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Abstract

We develop a new form of reweighting (Wain-
wright et al., 2005b) to leverage the relation-
ship between Ising spin glasses and perfect
matchings into a novel technique for the exact
computation of MAP states in hitherto in-
tractable binary Markov random fields. Our
method solves an n× n lattice with external
field and random couplings much faster, and
for larger n, than the best competing algo-
rithms. It empirically scales as O(n3) even
though this problem is NP-hard and non-
approximable in polynomial time. We dis-
cuss limitations of our current implementa-
tion and propose ways to overcome them.

1 INTRODUCTION

It is well known that inference in Markov random fields
(MRFs) is NP-hard in general; this includes tasks such
as calculating the partition function, finding an opti-
mal (maximum a posteriori, MAP, or ground) state,
conditioning on a subgraph, computing marginal prob-
abilities, and so forth. Much work in graphical models
therefore proceeds via the following route:

1. identify a tractable class of graphs (distributions);

2. develop efficient, exact inference methods for it;

3. leverage these methods into techniques applicable
(at a cost) to a wider class of graphs/distributions.

The prime example for this is belief propagation a.k.a.
message passing (Pearl, 1988), which at its heart is
an efficient inference mechanism for trees, i.e., graphs
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without cycles. By aggregating clusters of nodes into
supernodes, the junction tree algorithm (Lauritzen
and Spiegelhalter, 1988) leverages this into an exact
inference method for any graph, at a cost exponential
in its treewidth, a measure of its structural complex-
ity. Loopy belief propagation (Weiss, 1997; Frey and
MacKay, 1998; Yedidia et al., 2001) provides a heuris-
tic alternative for graphs with cycles that can yield
good results but may fail to converge.

Another example is the graph cut approach, in which
binary MRF ground states are computed in polyno-
mial time via a duality with maximum-weight net-
work flow. In its original form (Greig et al., 1989)
this construction only applies to MRFs whose edge po-
tentials obey a submodularity constraint (Kolmogorov
and Zabih, 2004). The QPBO algorithm (Kolmogorov
and Rother, 2007) leverages this into a method that
provides a partial labeling of the ground state for
MRFs with some nonsubmodular edges; this can be
improved further by solving a series of related QPBO
problems (Rother et al., 2007). These methods tend
to work well as long as there are not too many non-
submodular edges.

The restriction to binary node states can be overcome
by employing constructions that reduce a non-binary
MRF to either a sequence of binary MRFs on the same
graph (Boykov et al., 2001), or a single binary MRF
on a more complex graph (Ishikawa, 2003).

Globerson and Jaakkola (2007) have noted that bi-
nary MRFs are closely related to Ising spin glasses,
which have long been studied in statistical physics.
When defined over a planar graph, partition func-
tion (Kasteleyn, 1961; Fisher, 1961) and ground state
(Bieche et al., 1980; Barahona, 1982) of an Ising model
can be computed in polynomial time by establishing
a correspondence with perfect matchings in a related
graph. In this approach to inference in graphical mod-
els the graph’s genus (as opposed to its treewidth, or
submodularity) thus determines its tractability.

jmlr@schraudolph.org
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It is possible to leverage the polynomial-time compu-
tation of the partition function for planar Ising mod-
els into a general method for nonplanar ones, at a
cost exponential in the graph’s genus. A proposal
of Kasteleyn (1961) to this effect was fleshed out by
Galluccio and Loebl (1999), though implemented only
for toroidal (i.e., genus one) lattices (Galluccio et al.,
2000). Here we present and implement a generic and
practical algorithm to lift the exact ground state com-
putation from planar to nonplanar Ising models.

The remainder of this paper is organized as follows:
In Section 2 we briefly review the method of Schrau-
dolph and Kamenetsky (2008, 2009) for computing
a ground state of a planar Ising model, and show
how it falls short on nonplanar graphs. Section 3 ad-
dresses this shortfall by using reweighting (Wainwright
et al., 2005b) in a novel way, employing convex mix-
tures of graph embeddings. In Section 4 we find that
a straightforward implementation of this idea empir-
ically yields polynomial-time convergence on an NP-
hard and non-approximable problem of great practical
interest. Sections 5 and 6 describe important refine-
ments of our algorithm, before we conclude with a brief
discussion (Section 7).

