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Abstract

We study stochastic variance reduction-based
Langevin dynamic algorithms, SVRG-LD
and SAGA-LD (Dubey et al., 2016), for
sampling from non-log-concave distributions.
Under certain assumptions on the log den-
sity function, we establish the convergence
guarantees of SVRG-LD and SAGA-LD in 2-
Wasserstein distance. More specifically, we
show that both SVRG-LD and SAGA-LD re-
quire O (n+n®1/e2+nl/2 [et) exp (O(d+7))
stochastic gradient evaluations to achieve e-
accuracy in 2-Wasserstein distance, which
outperforms the O(n/e*) - exp (O(d + 7))
gradient complexity achieved by Langevin
Monte Carlo Method (Raginsky et al., 2017).
Experiments on synthetic data and real data
back up our theory.

1 INTRODUCTION

In the past decade, there has been an increasing inter-
est in applying gradient based Markov Chain Monte
Carlo (MCMC) methods for sampling from posterior
distributions in Bayesian machine learning (Neal et al.,
2011; Welling and Teh, 2011; Ahn et al., 2012; Chen
et al., 2014; Ma et al., 2015; Cheng et al., 2017). In
detail, this class of MCMC methods is based on the
Langevin dynamics, which is described by the follow-
ing stochastic differential equation (SDE)

dX(t) = —VF(X(1))dt + /2/7dB(t),  (1.1)

where v > 0 is the inverse temperature parameter
and { B(t) };>o is the standard Brownian motion in R?.
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Under certain assumptions on the drift term VF(x),
the distribution of X (¢) can be described by Fokker-
Planck equation, and is able to converge to an invari-
ant stationary distribution m o exp (— vF(x)) (Chi-
ang et al., 1987). In Bayesian inference, one aims
to sample the target distribution with the form 7
exp (— vF(x)), and a typical way is to apply Euler-
Maruyama discretization (Kloeden and Platen, 1992)
to (1.1), which gives rise to the celebrated Langevin
Monte Carlo (LMC) method (Roberts and Tweedie,
1996a),

X1 = Xy — VF(Xg)n +/2n/vex,

where €, follows a standard multivariate normal dis-
tribution, and 1 > 0 denotes the step size. When the
target distribution is strongly log-concave, i.e., func-
tion F'(x) is strongly convex, the convergence property
of LMC has been widely studied based on total vari-
ation (Dalalyan, 2014; Durmus and Moulines, 2015,
2016) and 2-Wasserstein (Dalalyan, 2017; Dalalyan
and Karagulyan, 2017) distances. On the other hand,
for many machine learning problems involving ex-
tremely large amount of data, the function F(x) on
the drift term of (1.1) can be written as an average of
n component functions

(1.2)

where f;(x) : R — R is the negative log likelihood
function on the i-th example. When the data sam-
ple size n is enormous, the computation of the full
gradient VF(X) in LMC is often very expensive. To
overcome this computational burden, one resorts to us-
ing stochastic gradient to approximate the drift term
in (1.1), which gives rise to the celebrated stochastic
gradient Langevin dynamics (SGLD) method (Welling
and Teh, 2011). In practice, the SGLD algorithm has
achieved great success in Bayesian learning (Welling
and Teh, 2011; Ahn et al., 2012) and Bayesian deep
learning (Chaudhari et al., 2016; Ye et al., 2017). How-
ever, the SGLD algorithm requires more iteration steps
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to achieve a high sampling precision compared with
LMC due to the large variance of stochastic gradients.
In order to alleviate this issue as well as save the gra-
dient computation, Dubey et al. (2016) incorporated
the idea of variance reduction (Johnson and Zhang,
2013; Reddi et al., 2016) into SGLD, and proposed
two types of stochastic variance reduced algorithms
based on gradient Langevin dynamics, namely SVRG-
LD and SAGA-LD. Recently, Chatterji et al. (2018)
proved the convergence rate of SVRG-LD and SAGA-
LD in 2-Wasserstein distance when the target distri-
bution is strongly log-concave, which characterizes the
feasible regime where SVRG-LD and SAGA-LD out-
perform LMC and SGLD. The convergence rate of
SVRG-LD was further improved by Zou et al. (2018b)
recently. However, the current convergence analyses
(Chatterji et al., 2018; Zou et al., 2018b) of stochas-
tic variance-reduced gradient Langevin dynamics are
mostly restricted to the strongly log-concave distribu-
tions, except Dubey et al. (2016); Chen et al. (2017).
Nevertheless, Dubey et al. (2016); Chen et al. (2017)
only investigated the mean square error of the sample
path average. It is of more interest to establish the
nonasymptotic convergence guarantee in terms of cer-
tain distance between the target distribution and that
of the current iterate, which provides a fine-grained
characterization of the sampling algorithms.

