∈X ‖x− xk‖2/(2τk)

+ 〈x,ATyk+1 + vk〉+ g(x). (13)

The minimization problem in (13) admits closed-form
solutions in many scenarios [43].

Remark 2 (Innovations and Technical Difficul-
ties). Although steps (5), (6) and (7) also appear
in [36, Algorithm 1], in this work, we add in three
important steps, i.e., the interpolation step (4) and the
primal and dual averaging steps (8) and (9). Although
these steps seem natural and simple, they require highly
nontrivial choices of the input sequences, including
{βk}k∈Z+ , {αk}k∈Z+ , {τk}k∈Z+ and {θk}k∈Z+ , in (11)
and (12). Indeed, it is these judicious choices of se-
quences that allow the convergence rate of Algorithm 1
to match the lower bound in (3). In fact, one can
observe significant differences between these choices
and those in [36, Section 2.3]. In addition, the se-
quences in (11) and (12) require no prior knowledge of
the total number of iterations K—this is again in stark
contrast to those in [36, Section 2.3] and being much



An Optimal Algorithm for Stochastic Three-Composite Optimization

Algorithm 2 Optimal Stochastic Primal-Dual
Algorithm for MCMP

Input: Interpolation sequence {βk}k∈Z+ ,
dual stepsizes {αk}k∈Z+ , primal stepsizes
{τk}k∈Z+ , extrapolation sequence {θk}k∈Z+

Initialize: x0 ∈ dom g, x0 = x0, z0 = x0,
(y0

1, . . . ,y
0
p) ∈

∏p
i=1 domh∗i ,

(y0
1, . . . ,y

0
p) = (y0

1, . . . ,y
0
p), k = 0

Repeat (until a convergence criterion is met)

yk+1
i := proxαkh∗i

(yki + αkAiz
k), ∀ i ∈ [p]

yk+1
i := β−1

k yk+1
i + (1− β−1

k )yki , ∀ i ∈ [p]

x̃k := β−1
k xk + (1− β−1

k )xk

Sample ξk∼ν and vk , ∇xF (x, ξk)|x=x̃k

xk+1 := proxτkg(x
k − τk(

∑p
i=1A

T
i yk+1

i + vk))

zk+1 := xk+1 + θk+1(xk+1 − xk)

xk+1 := β−1
k xk+1 + (1− β−1

k )xk, k := k+1

Output: (xk,yk1 , . . . ,y
k
p)

more practical. Consequently, these algorithmic inno-
vations require much more novel and technical analysis
techniques (detailed in Section 3).

2.1 Extension to Multiple Nonsmooth Terms

Algorithm 1 can be extended to handle the multi-
composite convex minimization problem (MCMP)

minx∈Rd f(x) + g(x) +
∑p
i=1hi(Aix), (14)

where p ∈ N and for each i ∈ [p], the linear opera-
tor Ai : Rd → Rmi has operator norm Bi > 0 and
hi :Rmi→R is CCP with a “simple” proximal operator.
Our approach is to use the product-space technique (see
e.g., [9, Section 5]). Specifically, define Rm,

∏p
i=1 Rmi ,

Â : x 7→ (A1x, . . . ,Apx) and H : ŷ 7→
∑p
i=1 hi(yi),

where ŷ,(y1, . . . ,yp)∈Rm. Then (14) can be rewrit-
ten in the three-composite form as

minx∈Rd f(x) + g(x) +H(Âx). (15)

By noting that H∗(ŷ)=
∑p
i=1 h

∗
i (yi), the saddle-point

form of (15) can be written as

min
x∈Rd

max
(y1,...,yp)∈Rm

[Ŝ(x,y1, . . . ,yp) , f(x) + g(x)

+
∑p
i=1〈Aix,yi〉 −

∑p
i=1h

∗
i (yi)]. (16)

Based on (16) and that ÂT ŷ =
∑p
i=1 AT

i yi and
proxαH(ŷ)=(proxαh1

(y1), . . . ,proxαhp
(yp)) for any

α>0, we can derive a parallelizable algorithm for (14)
based on Algorithm 1. The pseudo-code is shown in Al-
gorithm 2. Note that the choices of the input sequences

in Algorithm 2 directly follow (11) and (12), except that

in this case, we replace B with |||Â|||=(
∑p
i=1B

2
i )1/2.