2 ISING MODELS

Schraudolph and Kamenetsky (2008, 2009) define an
Ising model to be a pairwise binary MRF defined over
a graph G(V, E) with an energy function of the form

E(y) :=
∑

(i,j)∈E

Jyi 6= yjK θij , (1)

where y ∈ {0, 1}|V| is the model’s binary state vector,
J·K denotes the indicator function, and θij the dis-
agreement cost of edge (i, j). Any pairwise binary
MRF can be expressed in this form (1) by replacing
its unary (node) potentials with edges to an additional
field (or bias) node whose value is fixed (Globerson and
Jaakkola, 2007; Schraudolph and Kamenetsky, 2008,
2009). Note that this makes the Ising model topo-
logically more complex than the corresponding MRF;
planar Ising models correspond to MRFs that are out-
erplanar w.r.t. nodes with non-zero unary potential.

2.1 PLANAR ISING MODELS

A ground state of a planar Ising model can be com-
puted as follows:1

1. Embed G (i.e., draw it without edge crossings) on
a plane or sphere. This can be done in linear time
(Boyer and Myrvold, 2004).

1We only give a brief overview here; see Schraudolph
and Kamenetsky (2008) for a detailed treatment.
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c© Schraudolph and Kamenetsky (2008). Reprinted with permission.

Figure 1: A planar Ising model with four nodes (large,
blue) plus bias node (cyan, top left) and its expanded
dual (small nodes, red), in two different states (left &
right), with the corresponding cut of the graph and
perfect matching of its expanded dual (both in bold).

2. Construct the dual graph G∗, which has a node
for each face of G’s embedding. The weight of an
edge in G∗ is the disagreement cost of the edge of
G that it crosses.

3. Expand G∗ by replacing each of its nodes with a
k-clique, where k is the degree of the node. The
new clique-internal edges are given zero weight.

4. Compute a minimum-weight perfect matching
M∗(−θ) in the expanded dual with negated edge
costs. A perfect matching is a subset of the edges
in which each node has degree one; minimum-
weight perfect matchings can be computed in
O(|V|3|E|) by the Blossom algorithm (Edmonds,
1965a,b; Kolmogorov, 2009).2

5. The complement C∗(θ) := E\M∗(−θ) is a mini-
mum-cost cut of G, hence induces a ground state
y∗ := argminy E(y) of G.

The key to making this construction work is the com-
plementarity between perfect matchings of the ex-
panded dual and cuts of the original graph, used in
the final step. Consider Figure 1: By definition, every
perfect matchingM of the expanded dual matches an
even number of nodes in each clique via clique-internal
edges. Thus the perimeter of every face of the origi-
nal model is crossed an even number of times by dual
edges that are not part of the matching.

Let us call two sets A,B consistent w.r.t. each other,
and write A ∩=B, iff their intersection contains an even
number of elements. Above we have seen that by con-
struction, E\M ∩=F for every face perimeter F ⊆ E of
G. The set F ⊆ 2E of face perimeters of a plane em-
bedded graph is a cycle basis for the graph, i.e., every
cycle O ⊆ E can be composed from face perimeters
via symmetric set differences. It is easy to show that

2Gabow (1990) established an O(|V|(|E| + |V| log |V|))
time complexity, but this has never been implemented.
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Figure 2: A lattice graph embedded on the surface of a
torus; the two cycles indicated form a homology basis.

symmetric set differences preserve consistency, i.e.,

A ∩=B ∧ A ∩= C =⇒ A ∩= (B4C) . (2)

Thus E\M ∩=O for every cycle O ⊆ E— which means
that E\M is a cut. Since M∗(−θ) has minimum
negated weight, it is in fact a maximum-weight per-
fect matching w.r.t. θ. Its complement C∗(θ) must
therefore be a cut of minimum cost, hence induces a
state that minimizes the energy (1) of the model.

2.2 NONPLANAR ISING MODELS

Although nonplanar graphs cannot be drawn on a
plane or sphere without edge crossings, they can be
embedded in topologically more complex surfaces. The
genus (i.e., number of holes) of the topologically sim-
plest orientable surface in which a graph can be em-
bedded is its genus g. A toroidal grid for instance has
genus one since it can be drawn on a torus (Figure 2).

