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Abstract

A common question when studying a class of context-free grammars (CFGs) is whether
equivalence is decidable within this class. We answer this question positively for the class
of Clark-congruential grammars, which are of interest to grammatical inference. We also
consider the problem of checking whether a given CFG is Clark-congruential, and show that
it is decidable given that the CFG is a deterministic CFG.
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1. Introduction

Given two context-free grammars (CFGs), the equivalence problem asks whether they
represent the same language; this is well known to be undecidable in general (Bar-Hillel
et al., 1961). In contrast, the equivalence problem is decidable within some families of CFGs,
such as deterministic CFGs (Sénizergues, 2001) and (pre-)NTS grammars (Sénizergues, 1985;
Autebert and Boasson, 1992). Thus, a reasonable question to ask when studying a subclass
of CFGs is whether equivalence is decidable for members of this class.

One subclass of CFGs of interest to grammatical inference consists of the CFGs considered
in (Clark, 2010), which we refer to as Clark-congruential (CC) grammars. There it is shown
that, given an oracle called the “teacher”, an algorithm can infer a language known to the
teacher by posing questions about the language in a fixed format. In particular, one type of
question that the teacher can answer is an equivalence query, where the algorithm supplies a
CFG and asks whether it represents the language that the teacher has in mind. A similar
(if slightly less general) teacher can be used to infer regular languages (Angluin, 1987).

In analogy to other classes of CFGs, one might ask whether the equivalence problem for
CC grammars is decidable; in analogy to regular languages, one might ask whether it is in
principle possible to implement a teacher that answers equivalence queries for a CC grammar.
Motivated by these questions, we investigate decision problems surrounding CC grammars.
Our main contribution is a proof that equivalence and congruence problems for these
grammars are decidable, based on arguments of that ilk for pre-NTS grammars (Autebert
and Boasson, 1992). We also show that it is decidable whether a deterministic CFG is CC.

The remainder of this paper is organised as follows. In Section 2, we recall some
preliminary notions. In Section 3, we discuss the congruence, equivalence and recognition
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problems for CC grammars. We list directions for further work in Section 4. To preserve
the narrative, some proofs appear in the technical report (Kanazawa and Kappé, 2018).

2. Preliminaries

A relation R ⊆ S × S is said to be Noetherian if it does not admit an infinite chain, i.e.,
there exist no infinite sequence (sn)n∈N such that for all n ∈ N it holds that sn 6= sn+1 and
sn R sn+1. R is confluent on S′ ⊆ S if it is transitive and when for all s, s′, s′′ ∈ S′ such
that s R s′ and s R s′′, there exists a t ∈ S′ with s′ R t and s′′ R t.

Words and languages We fix a finite set Σ, called the alphabet, and write Σ∗ for the
language of words over Σ. We write Γ for another finite alphabet that contains Σ, and the
symbol $, which is not in Σ. The empty word is denoted by ε. We write |w| for the length of
w ∈ Σ∗. We also fix an (arbitrary) total order � on Σ, and extend � to an order on Σ∗ by
defining x � y if and only if either |x| < |y|, or |x| = |y| and x precedes y lexicographically.
A prefix (resp. suffix ) of w ∈ Σ∗ is a w′ ∈ Σ∗ such that there exists a y ∈ Σ∗ with w′y = w
(resp. yw′ = w); w overlaps with x if a non-empty suffix of w is a prefix of x, or vice versa.

A function h : Σ∗ → Σ∗ is a morphism when for w, x ∈ Σ∗ it holds that h(wx) = h(w)h(x).
If we define a function h : Σ → Σ∗, then h uniquely extends to a morphism h : Σ∗ → Σ∗,
by defining for a0, a1, . . . , an−1 ∈ Σ that h(a0a1 · · · an−1) = h(a0)h(a1) · · ·h(an−1). If for all
a ∈ Σ we have that h(a) ∈ Σ, we say that h is strictly alphabetic. When L is a language, we
write h−1(L) for the language given by {w ∈ Σ∗ : h(w) ∈ L}.

A semi-Thue system (Book and Otto, 1993) is a reflexive and transitive relation on Σ∗

such that if w  w′ and x x′, then wx w′x′. A reduction is a Noetherian semi-Thue
system. We say that x ∈ Σ∗ is irreducible by a reduction  if x x′ implies that x = x′.

A congruence is an equivalence ∼ on Σ∗ such that when u ∼ v and w ∼ x, also uw ∼ vx.
If ∼ is a congruence on Σ∗, we write [w]∼ for the congruence class containing w ∈ Σ∗. A
congruence ∼ is finitely generated if for some finite S ⊆ Σ∗×Σ∗, ∼ is the smallest congruence
containing S; the set S is said to generate ∼. Any language L induces a syntactic congruence,
denoted ≡L, which is the relation where w ≡L x holds precisely when, for all u, v ∈ Σ∗, we
have uwv ∈ L if and only if uxv ∈ L. The language of contexts of w ∈ Σ∗ w.r.t. a language
L, denoted L[w], is {u]v : uwv ∈ L} (for a distinguished symbol ]). It should be clear that
w ≡L x if and only if L[w] = L[x].