Remark 3. We can obtain proxαkh∗
in (5) from

proxh/αk
via Moreau’s identity, i.e.,

proxth∗(x) = x− tproxh/t(x/t), ∀ t > 0. (17)

Remark 4. Based on the techniques in Section 2.1,
one may intend to rewrite the nonsmooth function g as
g(x) = supy0∈Rd〈y0,x〉−g∗(y0) and apply Algorithm 2
to the new problem. However, this will introduce an
additional variable y0 (with the same dimension as x)
and hence increase the memory requirement of Algo-
rithm 2. When x is high-dimensional, e.g., a positive
semi-definite matrix, this memory increase is significant.
Thus, when g is not coupled with a linear operator, we
prefer to perform the proximal step on the primal side
(see e.g., [13, 14]).

3 CONVERGENCE ANALYSIS

Preliminaries. Let the sequence of random vectors
{ξk}k∈Z+ be given in Algorithm 1 and denote the
probability space on which it is defined by (Ω,G,Pr).
For any k ∈ N, define Ξk , {ξi}k−1

i=0 . Accordingly,
define a filtration {Fk}k∈Z+ such that F0 , {∅,Ω}
and Fk is the σ-field generated by Ξk. Define Dg ,
supx,x′∈dom g ‖x− x′‖ and Dh∗ in a similar way. Based
on {θk}k∈Z+ , we define an auxiliary sequence {γk}k∈Z+

such that γk =
∏k
i=0θ

−1
i for any k ∈ Z+. Finally,

define the primal-dual gap

G(x,y) , supy′∈domh∗ S(x,y′)

− infx′∈dom g S(x′,y). (18)

Assumption 1. For any k ∈ Z+ and ς ∈ R, the
stochastic noise εk , vk −∇f(x̃k) satisfies

(A1) Eξk
[
εk | Fk

]
= 0 almost surely (a.s.)

(A2) Eξk
[
‖εk‖2

∣∣Fk] ≤ σ2 a.s.

(A3) Eξk
[
exp

{
ς‖εk‖2/σ2

} ∣∣Fk]≤exp{ς2 + ς} a.s.

Remark 5. Two remarks are in order. First, by Jensen’s
inequality, (A3) implies (A2). These two assumptions
will be used in proving different convergence results be-
low. Specifically, for convergence in expectation, (A2)
is sufficient. To show large-deviation-type convergence
results, we need (A3) instead, which indicates that
the random variable (‖εk‖2/σ2−1) is sub-Gaussian
conditioned on Fk. Second, by setting ς = 1 in (A3),
we (essentially) recover the classical assumption in the
literature, e.g., [22, Assumption A2]. We impose this
stronger assumption to obtain O(

√
log(1/δ)) depen-

dence on the probability of failure δ (see Remark 7).

Main Results. We establish convergence results for
both Algorithms 1 and 2 when the domains of all the
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nonsmooth component functions are bounded. This
follows the convention of most works in the literature
on primal-dual methods. However, note that in the
unbounded case, Algorithms 1 and 2 still perform well
numerically (see Section 5). The proofs of all the results
in this section are deferred to Sections S-2 and S-3 in
the supplemental material.

To start with, we first establish convergence results for
all the input sequences (including {βk}k∈Z+ , {αk}k∈Z+ ,
{τk}k∈Z+ and {θk}k∈Z+) that satisfy certain conditions.

Proposition 1. Let dom g be compact and domh∗

be bounded. In Algorithm 1, let β0 = 1,

βk−1θk + 1 = βk, ∀ k ∈ Z+, (19)

0 < θk ≤ min{τk−1/τk, αk−1/αk}, ∀ k ∈ N, (20)

B2αk−1 + L/βk−1 ≤ (1− ζ)/τk−1, ∀ k ∈ N, (21)

for some ζ ∈ (0, 1). Define ΓK ,
∑K−1
k=0 γkτk and

Γ′K,(
∑K−1
k=0 γ2

k)1/2. If (A1) and (A2) hold, then

EΞK

[
G(xK ,yK)

]
≤

D2
g

βK−1τK−1
+

D2
h∗

2βK−1αK−1

+
(1 + ζ)ΓK

2ζβK−1γK−1
σ2, ∀K ∈ N. (22)

Also, if (A1) and (A3) hold, then for any δ∈(0, 1),

G(xK ,yK)≤ 1

βK−1

{
4
√

log(2/δ)Dg

γK−1
Γ′Kσ+

D2
g

τK−1

+
D2
h∗

2αK−1
+

1 + 2
√

log(2/δ)