The dual graph G∗ is well-defined for any embedding
of G regardless of its genus, and so Steps 1–4 of the
method for planar graphs (Section 2.1) can be applied
here just as well. The only caveat is that finding
an optimal (i.e., minimum-genus) embedding is NP-
complete (Thomassen, 1989) and non-approximable
(Chen et al., 1997) in general. The method we will
introduce in Section 3, however, does not require opti-
mal embeddings. We have developed heuristics which
yield embeddings of sufficient quality for our purposes
in reasonable time (in preparation).

What breaks down for nonplanar Ising models is the
complementarity between perfect matchings in the
dual and cuts in the model graph: nonplanar embed-
ding surfaces have holes, and graph cycles that thread
or encircle a hole (e.g., those shown in Figure 2) can-
not be generated from symmetric differences of face
perimeters. In short, F is not a cycle basis for non-
planar embeddings, so E\M may no longer be a cut.

When applied to a nonplanar embedding, Step 5 in
Section 2.1 yields an extended ground state (Thomas
and Middleton, 2007): a minimum-weight edge set

that is consistent w.r.t. the face perimeters of the em-
bedding, i.e., all elements of F . Attempts to label
the graph’s nodes on this basis, however, may lead to
contradictions along cycles that do not lie in the cycle
space of F , such as those shown in Figure 2.

More formally, let X ⊆ 2E denote the set of extended
states of our Ising model G(V, E), i.e., all edge sets
consistent with the faces F of its embedding:

X := {X ⊆ E : (∀F ∈ F) X ∩=F} . (3)

The set C ⊆ 2E of cuts of G is defined analogously,
replacing F in (3) with any cycle basis of G. Cuts are
by definition consistent with all cycles of G, so C ⊆ X .
C = X iff F is a cycle basis of G, i.e., comprises the
faces of a plane (that is, genus zero) embedding of G.

The set of extended ground states is given by

X ∗(θ) := argmin
X∈X

EX (θ) , (4)

where ES(θ) :=
∑

(i,j)∈S θij for any edge set S ⊆ E ,
and argmin is deemed to return the location of all min-
ima. Note that the method of Section 2.1 only returns
one (arbitrary) extended ground state X ∗ ∈ X ∗(θ).

The set C∗(θ) of minimum-cost cuts is defined analo-
gously by replacing X in (4) with C. There is a 1:2
correspondence between cuts and induced node states
in Ising models, which turns into a bijection when the
label of the field node is held fixed (Schraudolph and
Kamenetsky, 2008). In either case, C∗(θ) exactly in-
duces the ground states of the Ising model. Since
C ⊆ X , we know that EX∗(θ) ≤ EC∗(θ), i.e., the
extended ground state energy is a lower bound on the
energy of true ground states.

3 REWEIGHTING

Reweighting approaches the problem of calculating the
partition function (Wainwright et al., 2005a) resp. a
MAP state (Wainwright et al., 2005b) of an intractable
distribution via a convex mixture of tractable ones.
We will now briefly introduce this technique, then
show that it can also be used to leverage the efficient
method we have to calculate extended ground states of
nonplanar Ising models (Section 2.2) into a practical
algorithm for obtaining true ground states.

3.1 CONVENTIONAL REWEIGHTING

Following Wainwright et al. (2005b), we replace our
single Ising model G(V, E) with a collection Gk(Vk, Ek)
of such models (k = 1, 2, . . .), where (∀k) Vk ⊆ V
and Ek ⊆ E , i.e., the Gk are all subgraphs of G. We
also require that

⋃
k Ek = E , i.e., every edge occurs at

http://en.wikipedia.org/wiki/File:Torus_cycles.png
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least once in the collection. Each Gk has its own dis-
agreement cost vector θk, subject to the constraints
(i, j) /∈ Ek ⇒ [θk]ij = 0 and

∑
k θk = θ.3 We shall

indicate by a subscript k whenever we refer to a prop-
erty of Gk, as opposed to G— thus Fk refers to the
face perimeters of Gk’s embedding, y∗k(θk) to one of
its ground states, and so forth.