A language L is congruential (Book and Otto, 1993) if there exists a finitely-generated
congruence ∼ and a finite set T ⊆ Σ∗ such that L =

⋃
t∈T [t]∼. We say that L is regular if

its syntactic congruence induces finitely many congruence classes (Nerode, 1958).
Decidability of congruence and of equivalence are closely related for congruential lan-

guages, as witnessed by the following lemma from (Sénizergues, 1985).

Lemma 1 Let ∼1 and ∼2 be congruences generated by finite sets S1, S2 ⊆ Σ∗ × Σ∗

respectively, and let T1, T2 ⊆ Σ∗ be finite. Let L1 and L2 be given by

L1 =
⋃
t∈T1

[t]∼1
L2 =

⋃
t∈T2

[t]∼2

If we can decide L1 and L2, as well as ≡L1 and ≡L2, then we can decide whether L1 = L2.

4



Decision problems for Clark-congruential languages

Proof Observe that L1 = L2 precisely when T1 ⊆ L2 and T2 ⊆ L1, as well as ∼1 ⊆ ≡L2 and
∼2 ⊆ ≡L1 . The first two inclusions are decidable, since T1 and T2 are finite, and L1 and
L2 are decidable. The latter two inclusions are also decidable, for they are equivalent to
checking whether S1 ⊆ ≡L2 and S2 ⊆ ≡L1 . Thus, we can decide whether L1 = L2.

Context-free grammars A (context-free) grammar (CFG) is a tuple G = 〈V, P, I〉 where
V is a finite set of symbols called nonterminals with I ⊆ V the initial nonterminals, and
P ⊆ V × (Σ ∪ V )∗ is a finite set of pairs called productions. We denote 〈A,α〉 ∈ P by A→ α.
We use G to denote an arbitrary CFG 〈V, P, I〉, implicitly quantifying over all CFGs.

We write Σ̂ for the set Σ∪ V and define ⇒G as the smallest relation on Σ̂∗ such that for
all α, γ ∈ Σ̂∗ and B → β ∈ P , we have αBγ ⇒G αβγ. For α ∈ Σ̂∗, the language of α in G,
denoted L(G,α) is {w ∈ Σ∗ : α⇒∗G w}; the language of G, denoted L(G), is

⋃
A∈I L(G,A).

We say that L ⊆ Σ∗ is a context-free language (CFL) if L = L(G) for some CFG G.
As an example of a CFG, let us fix GD = 〈VD, PD, ID〉 as a CFG over the alphabet

{[, ]}, where VD = ID = {S}, and PD contains the rules S → ε and S → [S] and S → SS.
The language of GD is the well-known Dyck language, which consists of strings of well-nested
parentheses, and which we shall use as a recurring example throughout this paper.

If L(G,α) is non-empty, we write ϑG(α) for the �-minimum of L(G,α). Now, if L(G,αβ)
is non-empty, then ϑG(αβ) = ϑG(α)ϑG(β). We define  G as the smallest semi-Thue system
such that whenever A → α ∈ P and L(G,α) 6= ∅, also ϑG(α)  G ϑG(A). As an example,
for GD we see that ϑGD

(S) = ε, and hence  GD
is generated solely by the rule [] GD

ε.
We observe that  G is a reduction (regardless of G), and that for all A ∈ V and

w ∈ L(G,A) it holds that w  G ϑG(A). We write IG for the set of words irreducible
by  G. Note that IG is regular: it is the complement of the regular language of words
containing the left-hand side of a rule defining  G, and regular languages are closed under
complementation. For instance, it is not hard to see that IGD

= {]n[m : n,m ≥ 0}.
We say that G is weakly ω-reduced when for A ∈ V \ I we have that L(G,A) is infinite,

and for all productions A→ α where L(G,A) is finite, we have that α ∈ Σ∗.

Lemma 2 1 Let G = 〈V, P, I〉 be a CFG, let R be a regular language and let h : Σ∗ → Σ∗ be
a strictly alphabetic morphism. All of the following hold:

(i) We can construct a weakly ω-reduced CFG Gω = 〈Vω, Pω, Iω〉 such that L(Gω) = L(G)
and Vω ⊆ V ; moreover, when A ∈ Vω it holds that L(G,A) = L(Gω, A).

(ii) We can construct a CFG Gh =
〈
V h, P h, Ih

〉
such that L(Gh) = h−1(L(G)) and

V h ⊆ V ; moreover, when A ∈ V h it holds that h−1(L(G,A)) = L(Gh, A).