In this paper, we provide convergence analyses of
SVRG-LD and SAGA-LD in 2-Wasserstein distance
for non-log-concave target distributions. Different
from the analysis of sampling from strongly log-
concave distributions, the contraction property of
2-Wasserstein distance along the Langevin diffusion
(1.1) no longer holds, which poses a great challenge
for our analysis and makes existing proof techniques
(Chatterji et al., 2018) for strongly log-concave dis-
tribution not applicable to our case. To address this
challenge, we provide a new proof technique by extend-
ing the idea of Raginsky et al. (2017) for analyzing
SGLD in nonconvex optimization. More specifically,
our proof technique is based on a coupled Brownian
motion between the discrete-time Markov chain and
a continuous-time Markov chain generated by (1.1)
and decomposes the 2-Wasserstein distance between
the target distribution and that of the current iterate
into two parts: the 2-Wasserstein distance between dis-
tributions of the current iterate and the corresponding
continuous-time Markov Chain, and the distance be-
tween the distribution of the position in the coupled
Markov chain and its stationary distribution, i.e., the
target distribution 7.

Our Contributions The major contributions of this
paper are highlighted as follows.

e We study the SVRG-LD and SAGA-LD methods

for sampling from non-log-concave distributions
and prove their nonasymptotic convergence to the
target distribution in terms of 2-Wasserstein dis-
tance. Specifically, we show that both SVRG-LD
and SAGA-LD require O (n+n%/4/e2 +nl/2 /et) -
exp (O(d + 7)) stochastic gradient evaluations to
achieve e-accuracy, where n is the number of sam-
ples, ~ is the inverse temperature and d is the
problem dimension, which outperforms the gradi-
ent complexities of LMC and SGLD.

e We conduct experiments on both synthetic
and real-world data to compare different first-
order Langevin methods (SVRG-LD, SAGA-LD,
SGLD, LMC) for sampling from non-log-concave
distributions. The comparison suggests that the
SVRG-LD and SAGA-LD have similar perfor-
mance, and attain faster mixing time and perform
better than their counterparts even when the tar-
get distribution is non-log-concave.

Notation We denote a deterministic vector by lower
case bold symbol x and a random vector by upper
case italicized bold symbol X. We also use X}, (with
subscript k) to denote the iterate of a discrete-time al-
gorithm and X (¢) (with index ¢ in a parenthesis) to de-
note the continuous-time random process.For a vector
x € R?, we denote by [x||2 the Euclidean norm. For a
matrix X, we denote ||X||z as the Frobenius norm.For
a random vector X € R% we denote its probability
distribution function by P(X). We denote by E, (X)
the expectation of X under probability measure u. We
denote the 2-Wasserstein distance between two prob-
ability measures u and v as

Wi(u,v) = inf

X, — X, ||2d¢(X ., X
§EF(u,v)/]Rd><Rd ” v v”Q C( us U)a

where the infimum is over all joint distributions ¢ with
uw and v being its marginal distributions. We denote
by KL(p1||p2) the KL-divergence between probability
measures p; and ps. We use a, = O(b,,) to denote
that a,, < Cb,, for some universal constant C' > 0, and
use a,, = O(by,) to hide some logarithmic terms of b,,.
We also use a A b to denote min{a, b}.

2 RELATED WORK

In this section, we briefly review the literature on
generic Langevin dynamics based algorithms.