By its definition, EC∗(θ) is a pointwise minimum of
linear functions, and hence concave in θ. We can thus
invoke Jensen’s inequality to obtain the lower bound∑

k

EC∗k (θk) ≤ EC∗(θ) (5)

on the ground state energy. The key idea now is to
make this bound as tight as possible by maximizing
the left-hand side of (5) w.r.t. the θk.

Wainwright et al. (2005b) proved that (5) becomes
tight iff there is agreement between the ground states
of all Gk, i.e., there are ground states y∗k that agree
wherever they overlap:

(∀k1, k2) v ∈ Vk1∩ Vk2 ⇒ [y∗k1
]v = [y∗k2

]v . (6)

A ground state of G can then be obtained by simply
combining the agreeing ground states y∗k of the Gk.

This strategy of course only makes sense if the Gk are
computationally more tractable than G. Thus Wain-
wright et al. (2005a,b) decompose a graph with cy-
cles into a collection of spanning trees; Globerson and
Jaakkola (2007) approximate the partition function of
a nonplanar Ising model by decomposing it into a col-
lection of spanning planar graphs. By contrast, we will
now introduce a form of reweighting that does not rely
on decomposition into simpler subgraphs.

3.2 A NEW FORM OF REWEIGHTING

When reweighting is applied to extended ground
states, we obtain a lower bound analogous to (5) which
we can maximize. Since we no longer have node states,
the agreement condition (6) must be reformulated in
terms of edges:

∀k ∃X ∗k ∈ X ∗k(θk) : (∀k1, k2) (7)
(i, j) ∈ Ek1∩ Ek2 ⇒ [(i, j) ∈ X ∗k1

⇔ (i, j) ∈ X ∗k2
] .

When agreement holds, the resulting extended ground
state X ∗ :=

⋃
k X ∗k will be consistent with the cycle

space of
⋃

k Fk, i.e., all cycles that can be composed
from the face perimeters of the entire collection. This
offers an exciting prospect: if we design our collection
of Gk such that

⋃
k Fk is a cycle basis of G, then (7)

implies an extended ground state X ∗ that is consistent
with every cycle of G— in other words: a true ground
state. We call such a collection of Gk consistent.

3For simplicity, we omit the weighting coefficients ρ used
by Wainwright et al. (2005b).

Figure 3: Left: Regular embedding of a 6×6 grid with
external field. Connections to the field node (black
disks) from the interior of the grid are routed through
four holes in the embedding surface (shaded). Right:
Plane embedding of a homology basis for the embed-
ding on the left. Together, the faces of these two em-
beddings constitute a cycle basis for the full graph.

It is not difficult to find a cycle basis for a given embed-
ded graph: Augmenting the faces F of the embedding
with a homology basis H for instance creates a cycle
basis F∪H. Loosely speaking, a homology basis for an
orientable surface of genus g comprises 2g cycles that
thread resp. encircle each hole in the surface; Figure 2
gives a homology basis for the torus (g = 1), Figure 3
(right) one for the embedding (g = 4) shown in Fig-
ure 3 (left). A homology basis for an embedded graph
G(V, E) can be computed in O(|E| + |V| log |V|) time
(Erickson and Whittlesey, 2005).

A consistent collection of Gk can thus be constructed
recursively as follows:

1. G1 := G, k := 1
2. find embedding of Gk

3. find homology basis Hk of Gk

4. if Hk = ε then exit

5. build Gk+1 : Ek+1 := ∪Hk

6. k := k + 1; goto 2

That is, in the kth iteration we add the (homology
basis of the)k graph G to our collection, unless and
until Hk is empty, i.e., Gk is plane embedded.

If G is planar to begin with, the resulting collection
will only contain G itself, and reweighting reduces to
the algorithm of Section 2.1 for planar Ising models. If
G derives from a planar MRF (i.e., without the field
node it would be planar) then it has a planar homology
basis, and the collection will consist of that and G. In
general, the minimum size %(G) of a consistent collec-
tion for G is an interesting and to our knowledge new
graph invariant: while %(G) = 1 comprises just the
planar graphs, for k > 1 the class G : %(G) = k con-
tains graphs of unbounded genus that are nonetheless,
in a deep and precise sense, topologically simpler than
graphs of the class G : %(G) = k+ 1. Note that deter-



         721

Nicol N. Schraudolph

Figure 4: The three plane subgraphs with which we
augment the nonplanar grid of Figure 3 (left): the
full grid without external field (left), and horizontal
(center) resp. vertical (right) strips with external field.

mining a ground state has been shown to be NP-hard
already for graphs with %(G) = 2 (Barahona, 1982).