2ζγK−1(1 + ζ)−1
ΓKσ

2

}
(23)

with probability (w.p.) at least 1− δ.
Remark 6. Note that the large-deviation-type result
in (23) cannot be obtained by a straightforward ap-
plication of Markov’s inequality to (22), otherwise
the dependence of (23) on δ will be O(1/δ), instead
of the much improved O(

√
log(1/δ)). Rather, it re-

quires a finer analysis involving Azuma-type martin-
gale concentration results [44] and Assumption (A3).
To be specific, in our analysis (see Section S-4), the
martingale difference sequence that we work with is
{γk〈εk,xk\ − xk〉}k∈Z+ , where {xk\ }k∈Z+ is an auxiliary

sequence defined recursively as x0
\ , x0 and for any

k∈Z+, xk+1
\ , Πdom g[x

k
\ + τkε

k]. (Note that Πdom g

denotes the Euclidean projection onto dom g.) The
purpose of defining {xk\ }k∈Z+ in this manner is ex-
plained in Lemma S-1.

Remark 7. Note that all the previous large-deviation-
type results for the stochastic subgradient methods,
e.g., [22, Corollary 1], have O(log(1/δ)) dependence
on δ. In contrast, our result in (23) has an improved
dependence on δ, i.e., O(

√
log(1/δ)). This is partially

due to the slightly strengthened Assumption (A3). See
Remark 5 for details.

Next, we verify that the choices of the input sequences
in (11) and (12) indeed satisfy the conditions (19)
to (21) in Proposition 1. Moreover, these choices lead
to the optimal convergence rate of O(L/K2 +B/K +
σ/
√
K).

Theorem 1. Let dom g be compact and domh∗ be
bounded. In Algorithm 1, choose {βk}k∈Z+ , {αk}k∈Z+ ,
{τk}k∈Z+ and {θk}k∈Z+ as in (11) and (12). As a re-
sult, they satisfy conditions (19) to (21). Consequently,
if (A1) and (A2) hold, then for any K ∈ N,

EΞK

[
G(xK ,yK)

]
≤ 8L

K(K + 3)
D2
g

+
4B

K

(
ρ′D2

g +
D2
h∗

4ρ′

)
+

4σ√
K + 3

(
ρD2

g +
2

ρ

)
. (24)

Also, if (A1) and (A3) hold, then for any δ ∈ (0, 1),

G(xK ,yK) ≤ 8L

K(K + 3)
D2
g +

4B

K

(
ρ′D2

g +
D2
h∗

4ρ′

)
+

16σ√
K + 3

(
Dg +

2

ρ

)√
log(2/δ) (25)

w.p. at least 1− δ.

Remark 8. The large-deviation-type convergence result
in (25) complements the in-expectation result in (24),
in the sense that it indicates the behavior of a sin-
gle realization of the random iterates {(xk,yk)}k∈N,
rather than the ensemble average. Specifically, (25)
shows that the convergence rate of any realization is
rather insensitive to the error probability δ (indeed,
O(
√

log(1/δ)) dependence). This result is important
when Algorithm 1 is only run for few times, which often
happens in practice.

Remark 9. If Dg and Dh∗ are known or can be esti-
mated reasonably well, then we can optimize the right-
hand sides of (24) and (25) by choosing ρ′ = Dh∗/(2Dg)
and ρ = 2/Dg. As a result,

EΞK

[
G(xK ,yK)

]
≤ 8L

K(K + 3)
D2
g

+
4B

K
DgDh∗ +

12σ√
K + 3

Dg (26)

and for any δ ∈ (0, 1), w.p. at least 1− δ,

G(xK ,yK) ≤ 8L

K(K + 3)
D2
g +

4B

K
DgDh∗

+
32σ√
K + 3

√
log(2/δ)Dg. (27)

Remark 10. Using similar arguments, we can also prove
the convergence results of Algorithm 2. We refer read-
ers to Section S-5 for details.
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Algorithm 3 Optimal SADMM for TCMP

Input: Interpolation sequence {rk}k∈Z+ , stepsizes
{ηk}k∈Z+ and penalty parameter %>0
Initialize: u0 ∈ dom g, ω0 ∈ domh, λ0 ∈ Rm,

u0 = u0, ω0 = ω0, λ
0

= λ0, k = 0
Repeat (until some convergence criterion is met)