(iii) We can construct a CFG GR = 〈VR, PR, IR〉 such that L(GR) = L(G) ∩R; moreover,
when A ∈ VR there exist A′ ∈ V and w ∈ Σ∗ such that L(GR, A) = L(G,A′) ∩ [w]≡R

.

Pushdown automata A pushdown automaton (PDA) is a tuple M =
〈
Q,→, q0, F

〉
where

Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q are the accepting states and
→ ⊆ Q× (Σ ∪ {ε})× Γ× Γ∗ ×Q is the (finite) transition relation. When 〈q, a, σ, ρ, q′〉 ∈ →,

we write q a, σ/ρ−−−→ q′. The set of configurations of M , denoted CM , is Q×Σ∗ × Γ∗. We define

1. Details appear in the technical report (Kanazawa and Kappé, 2018).
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|=M as the smallest relation on CM such that whenever q a, σ/ρ−−−→ q′ and w ∈ Σ∗ as well as
τ ∈ Γ∗, it holds that 〈q, aw, στ〉 |=M 〈q′, w, ρτ〉. The language of M , denoted L(M), is2{

w ∈ Σ∗ :
〈
q0, w, $

〉
|=∗M 〈q, ε, $〉 , q ∈ F

}
M is a deterministic PDA if, (i) for all q ∈ Q, a ∈ Σ ∪ {ε}, and σ ∈ Γ, there is at most

one ρ ∈ Γ∗ and at most one q′ ∈ Q such that q a, σ/ρ−−−→ q′, and, (ii) for all q′ ∈ Q and ρ ∈ Γ∗

such that q ε, σ/ρ−−−→ q′, there are no q′′ ∈ Q, a ∈ Σ and ρ′ ∈ Γ∗ such that q a, σ/ρ′−−−−→ q′′.
If M is a PDA and L a language such that L(M) = L, we say that M accepts L. It is

well-known that a language is a CFL if and only if it is accepted by a PDA (Chomsky, 1962).
A language accepted by a deterministic PDA is said to be a deterministic CFL (DCFL). A
CFG G whose language is a DCFL is said to be a deterministic CFG (DCFG).

As an example of a PDA, consider MD = 〈{q},→D, q, {q}〉, where→D contains the rules

q [, $/[$−−−−→D q, q [, [/[[−−−−→D q and q ], [/ε−−−→D q. This PDA happens to be deterministic, and it is
not hard to see that it accepts the Dyck language, L(GD); this makes GD a DCFG.

3. Clark-congruential languages

We now turn our attention to Clark-congruential languages. These are context-free languages
that are defined by grammars where every nonterminal has a language that is contained in
a congruence class of its grammar; more formally, we work with the following definition.

Definition 3 G is Clark-congruential (CC) if for all A ∈ V , there exists an xA ∈ Σ∗ s.t.
L(G,A) is a subset of [xA]≡L(G)

. A language L is CC if L = L(G) for a CC grammar G.

As an example of a CC grammar, consider GD. There, we find that if w ∈ L(GD, S), then
w consists of a string of balanced parentheses; hence, if uwv ∈ L(GD, S), then uv ∈ L(GD, S),
and vice versa. Consequently, it holds that for w ∈ L(GD, S) we have w ≡L(GD) ε.

CC grammars can be seen as a generalization of pre-NTS grammars (Autebert and
Boasson, 1992), which are themselves a generalization of NTS grammars (Boasson, 1980;
Sénizergues, 1985; Boasson and Sénizergues, 1985). While the class of CC grammars strictly
contains the class of pre-NTS grammars, and thus the class of pre-NTS languages is contained
in the class of CC languages, it remains an open question whether this inclusion is strict
on the level of languages; likewise, the class of NTS grammars is contained in the class of
pre-NTS grammars, but the question of equal expressiveness remains open.

3.1. Congruence and equivalence

We now consider the question of deciding equivalence of CC grammars. Our strategy here
will be to verify the preconditions of Lemma 1 w.r.t. CC languages. Thus, our first task is
to show that all CC languages are congruential; this is indeed the case.

Lemma 4 If L is a CC language, then L is congruential.

2. This definition is non-standard, in that upon acceptance the machine should be in an accepting state,
and the stack contains exactly $. A (D)PDA with this acceptance condition can easily be converted into
an equivalent (D)PDA with the standard acceptance condition, provided that its transitions preserve the
end-of-stack marker; this is the case for all DPDAs in this paper. We omit details for the sake of brevity.
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Proof Let G be a CC grammar such that L = L(G) and choose ∼ as the smallest congruence
containing  G. Obviously, ∼ is finitely generated. We now claim that

L(G) =
⋃

A∈I, L(G,A) 6=∅

[ϑG(A)]∼

For the inclusion from left to right, note that if w ∈ L(G,A) for an A ∈ I, then w  G ϑG(A),
and hence w ∼ ϑG(A); thus, w ∈ [ϑG(A)]∼. For the other inclusion, note that since G is CC,
∼ ⊆ ≡L(G). Hence, if w ∼ ϑG(A) with A ∈ I, then w ≡L(G) ϑG(A), and thus w ∈ L(G).