In practice the above recursive method for construct-
ing a consistent collection may be too parsimonious, in
that we find it difficult to achieve agreement (7) with
it. This is a key problem with conventional reweighting
as well. It is often found that enriching the collection
(i.e., using more and larger subgraphs than strictly
necessary) improves the probility of reaching agree-
ment. Unlike conventional reweighting, in doing so we
are not limited by tractability concerns: we can effi-
ciently compute extended ground states for any graph.
Thus there is nothing to stop us from employing, say, a
collection comprising many copies of the entire graph
G, diversely embedded so that

⋃
k Fk is a cycle basis.

To summarize, the key difference here to conventional
reweighting is that instead of making the computation
tractable by restricting the modeled distribution to a
subgraph, we do so by relaxing the ground state to
the extended ground state. In both cases, the missing
constraints are enforced by requiring agreement across
the collection.

4 EMPIRICAL RESULTS

Noting that the lower bound (5) on extended ground
states is nonsmooth, concave, and piecewise linear, we
use a Fortran implementation of the BT (bundle trust)
optimizer (Schramm and Zowe, 1992) to maximize it.
Since we always use G1 := G, we can set

θ1 := θ −
∑

k=2,3,...

θk (8)

to obtain an unconstrained optimization problem over
the disagreement costs of edges in E2, E3, . . . A subgra-
dient w.r.t. [θk]ij (needed by BT) is then given by

J(i, j) ∈ X ∗k K − J(i, j) ∈ X ∗1 K . (9)

The Blossom V C++ code (Kolmogorov, 2009) is used
to incrementally compute maximum-weight perfect
matchings in the inner loop of the optimization.
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Figure 5: CPU time taken by our implementation
(RPM) resp. MPLP (Sontag et al., 2008) on a Mac-
Book laptop (2.2 GHz Intel Core 2 Duo) and a state-of-
the-art SDP-based branch & bound algorithm (Rendl
et al., 2010) on the BiqMac server (3.0 GHz Intel Xeon
5160) to compute a ground state of an n × n square
lattice Ising model with random coupling strength and
external field, against grid size n.

We choose binary MRFs over rectangular grids as our
benchmark problem, which translate into rectangular
Ising lattices with external field. Many computer vi-
sion problems have been cast into this form. Barahona
(1982) has proven that determining a ground state, or
its energy, in such an Ising model is NP-hard, even
when disagreement costs are restricted to {−1, 0,+1}.
There is also an applicable proof of polynomial-time
non-approximability (Bertoni et al., 1997).

An n×m rectangular grid with external field has a
regular (not necessarily optimal) embedding of genus
dn/2−1edm/2−1e; the case n = m = 6 is shown in
Figure 3 (left). We employ square grids (n = m) of
varying size with uniformly random disagreement costs
θ. For reweighting, we have found it advantageous
to augment the regular embedding with the 3 planar
subgraphs illustrated in Figure 4; the 4 graphs form a
consistent collection, so we obtain a true ground state.

Figure 5 shows the CPU time taken by our reweighted
perfect matching (RPM) method to calculate a ground
state for grid sizes ranging from n = 8 to n = 256.
We find cubic scaling (broad gray line) over the entire
range of grid sizes, from 0.1 CPU seconds for an 8× 8
grid to about 45 CPU minutes for 256× 256.

For comparison, we submitted the same problems
to the BiqMac solver (http://biqmac.uni-klu.ac.at/),
which runs a state-of-the-art branch & bound algo-
rithm based on a semidefinite programming (SDP) re-
laxation (Rendl et al., 2010). As Figure 5 (dashed line)
shows, this took 2–4 orders of magnitude longer than
our method and exhibits worse scaling with grid size.
For grid sizes up to 20 × 20, where BiqMac was able
to compute an answer within the 3 CPU hour max-
imum time available on the server, we verified that

http://biqmac.uni-klu.ac.at/
http://biqmac.uni-klu.ac.at/
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Figure 6: As Figure 5, but also comparing our RPM
against the method of Liers et al. (2004) at the Spin
Glass Server (SGS, 1.86 GHz Intel Celeron M) on n×n
toroidal lattices with random coupling strength but no
external field. MPLP did not work here.

both methods return the same result. Rendl et al.
(2010) found their algorithm to be faster than all other
generic methods they considered; thus these results
suggest that our novel form of reweighting constitutes
a substantial advance in combinatorial optimization.