Langevin Monte Carlo (LMC) methods, which are de-
rived from discretizing Langevin dynamics, have been
widely used for approximate sampling in Bayesian in-
ference. For example, Dalalyan (2014) proved that the
distribution of the last step in LMC converges to the
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stationary distribution in O(d/€?) iterations in terms
of total variation distance. Durmus and Moulines
(2015) improved the results by showing the same re-
sult holds for any starting point and established sim-
ilar bounds for the Wasserstein distance. Recently
Dalalyan (2017) improved the existing results in terms
of the 2-Wasserstein distance and provide further in-
sights on the close relation between approximate sam-
pling and optimization. Bubeck et al. (2015) analyzed
sampling from log-concave distributions with compact
support via projected LMC. Brosse et al. (2017) pro-
posed a proximal LMC algorithm. Note that the Eu-
ler discretization on SDEs introduces a bias, and might
fail to converge to the target distribution (Roberts and
Tweedie, 1996a,b). An effective way to address this
issue is incorporating the metropolis hasting correc-
tion step (Hastings, 1970) into LMC, which gives rise
to metropolis adjusted Langevin algorithm (MALA)
(Roberts and Rosenthal, 1998). Following this line
of research, Bou-Rabee and Hairer (2012) provided
nonasymptotic bounds on the mixing time of MALA,
but the explicit dependence on the dimension d and
target accuracy remains implicit. Eberle et al. (2014)
established a clearer mixing time bound of MALA
in terms of a modified Wasserstein distance for log-
concave densities. Dwivedi et al. (2018) investigated
MALA for strongly log-concave densities, and proved
a linear rate of convergence in total variation distance.

Due to the increasing amount of data in modern ma-
chine learning problems, stochastic gradient Langevin
dynamics (SGLD) (Welling and Teh, 2011; Ahn et al.,
2012; Ma et al., 2015) has received extensive atten-
tions in Bayesian learning. Vollmer et al. (2016) an-
alyzed the nonasymptotic bias and variance of the
SGLD algorithm by using Poisson equations. Dalalyan
and Karagulyan (2017) proved O(do?/e?) convergence
rate for SGLD in 2-Wasserstein distance when the
target distribution is strongly log-concave. More-
over, Neal et al. (2011) introduced fictitious momen-
tum term in Hamilton dynamics, which gives rise to
Hamiltonian Monte Carlo (HMC) method. Similar to
SGLD, stochastic gradient Hamiltonian Monte Carlo
(SGHMC) (Chen et al., 2014) was proposed to over-
come the limitation of gradient evaluation over ex-
tremely large datasets, and demonstrated better per-
formance in learning Bayesian neural networks and on-
line Bayesian matrix factorization (Chen et al., 2014).
Under a similar framework, Chen et al. (2014) stud-
ied the stochastic MCMC method with higher-order
integrator in terms of the MSE of the average sam-
ple path. Cheng et al. (2017) proposed underdamped
MCMC method and proved the convergence guarantee
in 2-Wasserstein distance when the target distribution
is strongly log-concave. Although SGLD and SGHMC
have acheived great success in Bayesian learning, the

large variance of stochastic gradient may lead to un-
avoidable bias due to the lack of metropolis hasting
(MH) correction. To overcome this, Whye Teh et al.
(2014) proposed to apply decreasing step size to allevi-
ate the bias, and proved the asymptotic rate of SGLD
in terms of MSE. Betancourt (2015) pointed out that
stochastic HMC may also lead to poor sampling perfor-
mance, and there exists a tradeoff between the step size
selection and acceptance probability in MH correction.
This issue has been addressed by Dang et al. (2017)
where they proposed a modified HMC algorithm that
uses a subset of data to estimate both the dynamics
and the subsequent MH acceptance probability.

The other direction to alleviate the variance of stochas-
tic gradient and further save gradient computation is
applying variance-reduction technique. Dubey et al.
(2016) proposed a variance-reduced stochastic gra-
dient Langevin dynamics for Bayesian posterior in-
ference, and proved that their method improves the
mean square error upon SGLD. Since that, many at-
tempts have been made to incorporate variance re-
duction technique into Langevin based algorithms.
Baker et al. (2017) applied zero variance control
variates to stochastic MCMC method, and showed
that such technique is able to reduce the computa-
tional cost of stochastic gradient Langevin dynamics
to O(1). Chatterji et al. (2018) studied two variants
of variance-reduced stochastic Langevin dynamics pro-
posed in Dubey et al. (2016), and proved their conver-
gence guarantee for strongly log-concave distributions.
Moreover, by replacing the full gradient in the outer
loop of SVRG-LD with a subsampled one, Chen et al.
(2017) and Zou et al. (2018b) studied the convergence
rate of subsampled SVRG-LD method in MSE and
2-Wasserstein distance, respectively. The variance-
reduced Hamiltonian Monte Carlo has also been inves-
tigated recently in Zou et al. (2018a); Li et al. (2018).