We use G to denote an arbitrary CC grammar, and set out to validate the second
assumption of Lemma 1, i.e., to show that if G is CC, then ≡L(G) is decidable. To this end,
we observe the following; details are in the technical report (Kanazawa and Kappé, 2018).

Lemma 5 The grammar transformations from Lemma 2 preserve Clark-congruentiality.

The algorithm that we describe to decide ≡L(G) is essentially a generalization of the one
found in (Autebert and Boasson, 1992). Before we dive into formal details, it helps to sketch
a high-level roadmap of the steps required to establish the desired result, in analogy with
the steps in op. cit. We proceed as follows:

(I) We argue that, when G is CC,  G is almost confluent: it can be used to decide
w ∈ L(G) by reducing w using any strategy, until we reach an irreducible word.

(II) We show that, for a given w ∈ Σ∗, we can use the transformations discussed earlier to
construct a particular CC grammar Gw, which has a number of useful properties.

(III) From Gw, we create a DPDA Mw accepting a language very close to L(G)[w]; this
DPDA exploits the almost-confluent nature of  Gw and the properties of Gw.

(IV) We argue that w ≡L(G) x if and only if L(Mw) = L(Mx). Since the latter is
decidable (Sénizergues, 2001), we can decide the former.

Step (I): reduction is (almost) confluent If G is pre-NTS, then  G is confluent on
L(G), but not necessarily on Σ∗ (Autebert and Boasson, 1992). For CC languages, this
property is lost. As an example, consider the CC grammar G′ with the rules S → aS, S → a,
T → aaT and T → ε, and both S and T initial. We find that ϑG′(S) = a and ϑG′(T ) = ε,
and hence aa G′ a as well as aa G′ ε, but both a and ε are irreducible in  G′ .

On the positive side,  G is still useful in deciding membership of L(G):

Lemma 6 There exists an A ∈ I with x G ϑG(A) if and only if x ∈ L(G).

Proof For the direction from left to right, note that if x G ϑG(A), then x ≡L(G) ϑG(A),
and therefore x ∈ [ϑG(A)]≡L(G)

. Since ϑG(A) ∈ L(G), also x ∈ L(G). For the other direction,

note that if x ∈ L(G), then x ∈ L(G,A) for some A ∈ I, and therefore x G ϑG(A).

Using Lemma 6, we can simply apply reductions (using any strategy) to w ∈ Σ∗ from G,
until we reach an irreducible word wr. This process terminates, since  G is Noetherian. At
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that point, either wr = ϑG(A) for some A ∈ I, in which case w ∈ L(G), or wr 6= ϑG(A) for
all A ∈ I, in which case wr 6∈ L(G) (since wr ∈ IG), and since w ≡L(G) wr, also w 6∈ L(G).

As an example, consider the word [[][]], which can be reduced using  GD
as follows:

[[][]][] GD
[[]][] GD

[][] GD
[] GD

ε = ϑGD
(S)

And hence [[][]] ∈ L(GD). On the other hand, the word [[] can be reduced to [ only,
and therefore Lemma 6 allows us to conclude that [[] 6∈ L(GD).

The (implicit) precondition that G is CC is necessary to establish Lemma 6. As an
example, consider the grammar G′ with rules S → a, S → b and T → ab, with both S and
T initial. This grammar is not CC. If we assume that a � b, then  G is generated by the
rule b G a. We then find that bb G ab and ϑG(T ) = ab, while bb 6∈ L(G).

Step (II): construct Gw We now proceed to construct a CC grammar Gw from G. This
is done by progressively applying the CC-preserving transformations described in Lemma 2.

First, we augment Σ by adding for a ∈ Σ the (unique) letter a′, i.e., every letter gains a
“primed” version; this does not change L(G), or the fact that G is CC. We write Σ0 for the
original alphabet, and Σ1 for the set of newly added letters. Moreover, let h : Σ∗ → Σ∗ be
the morphism that removes the primes from w ∈ Σ∗, i.e., the morphism defined by setting
h(a) = a for a ∈ Σ0 and h(a′) = a for a′ ∈ Σ1. We write w′ for the “primed copy” of w, i.e.,
the unique element of Σ∗1 such that h(w′) = w. We proceed to define Gw in steps, as follows:

• Let G′ = 〈V ′, P ′, I ′〉 be such that L(G′) = h−1(L(G)).

• Let G′w = 〈V ′w, P ′w, I ′w〉 be such that L(G′w) = L(G′) ∩Rw′R, where R = IG ∩ Σ∗0.