We also compared performance to MPLP (Sontag
et al., 2008), which represents the current state of the
art in message-passing algorithms. MPLP is an order
of magnitude slower than RPM on the 8 × 8 grid but
scales even better than RPM, so that at n = 40 it
only takes 6 times as long as our method. Whenever
it converged it returned the same result as the other
methods; however, we could not get it to converge for
grids any larger than 40 × 40, presumably due to nu-
merical limitations.

For grid sizes above n = 100, our implementation of
RPM sometimes fails to converge; above n = 200 these
failures become frequent. We suspect numerical prob-
lems: reweighting tends to create degeneracy in the
collection and may well exceed the capabilities of stan-
dard IEEE-754 floating-point arithmetic for problems
of such size. While Blossom V is templated C++ code,
the Fortran code of the BT optimizer unfortunately
chains us to IEEE-754 at present. In the following
two sections we describe improvements that should not
only further increase the speed of RPM, but also facil-
itate its implementation in arbitrary-precision integer
arithmetic. This will allow us to probe the limits of
the observed polynomial-time regime, which we must
encounter at some point — unless P=NP.

Rendl et al. (2010) found the method of Liers et al.
(2004), which is specialized to 2D and 3D lattices
with periodic boundary conditions but no external
field, to be faster than their algorithm on such
grids. We therefore performed a direct comparison
of our approach with that method (running on the
Spin Glass Server, http://www.informatik.uni-koeln.
de/ls_juenger/research/spinglass/) on 2D toroidal

grids. For reweighting we augmented the full graph
(g = 1) with two planar subgraphs obtained by delet-
ing a row of vertical resp. column of horizontal edges.
Note that this problem is not NP-hard.

Figure 6 shows that while both methods perform simi-
larly on smaller grids, our approach is more than twice
as fast at 64 × 64, and almost twelve times as fast
for n = 112, the largest grid size for which the Spin
Glass Server returned an en exact answer. Our code
scales well beyond that (up to 400 × 400) before we
run into numerical problems. Again we verified that
all methods produce identical results. Given that we
are comparing our first implementation (with known
inefficiencies) of a new, generic approach against an es-
tablished, specialized solver here, we find these results
very encouraging.

We tried but could not get MPLP to work on toroidal
grids of any size. Like all message-passing algorithms,
MPLP relies on the node potentials to break the ini-
tial symmetry; without such an external field it simply
does not converge. We tried addressing this problem
by promoting an arbitrary node in the toroidal grid
to field node, but the resulting bias was too weak to
guide MPLP to the ground state: it converged very
slowly, and only to a local optimum.

5 SLACK SHARING

Maximizing a lower bound like (5) amounts to solving
a linear program (LP). In each iteration of this process
we call Blossom, which is itself an LP, to compute
extended ground states. Running two nested loops
of linear programs, unaware of each other, is clearly
inefficient. We now show how to combine both levels
into a single modified LP. This amounts to a single run
of the Blossom algorithm, extended by a technique we
call slack sharing, on the entire reweighting collection.

The Blossom algorithm (Edmonds, 1965a,b; Kol-
mogorov, 2009) solves the following LP very efficiently:

minimize
x≥0

θ>x s.t.: |{v}|x = 1 ∀ v ∈ V, (10)

|B|x ≥ 1 ∀B ∈ B, (11)

where B contains all subsets of V with an odd number
of nodes greater than one, and for any subset of nodes,
| · |x sums the values of x along the boundary:

(∀ S ⊆ V) |S|x :=
∑

(i,j)∈E:
i∈S,j /∈S

xij . (12)