ũk := rku
k + (1− rk)uk (29)

Sample ξ̃k∼ν and define ṽk,∇uF (u, ξ̃k)|u=ũk

ωk+1 := arg min
ω∈domh

L%k(uk,ω,λk) (30)

uk+1 := arg min
u∈dom g

L%k(u,ωk+1,λk) (31)

λk+1 := λk − %(Auk+1 − ωk+1) (32)

ωk+1 := rkω
k+1 + (1− rk)ωk (33)

uk+1 := rku
k+1 + (1− rk)uk (34)

λk+1 := rkλ
k+1 + (1− rk)λk (35)

k := k + 1 (36)

Output: (uk,ωk,λk)

4 CONNECTION TO SADMM

Note that (1) can be equivalently written as a linearly
constrained problem

min
u∈Rd,ω∈Rm

f(u) + g(u) + h(ω) s. t. Au = ω. (28)

This equivalence naturally motivates us to use SADMM-
type algorithms (e.g., [37, 38]) to solve Problem (1).
Since most of the existing algorithms are only devel-
oped for the case where g ≡ 0, we first propose a new
SADMM algorithm for solving (28). This method recov-
ers a pre-conditioned variant of the optimal SADMM
algorithm in [39] when g ≡ 0, thus being a useful
generalization. Next, we establish the connection of
this new algorithm to Algorithm 1. We conclude that
this algorithm is a variant of Algorithm 1 with unit
extrapolation parameter, i.e., θk=1, for any k∈Z+.

4.1 A New SADMM Algorithm

The pseudo-code of our new SADMM algorithm is
shown in Algorithm 3. Similar to Algorithm 1, at
iteration k, we first construct an interpolated point
ũk at which we obtain the stochastic gradient ṽk of
f . Then, we update the primal iterates (ωk,uk) in a
Gauss-Seidel manner in steps (30) and (31), where the
augmented Lagrangian function

L%k(u,ω,λ) , f(uk) + 〈vk,u− uk〉+ g(u) + h(ω)

+
rk
2ηk
〈u− uk,Wk(u− uk)〉

− 〈λ,Au− ω〉+ (%/2)‖Au− ω‖2. (37)

In (37), Wk,aI−(ηk/rk)%ATA. To ensure Wk� 0,
we choose a≥supk∈N(ηk/rk)%B2. Then we update the
dual iterate λk and finally, obtain the weighted average
(ωk+1,uk+1,λk+1).

For the choices of input parameters, we can choose any
%>0. For any k∈Z+, we choose rk = 1/(k + 1) and

η−1
k = L+ 2σ(k + 1)3/2 + c%B2(k + 1), (38)

where c>0 is a (tunable) constant. As a result, we can
choose a = ρB2/(3L1/3σ2/3 + c%B2).

Remark 11. In the definition of L%k in (37), we use
pre-conditioning, i.e., replacing ‖u − uk‖2 with the
quadratic form 〈u− uk,Wk(u− uk)〉, to ensure that
the steps (30) and (31) in Algorithm 3 have closed-form
solutions. See [34] for more details.

Remark 12. The update order of the primal iterates
(ωk,uk) in Algorithm 3 is slightly different from that
in most of the (stochastic) ADMM algorithms, wherein
uk is updated before ωk [45]. However, this difference
of update order does not affect the convergence of
Algorithm 3. For details, see [46].

Remark 13. Note that Algorithm 3 can be extended
to handle the MCMP in (14) in a similar fashion as in
Section 2.1.

4.2 Connection

To see the connection between Algorithm 3 and Algo-
rithm 1, for any k ∈ Z+, define η̃k , ηk/(ark),

zk+1
♦ , 2uk+1 − uk, (39)

yk+1
♦ , prox%h∗(%Auk − λk). (40)

First, from (30), we have

ωk+1 = Auk − (λk + yk+1
♦ )/%. (41)

Next, from (31), we have

uk+1 = proxη̃kg(u
k − η̃k(vk + ATyk+1

♦ )). (42)

(The detailed derivation steps for both (41) and (42)
are deferred to Section S-6.) In addition, by substitut-
ing (41) into (32), we have

λk = −%A(uk − uk−1)− yk♦. (43)

We then substitute (43) into (40) to obtain

yk+1
♦ = prox%h∗(y

k
♦ + %Azk♦). (44)

By letting xk = uk, yk = yk♦ and zk = zk♦, we ob-
serve that steps (44), (42) and (39) above recover
steps (5), (6) and (7) in Algorithm 1 respectively. In
this case, {η̃k}k∈Z+ act as primal stepsizes and % as the
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Table 1: Algorithms under Comparison

Abbrev. Algorithms
O

u
rs OTPDHG Algorithm 1 & Multi-Comp. Ext.