In Table 1, we summarize the gradient complex-
ity! of LMC, SGLD, SVRG-LD and SAGA-LD in 2-
Wasserstein distance for sampling from strongly log-
concave and non-log-concave densities. To the best
of our knowledge, there is no convergence result in
2-Wasserstein distance for sampling from general log-
concave densities using Langevin dynamics based al-
gorithms. It should be noted that for sampling from
a non-log-concave the dependence on dimension d is
inevitably exponential. In fact, it is proved in Bovier
et al. (2004) that the lower bound of metastable exit
time of SDE is exponential in d when the nonconvex
function F in (1.2) has multiple local minima and sad-
dle points.

!Gradient complexity is defined as the number of
stochastic gradient evaluations.
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Table 1: Gradient complexities to converge to the stationary distribution in 2-Wasserstein distance. Note that
Raginsky et al. (2017) shows that SGLD dose not converge in 2-Wasserstein distance for non-log-concave densities.

Strongly log-concave?

Non-log-concave

€

LMC 6(nd /2)(Dalalyan, 2017) O(2) - 9@ (Raginsky et al., 2017)
SGLD 6(%) (Dalalyan, 2017) -
SVRG-LD  O(n+ nld” )(zou et al,, 2018b)  O(n+ 2 4+ n22) . (O (This paper)
SAGA-LD O(n + ”1/2‘1 i ) (Chatterji et al., 2018) 0] ”112 - e0(d) (This paper)

Algorithm 1 Stochastic Variance-Reduced Gradient
Langevin Dynamics (SVRG-LD)

Algorithm 2 Stochastic Average Gradient Langevin
Dynamics (SAGA-LD)

1: input: step size n > 0; batch size B; epoch length
m; inverse temperature parameter vy > 0

2: initialization: X, = 0, X = X,

3: for s =0,1,...,(K/m) do

1 G = VF(X(S )

5. for ¢ = .m—1do

6: k=sm+ E

7 randomly pick a subset Iy from {1,...,n} of
size |I;| = B; randomly draw € ~ N(0,I5xq)

8: vk - % EikEIk (vfik (Xk)ivflk (X(S))+G)

9: Xpr1 = Xp — Vi + /2n/vex

10:  end for

11: X () — X(s+1)m

12: end for

3 REVIEW OF SVRG-LD AND
SAGA-LD

In this section, we review the SVRG-LD and SAGA-
LD algorithms, which incorporates the variance reduc-
tion technique into the Langevin based algorithm.

Algorithm 1 displays the detail of SVRG-LD, which
consists of multiple epochs. In the beginning of the
s-th epoch, we compute the full gradient of F(X (%))
by scanning all samples

G=VF(X®)= Zv Fi(X O,

Regarding the [-th inner iteration in the s-th epoch
(the k-th update in the total iteration sequence), the
semi-stochastic gradient %k is computed based on the
snapshot gradient G and a new minibatch of samples
I, which yields

1

Vi= g X (VAulX) - VX 1 G),
where ij, is uniformly sampled from [n] = {1,2,...,n},

and |I| = B denotes the minibatch size. Then we per-
form the following update based on the semi-stochastic

1: input: step size n > 0; batch size B; epoch length
m; inverse temperature parameter y >0

2: initialization: X = 0, G =
[Vf1(Xo), .., Vfn(Xo)]
3: for k=0,1,...,K do

4: gr =n -1 ZZ 1G’Z, where G; denotes the i-th

column of Matrix G

5:  randomly pick a subset Iy from {1,...,n} of size
|I,| = B; randomly draw € ~ N(0,I4x4)

6 Vi=% e (Nvfik(Xk) -Gy, +gr)

7 Xipr = X —nVi +\/2n/ 7€

8: Gik = szk(Xk) for iy € I

9: end for

gradient with an injected Gaussian noise €,

= X, — Vi, + /2n/vey.