At the solution the primal vector x becomes binary,
and indicates the minimum-weight perfect matching:

http://www.informatik.uni-koeln.de/ls_juenger/research/spinglass/
http://www.informatik.uni-koeln.de/ls_juenger/research/spinglass/
http://www.informatik.uni-koeln.de/ ls_juenger/research/spinglass/
http://www.informatik.uni-koeln.de/ ls_juenger/research/spinglass/
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x∗ij = J(i, j) ∈M∗(θ)K. The dual program is

maximize
y

∑
v∈V

yv +
∑
B∈B

yB (13)

subject to: sij ≥ 0 ∀(i, j) ∈ E , (14)
yB ≥ 0 ∀B ∈ B, (15)

where s is a vector of slacks, i.e., reduced edge costs:

sij := θij − yi − yj −
∑
B∈B:

i∈B,j /∈B

yB. (16)

When we integrate reweighting into Blossom’s LP, the
primal optimization becomes

maximize
θk

minimize
xk≥0

θ>k xk (17)

subject to the additional constraint
∑

k θk = θ. Sur-
prisingly, the dual program remains unchanged, except
that (14) becomes∑

k:(i,j)∈Ek

[sk]ij ≥ 0 ∀(i, j) ∈ E , (18)

i.e., corresponding edges across the collection share
their slack. To integrate reweighting into Blossom, we
thus merely have to implement a mechanism for slack
sharing. Blossom is quite an intricate algorithm (see
Kolmogorov, 2009), so this is by no means a trivial
task. However, given that edges which share slacks
always reside in distinct connected components (there
are no edges between graphs in a reweighting collec-
tion), we foresee no undue complications here.

6 DEALING WITH DEGENERACY

For degenerate Ising models in our collection, Blossom
only returns one of their multiple extended ground
states. Because these samples from the sets X ∗k(θk)
are drawn independently, they may fail to agree even
when (7) holds. (We can observe this empirically by
drawing edge costs θ randomly from {−1, 1}, which
produces highly degenerate Ising models.) At present
we have no way to distinguish this state of affairs from
a genuine failure to reach agreement (7). Launching
a search over the sets of extended ground states for
samples that are in agreement with each other looks
unpromising: the problem appears quite similar to
weighted set cover, which is NP-hard.

Instead we deal with degeneracy as follows: Assume
that the edge costs θ of a degenerate Ising model are
integers.4 Now add to θ the fractional vector ρ : ρi =

4Given the finite precision of floating-point computer
arithmetic, this can be assumed without loss of generality.

2−i, i = 1, 2, . . . |E|. Since ρ gives each extended state
its unique fractional energy level which is not affected
by θ, the Ising model with edge costs θ+ρ is non-de-
generate. Since ρ raises the energy of any given state
by at most

∑|E|
i=1 2−i< 1, the unique extended ground

state for θ+ρ is one of the extended ground states of
the original, degenerate model with integer costs.

This trick requires us to lengthen the representation
of our integer costs by |E| bits. Since Blossom only
performs linear operations on the cost vector, however,
this increases the complexity of our algorithm only by
a factor of |E|/l, where l ≥ dlog2(θmax − θmin)e is the
length of integer representation needed for the original,
degenerate problem.

In practice we can do better still by first solving the
degenerate problem, then adding fractional energies
only to those edges that do not agree at the optimum
(if any). We then incrementally re-optimize the mod-
ified problem, and repeat as necessary until we have
either reached agreement or added fractional energies
to all edges without doing so.

7 DISCUSSION

Above we have given a polynomial-time algorithm
for an NP-hard and non-approximable problem. The
catch is that a given collection may not reach agree-
ment at the optimum, and thus fail to provide a useful
answer. Empirically we find that expanding the collec-
tion helps in such an event; unless P=NP the required
input expansion must be exponential in the worst case.

However, that worst case appears to be far more elu-
sive than one would think: In our experiments RPM is
able to reliably solve larger MAP problems than any
other method, and much faster, even though we only
ever expand the input graph by a fixed factor of < 4.

At present our reweighting collections are hand-crafted
a priori. Better understanding of the cause(s) of dis-
agreement at the optimum should yield heuristics to
automate and optimize the collection design process.

The Ising ground state problem is equivalent to max
cut, which has very direct transformations from many
other NP-hard problems. Our work thus has implica-
tions beyond machine learning and statistical physics.

An implementation of RPM will be available as part of
our isinf code at http://nic.schraudolph.org/isinf/.
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