• Let Gw = 〈Vw, Pw, Iw〉 be such that L(Gw) = L(G′w), and Gw is weakly ω-reduced.

By Lemma 2, these grammars are CC. Without trying to get ahead of ourselves, we note
that L(Gw) is already somewhat close to L[w]. After all, we know that L(Gw) = {uw′v :
u, v ∈ IG, uwv ∈ L}. The difference between L[w] and L(Gw) comes down to having ] or w′

separate the parts of the words, and whether those parts need to be in IG.
Some analysis of G′w now gives us the following.

Lemma 7 Let A ∈ I ′w. If L(G′w, A) ∩ Σ∗0 6= ∅ and w′ 6= ε, then L(G′w, A) = {ϑG(A)}.

Proof Suppose that y ∈ L(G′w, A) ∩ Σ∗0. First note that we can (without loss of generality)
find u, v ∈ Σ∗ such that uL(G′w, A)v ⊆ L(G′w) ⊆ Rw′R. Consequently, there exist p, q ∈ R
such that uyv = pw′q. Since w′ 6= ε, this means that y is a substring of p or q, and thus
y ∈ R. For the remainder, it suffices to show that y = ϑG(A), and L(G′w, A) \ Σ∗0 = ∅.

First, note that y ∈ L(G′, A), and so h(y) = y ∈ L(G,A); thus, y  G ϑG(A). Since y ∈
IG, we have y = ϑG(A). Also, suppose towards a contradiction that z ∈ L(G′w, A)\Σ∗0. Then
z contains at least one primed letter. By choice of u and v, we find that uzv ∈ L(G′w). Now
uzv contains strictly more primed letters than uyv; since all words in L(G′w) contain exactly
|w′| primed letters, we have reached a contradiction. We conclude that L(G′w, A)\Σ∗0 = ∅.

Since Gw is the weakly ω-reduced version of G′w, we can show the following:
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Lemma 8 Let A→ α ∈ Pw with L(Gw, α) 6= ∅. Then ϑGw(A) and ϑGw(α) either contain
or share an overlap with w′; more formally, one of the following holds:

(i) ϑGw(A) = xAw
′
` and ϑGw(α) = xαw

′
`, for xA, xα ∈ Σ∗0 and w′` a nonempty prefix of w′

(ii) ϑGw(A) = w′ryA and ϑGw(α) = w′ryα, for yA, yα ∈ Σ∗0 and w′r a nonempty suffix of w′

(iii) ϑGw(A) = xAw
′yA and ϑGw(α) = xαw

′yα, for xA, yA, xα, yα ∈ Σ∗0.

Proof If L(Gw, A) is finite, then A ∈ Iw (since Gw is weakly ω-reduced), and therefore
ϑGw(A), ϑGw(α) ∈ L(Gw) ⊆ IGw′IG; thus, ϑGw(A) and ϑGw(α) satisfy the third condition.

Otherwise, suppose that L(Gw, A) is infinite. First, note that there exist x, y ∈ Σ∗ such
that xL(Gw, A)y ⊆ L(Gw). Thus, there exist u, v ∈ IG ⊆ Σ∗0 such that xϑGw(A)y = uw′v.
Suppose, towards a contradiction, that ϑGw(A) neither contains nor overlaps with w′. In
that case, ϑGw(A) ∈ Σ∗0, and w′ 6= ε; then, since A⇒∗Gw

ϑGw(A), also A⇒∗G′w ϑGw(A). By

Lemma 7, we have that L(G′w, A) is finite. But since L(G′w, A) = L(Gw, A) and the latter is
infinite, we have a contradiction. Therefore ϑGw(A) must contain or overlap with w′.

Suppose ϑGw(A) = xAw
′
` for xA ∈ Σ∗0 and w′` a nonempty prefix of w′; other cases are

similar. Write w′ = w′`w
′
r and y = w′rv. By choice of x and y, we have xϑGw(α)w′rv =

xϑGw(α)y ∈ L(Gw) ⊆ IGw′IG. Therefore, ϑGw(α) = xαw
′
` for some xα ∈ Σ∗0.

This lemma tells us something about  Gw : all of its generating rules overlap with w′,
and moreover each rule preserves w′. Thus, to decide whether uw′v ∈ L(Gw), we can apply
the rules of  Gw as described above; since every step involves (and preserves) part of w′,
we also know that reductions must be clustered around the locus of w′.

Step (III): creating a DPDA The above analysis allows us to construct a DPDA that
accepts {u]v : uw′v ∈ L(Gw)}, by going through the following phases:

1. Read symbols and push them on the stack, until we encounter ].

2. From that point on, read from the stack or the input and apply reductions whenever
possible, but with ] standing in for the part of w′.

3. When no reductions are possible (i.e., we have reached an element if IGw), check
whether the buffer corresponds to a ϑGw(A) for some A ∈ Iw.