OSADMM Algorithm 3 & Multi-Comp. Ext.

B
en

ch
m

ar
k
s ESADMM [40, Algorithm 1]

SADMM [38, Algorithm 2]
ASG-PA [26, Algorithm 1]
TPDHG [36, Algorithm 1]
FOBOS [23, Section 2]

dual stepsize. Additionally, the extrapolation parame-
ter equals one. Also, by letting x̃k = ũk, xk = uk and
yk+1 = %(Auk − ωk+1)− λk, steps (4), (8) and (9) in
Algorithm 1 can be recovered. The sequence {rk}k∈Z+

now corresponds to {β−1
k }k∈Z+ in Algorithm 1.

Finally, we compare the new primal stepsizes {η̃k}k∈Z+

with the original ones in Algorithm 1, i.e., {τk}k∈Z+ .
Indeed, if we choose % = ρ′/B, then these two sequences
have the same scaling, i.e., Θ((L/k+B+σ

√
k)−1). We

note that the interpolation sequences {rk}k∈Z+ and
{β−1

k }k∈Z+ have the same scaling as well, i.e., Θ(1/k).
This indicates that Algorithm 3 is a variant of Algo-
rithm 1 with unit extrapolation parameter.

5 NUMERICAL EXPERIMENTS

Applications and Datasets. We compared the nu-
merical performance of our algorithms (i.e., Algo-
rithms 1 and 3 and their multi-composite extensions)
with five benchmark algorithms on three machine learn-
ing applications. These applications include graph-
guided sparse logistic regression (GLR) [5], graph-
guided fused lasso (GFL) [1] and sparse overlapped
group lasso (OGL) [42]. For all the applications, the
datasets we used were extracted from the LIBSVM [47]
repository (and normalized). All the datasets share
a common form {(ai, bi)}ni=1, where {ai}ni=1⊆Rd are
feature vectors and {bi}ni=1⊆R are response variables.
For convenience, we term one pass over n data samples
as one epoch.

Algorithms. Our algorithms and the benchmark al-
gorithms are listed in the Table 1, together with their
abbreviations. (All the benchmark methods are de-
scribed in Section 1.2.) Note that we did not compare
our methods to the deterministic and variance-reduced
randomized algorithms since these methods cannot
solve Problem (1) in general, i.e., when the distribution
ν in has infinite support.

Parameter Settings. For all the benchmark algo-
rithms, we used the parameter settings suggested in
the original works. For Algorithm 1 (OTPDHG), we set
ρ=1×10−3 and ρ′=1×10−5 in (11) and (12) through-
out all the experiments. For Algorithm 2 (OSADMM),
we set the penalty parameter %=ρ′/B (as in Section 4)
and c=6×10−2 in (38).
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Figure 1: Plot of the obj. error PGLR(xk)−P ∗
GLR versus (a)

number of epochs and (b) time (in seconds) on a9a.
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Figure 2: Plot of the obj. error PGLR(xk)−P ∗
GLR versus (a)

number of epochs and (b) time (in seconds) on covtype.

Comparison Criterion. Denote {xk}k∈Z+ as the se-
quence generated by each algorithm and P ∗ as the
optimal value of Problem (1). We estimated P ∗ via
Algorithm 1 in [14], which is a deterministic algorithm
for solving Problem (1). As a fair comparison of the
(empirical) convergence rates of all the algorithms, we
used the primal sub-optimality gap P (xk)−P ∗ as the
criterion. We ran each (stochastic) algorithm ten times.
Then we plotted the average realization of P (xk)−P ∗
versus the number of epochs, which reflects the number
of queries to the oracle SFO(f, σ). We also plotted
the average realization of P (xk)−P ∗ versus the actual
running time. (All the algorithms were implemented
in Matlab R© R2016b on a machine with a 3.9 GHz
processor and 8 GB RAM.)