At the end of the epoch, we use the last iterate as
the starting point of the next epoch, i.e., X+ =
X (s+1)m-

Now we present SAGA-LD in Algorithm 2. Compared
with SVRG-LD, SAGA-LD requires higher memory
cost, since it explicitly stores n stochastic gradients in
memory, which formulates n columns of a matrix G.
G is initialized as [V f1(Xo),...,Vfn(Xo)]. In the k-
th update, we first compute the average of the column
vectors in G, i.e., gy = n! ZZ 1 G as a snapshot
gradient, where G is the i-th column of G. Then an

Xkt1

index set I is uniformly generated from [n] to com-
pute the following approximated gradient
= 1 =~ ~
in€lx
where B = |Ii| is the size of index set Iy. Then we

apply such approximated gradient to perform one-step
update on the iterate Xy, as shown in the line 7 of
Algorithm 2. At the end of each iteration, we update

2LMC, SVRG-LD and SAGA-LD require hessian Lips-
chitz assumption in the strongly log-concave regime.
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the columns in G whose indexes belong to I} with the
stochastic gradients computed in the current iteration,
ie., we set G;, = Vf; (Xy) for all i € I.

Algorithms 1 and 2 stem {rom Dubey et al. (2016).
However, they only analyzed the mean square er-
ror of averaged the sample path based on all iter-
ates {X3}K_,, while we aim at developing a non-
asymptotic analyses of SVRG-LD and SAGA-LD in
terms of 2-Wasserstein distance and Algorithms 1 and
2 only require the last iterate X .

4 MAIN THEORY

In this section, we present our main theoretical results,
which characterize the convergence rates of SVRG-LD
and SAGA-LD for sampling from non-log-concave dis-
tributions. We first lay out the assumptions that are
necessary for our theory.

Assumption 4.1 (Smoothness). The function f;(x)
is M-smooth with M > 0, ie., for any x,y € R%
i=1,...,n, we have

IVfi(x) = Vi(y)ll2 < M{x =y

The smoothness assumption is also known as gradient
Lipschitzness in the literature.

Assumption 4.2 (Dissipative). There exist constants
a,b > 0, such that for all x € R? we have

(VF(x),x) > bl|x[|3 - a.

It is worthy noting that the smoothness assumption
is made on all component function f;(x), while the
dissipative assumption is only made on the average of
the component functions. Assumption 4.2 is a typi-
cal assumption for the ergodicity analysis of stochas-
tic differential equations (SDE) and diffusion approx-
imation (Mattingly et al., 2002; Vollmer et al., 2016;
Raginsky et al., 2017; Zhang et al., 2017). It means
that, starting from a position that is sufficiently far
away from the origin, the Markov process defined by
(1.1) moves towards the origin on average. Note that
the class of distribution satisfying dissipative assump-
tion covers many densities of interest such as Gaussian
mixture model (Ge et al., 2017).

4.1 Convergence Guarantee for SVRG-LD

Now we present our main theoretical results on the
nonasymptotic convergence of SVRG-LD.

Theorem 4.3. Under Assumptions 4.1 and 4.2, con-
sider {Xy}r—o01,.. k generated by Algorithm 1 with

IS REE)

initial point Xy = 0. The 2-Wasserstein distance be-

tween the distribution of X and the target distribu-
tion 7 is bounded by

WQ(P(Xk;)77T)
m2 m 1/4
<D [DQ(§ + 1)/<;173 + D3(E + 1) Imz}
+ D46_’*kT"5, (4.1)

where the parameters are defined as

Dy = 4v/3/2 4+ (2b + d/~)kn,
Dy = 3yM?(2M*(1 + 1/b)(a + G? + d/v) + G?),
D3 = M?d,

and G = max;c[y) || fi(0)|[2. Moreover, B is the batch
size, m is inner loop length of Algorithm 1, and param-
eters Dy, D5 are both in the order of exp(O(d + 7)).