In the second step, the state of the DPDA holds a buffer to the left and the right of ], large
enough to detect any possible reductions. Since  Gw is Noetherian, this phase must end
after finitely many reductions; furthermore, since  Gw is length-decreasing, we can choose
the size of the buffer appropriately. Formally, this DPDA is defined as follows:

Definition 9 We build the PDA Mw = 〈Q,→, q0, F 〉 as follows. First, let N be the
maximum length of ϑGw(α) for A→ α in Gw. Also, Q and F are the smallest sets satisfying

q0 ∈ Q
u, v ∈ Σ∗0 |u|, |v| ≤ N

u]v ∈ Q
A ∈ Iw ϑGw(A) = uw′v

u]v ∈ F

9
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Furthermore, → is the smallest transition relation satisfying

a 6= ]

q0
b, a/ba−−−−→ q0 q0

], a/a−−−→ ]

u]v ∈ Q |u| < N uw′v ∈ IGw a 6= $

u]v
ε,a/ε−−−→ au]v

u]v ∈ Q |v| < N uw′v ∈ IGw a = $ ∨ |u| = N

u]v
b,a/a−−−→ u]vb

u]v ∈ Q uw′v 6∈ IGw uw′v  Gw xw
′y such that xy is �-minimal

u]v
ε,a/a−−−→ x]y

The first two rules take care of the first phase, where input is read onto the stack until
we reach ]. The third and fourth rule are responsible for reading symbols from the stack
and from the input buffer respectively; the last rule applies reductions. The set of accepting
states makes sure that, upon acceptance, the buffer represents ϑGw(A) for an A ∈ Iw.

We note that Mw is deterministic: if Mw is in state q0, then the input is either equal
to ] (in which case the first rule applies) or not (in which case the second rule applies);
otherwise, we are in some state u]v, then either uw′v 6∈ IGw (and so the last rule applies),
or the (mutually exclusive) third or fourth rule apply.

We can then show that Mw indeed accepts {u]v : uw′v ∈ L(Gw)}. We give a sketch of
the proof below; details are in Appendix A.

Lemma 10 L(Mw) = {u]v : uw′v ∈ L(Gw)}.

Proof sketch For the inclusion from left to right, show that every change in configuration
of Mw corresponds to a step in the reduction of the input according to  Gw , and that a
configuration where Mw accepts corresponds to this reduction reaching ϑGw(A) for A ∈ Iw.

For the other inclusion, first note that if u]v is such that uw′v ∈ L(Gw), we can
let Mw read up to and including ], putting u on the stack. Subsequently, inspect the
halting configuration reached by Mw from that point on (which exists uniquely, for |=Mw is
Noetherian), and show that it is a state where Mw can accept — i.e., that the remaining
input and stack is empty, and that the buffer corresponds to an accepting state of Mw.

Step (IV): wrapping up Now we can show the following.

Lemma 11 L(Mw) = L(Mx) if and only if w ≡L(G) x.

Proof For the direction from left to right, suppose that L(Mw) = L(Mx), and that
uwv ∈ L(G). We can then find u′, v′ ∈ IG such that u  G u′ and v  G v′. Now, since
G is CC and u ≡L(G) u

′ and v ≡L(G) v
′, we know that u′wv′ ∈ L(G). Consequently,

u′]v′ ∈ L(Mw) = L(Mx), and therefore u′xv′ ∈ L(G), meaning that uxv ∈ L(G). By
symmetry, uxv ∈ L(G) also implies uwv ∈ L(G); this allows us to conclude that w ≡L(G) x.

For the other direction, suppose that y ∈ L(Mw). Then y = u]v such that u, v ∈ IG, and
uwv ∈ L(G). Since w ≡L(G) x, it then follows that uxv ∈ L(G), and thus y = u]v ∈ L(Mx).
This shows that L(Mw) ⊆ L(Mx); the other inclusion follows symmetrically.

10
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The above characterises the syntactic congruence of L(G) in terms of the equivalence
of two DPDAs, constructible from G, w and x. Since equivalence of DPDAs is decid-
able (Sénizergues, 2001), it follows that we can decide ≡L(G). The main result then follows.

Theorem 12 It is decidable, given a CFG G that is CC and w, x ∈ Σ∗, whether w ≡L(G) x.
It is furthermore decidable, given CFGs G and G′ that are CC, whether L(G) = L(G′).

Like in (Autebert and Boasson, 1992), Mw is one-turn, i.e., it processes input first in a
phase where the stack does not shrink (when it is still in q0), and subsequently in a phase
where the stack does not grow (in all other states). Thus, an algorithm to test equivalence of
finite-turn DPDAs (Valiant, 1974; Beeri, 1975) suffices. Complexity-wise, this also helps: the
equivalence problem for one-turn DPDAs is known to be in co-np (Sénizergues, 2003), while
the problem for general DPDAs is known only to be primitive recursive (Stirling, 2002).