5.1 Graph-Guided Sparse Logistic Regression

To formulate the GLR problem, for any i∈ [n], we first
define the logistic loss function `LR

i :Rd→R as

`LR
i (x) , log(1 + exp(−biaTi x)), ∀x ∈ Rd. (45)

Then we define the average loss function

`LR(x),(1/n)
∑n
i=1`

LR
i (x), ∀x ∈ Rd. (46)

In this case, each entry of the decision vector x corre-
sponds to a feature. The relations among these features
can be represented using a matrix F. (See [37] for de-
tails.) Based on F, we then formulate GLR as

min
x∈Rd

[
PGLR(x) , `LR(x) + λ1 ‖x‖1 + λ2 ‖Fx‖1

]
, (47)

where λ1, λ2>0 are regularization parameters.

We set λ1 = λ2 = 1/
√
n and generated the set of

weighted edges E in a similar fashion as in [37, Sec-
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tion 5.2]. At each iteration k, to obtain the stochas-
tic gradient vk, we first uniformly randomly sampled
a subset Bk ⊆ [n] (without replacement) such that
|Bk| = bn/100c. Then we let

vk = (1/|Bk|)
∑
i∈Bk
∇`LR

i (xk). (48)

Note that in this case, the noise variance σ2 in (A2)
can be easily estimated from [48, Lemma T-3]. We will
also obtain vk in the same way in Sections 5.2 and 5.3.

We tested all the algorithms on the a9a and covtype

datasets. The results are shown in Figures 1 and 2
respectively. From both figures, we observe that OT-
PDHG and OSADMM consistently and significantly out-
perform the benchmark algorithms, in terms of both
the number of epochs and running time. In particu-
lar, from Figure 2, we clearly observe that OTPDHG
exhibits an O(1/K2) convergence rate. This indeed
corroborates our theoretical results in Theorem 1. Al-
though OSADMM is closely related to OTPDHG (see
Section 4.2), the exact parameter settings therein are
different from those in OTPDHG. This explains the
differences between the numerical performances of OS-
ADMM and OTPDHG.

5.2 Graph-Guided Fused Lasso

The GFL problem can be formulated similarly as GLR
in Section 5.1. In this case we replace the logistic loss
function `LR in (47) by the least-square loss function

`LS(x),(1/n)
∑n
i=1(aTi x− bi)2/2, ∀x ∈ Rd.

As a result, we have

min
x∈Rd

[
PGFL(x) , `LS(x) + λ1 ‖x‖1 + λ2 ‖Fx‖1

]
, (49)

where the regularization parameters λ1 and λ2, and
the matrix F are all the same as in Section 5.1.

We tested all the algorithms on both cadata and YPM

(YearPredictionMSD) datasets. The results are shown
in Figures 3 and 4 respectively. Our observations from
these two figures are indeed consistent with those in
Section 5.1. Specifically, our algorithms (OTPDHG and
OSADMM) outperform the benchmark methods. Also,
the performance of OSADMM is slightly inferior to that
of OTPDHG. See Section 5.1 for explanations.

5.3 Sparse Overlapping Group Lasso

We finally consider a multi-composite stochastic op-
timization problem in the form of (14), where ν has
finite support. Given a set of index groups {Gi}pi=1

where each Gi ⊆ [d] and positive parameters {λi}pi=0,
the OGL problem is

min
x∈Rd

[
POGL(x) , `LS(x) + λ0‖x‖1 +

∑p
i=1λi‖xGi‖

]
,
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number of epochs and (b) time (in seconds) on cpusmall.
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Figure 6: Plot of the obj. error POGL(xk)−P ∗
OGL versus (a)

number of epochs and (b) time (in seconds) on abalone.

where xGi denotes the subvector of x indexed by Gi.
Since this problem is an instance of Problem (14), we
can use the multi-composite extensions of OTPDHG and
OSADMM to solve it (see Section 2.1 and Remark 13).

We generated the index groups {Gi}pi=1 and the reg-
ularization parameters {λi}pi=0 in the same way as
in [36, Section 5.4]. We tested all the algorithms on
both cpusmall and abalone datasets. The results are
shown in Figures 5 and 6 respectively. From both fig-
ures, we obtain the same conclusions as in Sections 5.1
and 5.2. Specifically, apart from the superior perfor-
mance of OTPDHG and OSADMM, the O(1/K2) con-
vergence rates of OTPDHG (for moderate K) are also
evident.
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