Based on Theorem 4.3, we are able to characterize
the gradient complexity of Algorithm 1 as well as the
choices of hyper parameters including n, m and B. We
state these results in the following corollary.

Corollary 4.4. Under the identical assumptions in
Theorem 4.3, in order to guarantee that the target
accuracy satisfies W, (P(Xk),ﬂ') < € we set mB =
O(n), n = O(e2B32 /n% A €* B2 /n) - exp (- O(y+ d)).
Then the gradient complexity of Algorithm 1 is

~nB~1/2 B+B ~
Tg:()(n 5 +n/ 64 +n)oexp(0('y+d)).

€

Moreover, if we set B = O(n'/2) and n = O(e?/n'/4 A
¢*) ~exp (— O(y + d)), the gradient complexity is

- n3/4 nt/2 -
T :O<Tl+€—2+€—4) -eXp(O(fy—I—d)).

Remark 4.5. Under identical assumptions in The-
orem 4.3, LMC achieves e-accuracy in 2-Wasserstein
distance after T, = O(n/e*) - exp (O(d + 7)) stochas-
tic gradient evaluations (Raginsky et al., 2017). It is
obvious that SVRG-LD requires less stochastic gradi-
ent evaluations to achieve e-accuracy than LMC.

4.2 Convergence Guarantee for SAGA-LD

Next, we present the following theorem that spells out
the convergence rate of SAGA-LD.

Theorem 4.6. Under Assumptions 4.1 and 4.2, con-
sider {Xj}r=01,. Kk generated by Algorithm 2 with
initial point Xy = 0. The 2-Wasserstein distance be-
tween the distribution of X and the target distribu-
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tion 7 is bounded by
Wa (P(X}). )

48n2 , 4 1/4
ng[D2< BT; +1>kn5+D3<B—Z+1)kn2}

kn

+ Dye 05, (4.2)

where G = maxX;c[y || fi(0)||2, B is the batch size, pa-
rameters Dy, Do, D3, D4 and Dy are identical to those
in Theorem 4.3.

Based on Theorem 4.6, we present the gradient com-
plexity of SAGA-LD in the following corollary.
Corollary 4.7. Under the same assumptions as in
Theorem 4.6, in order to guarantee that the target
accuracy satisfies WQ(P(Xk),ﬂ') < € we set n =
O(2B3/2 /n% A ¢'B2/n) - exp ((— O + d)), and the
gradient complexity of Algorithm 2 is

~/nB~1/? B+B ~
Tg:()(n = +n/ T +n) -exp (O(y + d)).

Morcover, if we set B = O(n1/2) and n = 5(62/n1/4 A
e*)-exp (—O(y+d)), the gradient complexity becomes
_ 3/4 p1/2 B

T, = O(n+ — + 6—4) -exp (O(d +7)).

n
2

Remark 4.8. It can be clearly observed that the gra-
dient complexities of SVRG-LD and SAGA-LD are es-
sentially identical when we set mB = O(n) in SVRG-
LD. This observation also matches the result in Dubey
et al. (2016) and Zou et al. (2018b), where the former
focuses on the mean squared error of sample path av-
erage and the latter only establishes the convergence
guarantees for strongly log-concave densities.

Remark 4.9. It is worth noting that our analyses on
SVRG-LD and SAGA-LD do not imply the conver-
gence rate of SGLD. However, the convergence rate of
SGLD in 2-Wasserstein distance is similar to Equation
(3.2) in Raginsky et al. (2017). Based on the argument
in Raginsky et al. (2017), the SGLD algorithm cannot
be guaranteed to converge to the target distribution
if the batch size is not carefully specified. However,
empirical study shows that SGLD converges in most
cases, which indicates a gap between the theory and
the experiment. In particular, we found that SGLD
actually converge to the target distribution in our ex-
periment, even when the batch size is set to be 1, and
enjoys faster rate than LMC.

5 EXPERIMENTS

In order to explore the behavior of SVRG-LD and
SAGA-LD for sampling from non-log-concave densi-
ties, we carry out numerical experiments on both

synthetic and real dataset in this section. Specifi-
cally, we compare the SVRG-LD and SAGA-LD algo-
rithms with LMC and SGLD for sampling from non-
log-concave density, independent component analysis
(ICA) and Bayesian logistic regression.