3.2. Recognition

The recognition problem for a class of CFGs C asks, given a CFG G, whether G is in C. This
problem is decidable for NTS grammars (Sénizergues, 1985), yet undecidable for a proper
subclass of pre-NTS grammars (Zhang, 1992).3

Given that our earlier decidability proofs were based on proofs of the same statement for
pre-NTS grammars, one might ask whether we could extend the result from (Zhang, 1992)
to CC grammars. This turns out not to be the case. The proof in op. cit. constructs, given
a Turing machine M and an input w, a CFG which is in the studied class if and only if M
does not halt on input w; this construction relies heavily on adding nonterminals with an
empty language. However, we can easily adapt the first construction from Lemma 2 to show
that we can remove all such nonterminals from a CFG G to obtain an (equivalent) CFG
G′; furthermore, G is CC if and only if G′ is CC. Thus, to decide whether a given CFG is
CC, we can assume without loss of generality that no nonterminal has an empty language.
Hence, the undecidability proof from (Zhang, 1992) does not generalize to CC grammars.

We therefore turn our attention to finding a novel approach to the recognition problem
for CC grammars, independent of (un)decidability proofs of the recognition problem for its
subclasses. To this end, it is useful to introduce the following notion.

Definition 13 Let ∼ be a congruence. G is ∼-aligned if, for every A ∈ V , there exists a
wA ∈ Σ∗ such that L(G,A) ⊆ [wA]∼.

Note that, by definition, G is CC if and only if it is ≡L(G)-aligned. As it turns out,
∼-alignment is decidable, provided that ∼ is decidable.

Lemma 14 Given a decidable congruence ∼, it is decidable whether a CFG G is ∼-aligned.

Proof Without loss of generality, assume that all nonterminals of G have a non-empty
language; if this is not the case, we can create a CFG G′ that does have this property, and
which is ∼-aligned if and only if G is. Since ϑG : Σ̂∗ → Σ∗ is computable, it now suffices to
prove that G is ∼-aligned if and only if for all A→ α ∈ P , it holds that ϑG(A) ∼ ϑG(α).

3. We note that the class of CFGs considered in (Zhang, 1992) was originally claimed to coincide with
pre-NTS grammars (Boasson and Sénizergues, 1985), but this is not strictly true: Zhang’s class is a strict
subclass of the pre-NTS grammars, although the languages that they can express are the same.

11
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For the direction from left to right, we know that if A→ α ∈ P , then ϑG(A), ϑG(α) ∈
L(G,A) ⊆ [wA]∼ for some wA ∈ Σ∗; hence, ϑG(A) ∼ wA ∼ ϑG(α). For the direction

from right to left, a straightforward inductive argument shows that for all α, β ∈ Σ̂∗ such
that α ⇒∗G β, we have that ϑG(α) ∼ ϑG(β). Hence, if A ⇒∗G w, then we know that
ϑG(A) ∼ ϑG(w) = w, and thus it suffices to choose wA = ϑG(A).

As an application of the above, let ∼ be the smallest congruence on {[, ]}∗ such that
[] ∼ ε. Without too much effort, we can then show that we can uniquely compute m,n ∈ N
such that w ∼ ]m[n. Therefore, we can conclude that ∼ is decidable: to decide whether
w ∼ x, check whether the m and n computed for w are the same as the m and n computed
for x. Thus, by Lemma 14, we find that we can decide whether a given grammar G over the
alphabet {[, ]}∗ is ∼-aligned. Indeed, ∼ turns out to be exactly ≡L(GD).

Lemma 14 would also show that the recognition problem for CC grammars is decidable,
provided that the congruence problem were decidable for arbitrary CFGs. Unsurprisingly,
this is not the case, as witnessed by the following lemma.

Lemma 15 It is undecidable, given a CFG G and words w, x ∈ Σ∗, whether w ≡L(G) x.

Proof We claim that L(G) = Σ∗ if and only if ε ∈ L(G), and for all a ∈ Σ it holds that
a ≡L(G) ε. First, suppose L(G) = Σ∗; then ε ∈ L(G) immediately. Furthermore, for a ∈ Σ
and u, v ∈ Σ∗, we have that uav, uv ∈ L(G), and thus a ≡L(G) ε. For the other direction, let
w ∈ Σ∗. An argument by induction on |w| then shows that w ≡L(G) ε, and hence w ∈ L(G).

Since it is decidable whether ε ∈ L(G), the above equivalence tells us that we can decide
L(G) = Σ∗ if we can decide the congruence problem for G. Because the former is undecidable
for CFGs in general (Bar-Hillel et al., 1961), the claim follows.

Fortunately, some classes of CFGs do have a decidable congruence problem. This leads
us to formulate our main result regarding the recognition problem, as follows.