5.1 Sampling for Gaussian Mixture
Distribution

We first compare the performances of SVRG-LD,
SAGA-LD, LMC and SGLD on synthetic data. In par-
ticular, we consider the target distribution with form
mocexp(—F(x)) = exp (— Y fi(x)/n), where cach
component exp(— f;(x)) is defined as

exp(—fi(x)) = e~ Imaill2/2 4 o=ltaills/2 - p, e R

It is easy to verify that exp(—f;(x)) is proportion to
the PDF of a Gaussian mixture distribution. The func-
tion f;(x) and its gradient can be further simplified as

1

£ix) = llx— aul ~log (1 -+ exp(~2x"a)),
23.7;
Vi =x—a;+ —.

filx) =x—a; + T+ opxTa)
According to Dalalyan (2016); Dwivedi et al. (2018),
when the parameter a; is chosen such that ||a;||3 > 1,
function f;(x) defined as above is nonconvex. More-
over, it can be seen that

1 —exp(2x' a;)

(Vi) %) = x5 + T ey

<ai» X>

1 1
> Slxl3 = 3llasl3,

which suggests that function f;(x) satisfies Dissipative
Assumption 4.2 with b = 1/2 and a = ||a;||3/2 and
further implies that F'(x) is also dissipative. Then
we set sample size n = 500 and dimension d = 10,
and randomly generate parameters a; ~ N(u, X) with
po=(2,...,2)T and ¥ = Igxg. Since it takes a
large number of samples to characterize the distri-
bution, which makes repeated experiments computa-
tionally expensive, we instead follow Bardenet et al.
(2017) to use iterates along one Markov chain to visu-
alize the distribution of iterates obtained by MCMC
algorithms. Specifically, we run all four algorithms
for 2 x 10* data passes, and make use of the iter-
ates in the last 107 data passes to visualize distri-
butions, where the batch sizes for SGLD, SVRG-LD
and SAGA-LD are all set to be 10. In Figures 1(a) -
1(d), We compare the distributions generated by LMC,
SGLD, SVRG-LD and SAGA-LD while using MCMC
with Metropolis-Hasting correction as a reference. It
can be observed that both SVRG-LD and SAGA-LD
can well approximate the target distribution within
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Figure 1: 2D projection of the kernel densities of random samples generated after 10 data passes. (a) - (d)

represent 4 different algorithms.
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Figure 2: Experiment results for independent components analysis, where x axis indicates the number of data
pass and y axis shows the negative log-likelihood on the test data. (a)-(b) Experiment results for SVRG-LD
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Figure 3: Experiment results of ICA for different al-
gorithms.

2 x 10* datapass, while the distributions generated
by LMC and SGLD have obvious deviation from the
true one. This suggests that SVRG-LD and SAGA-LD
enjoy faster convergence rate than LMC and SGLD,
which verifies our theory. However, if we run SGLD
and LMC for more iterations, SGLD and LMC can
both well approximate the target distribution. More
interestingly, we find that SGLD actually requires less
gradient evaluations than LMC to well approximate
the target distribution, which does not well align with
the existing theory.

5.2 Independent Components Analysis

We further apply the SVRG-LD and SAGA-LD algo-
rithms to a Bayesian Independent Component Analy-
sis (ICA) model, and compare their performance with
LMC and SGLD. In the ICA model, we are given a
dataset with n examples X = {x;}i=1,..n. The prob-

with different batch size. (¢)-(d) Experiment results for SAGA-LD with different batch size.

ability of samples x; given the model matrix W can
be written as follows (Welling and Teh, 2011; Dubey
et al., 2016)

p(x:i|W) = |det(W)] HP(W:Xz‘),

where p(w, x;) = 1/(4 cosh?(w, x;/2)). We consider
Gaussian prior over W, ie., p(W) ~ N(0,A\71).
Then we formulate the log-posterior as the average of
n component functions, i.e., >, f;(W)/n, where

fi(W) = —n/[log(|det(W)])

d
+2 Z log (cosh(wjxi/Q))] + \|W2.
i=1

We perform the ICA algorithm on EEG dataset®,
which contains 125337 samples with 34 channels. In
this experiment, we consider two regimes with different
sample size n. To achieve this, we extract two subsets
with size 500 and 5000 from the original dataset, and
extract 5000 samples from the rest dataset for test.
Follow the same procedures in Welling and Teh (2011);
Chen et al. (2014); Zou et al. (2018a), we discard the
first 50 iterates as burnin and compute the sample path
average to estimate the model matrix parameter W.
We first run SVRG-LD and SAGA-LD with different
batch sizes B =1, B = 10, B = 20 and B = 50 (the
epoch length is set to be m = 2n/B for SVRG-LD),

Shttps://mnspg.epfl.ch/cms/page-58322. html
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Figure 4: Experiment results for Bayesian logistic regression, where = axis indicates the number of data pass
and y axis shows the negative log-likelihood on the test dataset. (a) - (d) represent 4 different datasets.

and plot the negative log-likelihood on test dataset
with respect to the number of effective data pass in
Figures 2(a)-2(d). It can be seen that both SVRG-LD
and SAGA-LD algorithms have the best performance
when the batch size is B = 10. Next, we set batch size
to be B = 10 for both SVRG-LD and SAGA-LD, and
compare their convergence performances with those of
LMC and SGLD, which are displayed in Figures 3(a)-
3(b). It should be noted that in the first epoch, SVRG-
LD and SAGA-LD compute the full gradient using all
n samples, thus the curves of SVRG-LD and SAGA-
LD should start from the first data pass. Moreover, we
observe that SVRG-LD and SAGA-LD have compara-
ble performance and both converge faster than SGLD
and LMC, this supports our theory.

5.3 Bayesian Logistic Regression

We also apply LMC, SGLD, SVRG-LD and SAGA-
LD to a Bayesian logistic regression problem. In
this problem, n i.i.d samples {x;,v;}i=1,..n are ob-
served, where x; € R? and y; € {—1,1} denote the
feature and the corresponding label of the i-th sam-
ple. In Bayesian logistic model, the likelihood func-
tion takes the form p(y;|x;, 8) = 1/(1+exp(—y;x; B))
where (3 is the regression parameter that requires to
be trained. In order to evaluate the performance of
SVRG-LD and SAGA-LD when dealing with non-log-
concave densities, we consider Gamma prior p(83)
185" exp(—8]|8]|2). Then we formulate the logarith-
mic posterior distribution as follows,

1 n
log [p(Blx1.- X0 y1.- . yn)] o< == > i(B),
i=1

where f;(8) = nlog (1 + e ¥ #) + Alog(|8]2) +
0||B|l2. We compare SVRG-LD and SAGA-LD with
the baseline algorithms on four datasets from UCI*
and Libsvm?® libraries, which are pima, a3a, gisette,
and mushroom. Since pima and mushroom do not

"https://archive.ics.uci.edu/ml/
Shttps://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/

have test data, we manually split the whole dataset
into training and test parts. Again, we compute the
sample path average to estimate the regression pa-
rameter 3. The comparison between different algo-
rithms for different datasets are displayed in Figure
4(a) - 4(d). Similarly, SVRG-LD and SAGA-LD start
from the first data pass. It can be observed that the
performances of SVRG-LD and SAGA-LD are quite
similar, and both converge faster than another two
baseline algorithms, which suggests that the SVRG-
LD and SAGA-LD methods serve as better choices for
Bayesian logistic regression with non-log-concave prior
compared with LMC and SGLD.

6 CONCLUSIONS AND FUTURE
WORK

We studied the SVRG-LD and SAGA-LD methods for
sampling from non-log-concave densities, and proved
the corresponding convergence rate as well as the gra-
dient complexity when the sampling error is mea-
sured as 2-Wasserstein distance. Experimental results
showed that SVRG-LD and SAGA-LD achieve sim-
ilar performance, and converge faster than LMC and
SGLD when the target distribution is non-log-concave,
which is consistent with our theory.

There are many possible future directions that demand
to be explored, such as the convergence rate of SGLD
in Wasserstein distance when the target distribution
is non-log-concave. In addition, it is also of interest to
investigate whether the metropolis hasting step can be
applied to further improve the current results.
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