Theorem 16 It is decidable, given a DCFG G, whether G is CC.

Proof Let us write L = L(G). By Lemma 14, it suffices to show that we can effectively
obtain a decision procedure for ≡L. We employ a technique similar to the method we used
to decide ≡L when G is CC: we reduce the problem to checking equivalence of DCFLs.

Without loss of generality, let Σ = Σ0 ∪ {]}, with ] 6∈ Σ0, such that L ⊆ Σ∗0. For w ∈ Σ∗,
we define the morphism gw : Σ∗ → Σ∗ by setting gw(]) = w and g(a) = a for a ∈ Σ0.

We now claim that L[w] = g−1
w (L) ∩ Σ∗0]Σ

∗
0. To see this, suppose that u]v ∈ L[w]; then,

since gw(u]v) = uwv ∈ L and u]v ∈ Σ∗0]Σ
∗
0, we find that u]v ∈ g−1

w (L). For the other
inclusion, suppose that x ∈ g−1

w (L) ∩ Σ∗0]Σ
∗
0. Since x ∈ Σ∗0]Σ

∗
0, we can write x = u]v for

u, v ∈ Σ∗0. Since uwv = gw(u]v) = g(x) ∈ L, we find that u]v ∈ L[w].
Since L is a DCFL, we have a DPDA M such that L = L(M). Furthermore, because

DCFLs are closed under inverse morphism and intersection with regular languages (Ginsburg
and Greibach, 1966), we can create for w ∈ Σ∗ a DPDA Mw such that L(Mw) = L[w].
Since it is decidable whether L(Mw) = L(Mx) (Sénizergues, 2001), we can decide whether
L[w] = L[x], and hence whether w ≡L x.

12
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4. Further work

With regard to implementing a teacher for a given CC language, one detail remains to be
settled. The algorithm to learn CC languages from (Clark, 2010) assumes the presence of an
extended MAT, in which the representation of the language in the equivalence query need
not guarantee that the hypothesis language is in the class of languages being learned. More
concretely, this means that the algorithm might query the teacher with grammars that are
not CC, and thus the decision procedure outlined in this paper need not apply. Consequently,
we wonder whether the learning algorithm can be adapted to work with a (proper) MAT, or
alternatively, whether the decision procedure of this paper can be extended to accommodate
the class of grammars that can be produced by the learning algorithm.

One possible direction for generalization of the decision procedure is the setting of
multiple context-free grammars (MCFGs) (Seki et al., 1991). A notion corresponding to
Clark-congruentiality for MCFGs is already known, and the class of languages generated by
such MCFGs is also known to be learnable (Yoshinaka and Clark, 2010). We conjecture
that the decidability results can be lifted to Clark-congruential MCFGs, and that such a
lifting would employ n-turn DPDAs instead of one-turn DPDAs.

Equivalence and congruence are decidable for both DCFLs and CC languages. To see if
the case for CC languages follows from the case for DCFLs, one would have to investigate
whether all CC grammars define a DCFL. For what it’s worth, the fact that we can decide
whether a DCFG is CC appears to at least not contradict this possibility, and we have been
unsuccessful in finding a counterexample thus far.

The question about the connection between CC languages and DCFLs can be seen as
analogous to the (open) question of whether all pre-NTS grammars define a DCFL (Autebert
and Boasson, 1992). Since all NTS grammars are pre-NTS, and all pre-NTS grammars
are in turn CC, it follows that every NTS language is a pre-NTS language, and in turn
every pre-NTS language is a CC language; whether this inclusion is strict remains an open
question. It has been conjectured that these families of languages coincide (Clark, 2010).
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Appendix A. The language of Mw

To analyze the behavior of Mw, we first note that if it is in a configuration with a state of
the form u]v, then all reachable configurations are related to that configuration by  Gw . In
effect, this shows that Mw proceeds according to  Gw .

Lemma 17 If u0, u1, v0, v1, x0, x1, y0, y1 ∈ Σ∗ s.t.
〈
u0]v0, y0, x

R
0 $
〉
|=Mw

〈
u1]v1, y1, x

R
1 $
〉

then it follows that x0u0w
′v0z0  Gw x1u1w

′v1y1.

Proof There are three cases to consider. First, if uw′v is reducible, then u0w
′v0  Gw u1w

′v1,
as well as y0 = y1 and x0 = x1; the claim then follows. Second, if uw′v is irreducible and x0

is non-empty, with |u0| < N , then x0 = x1a and u1 = au0, as well as y0 = y1 and v0 = v1;
we derive that x0u0w

′v0y0 = x1au0w
′v0y0 = x1u1w

′v0y0 = x1u1w
′v1y1. Lastly, if uw′v is

irreducible and either x0 is empty or |u0| = N , then ay1 = y0 and v1 = v0a, as well as
x0 = x1 and u0 = u1; thus, x0u0w

′v0y0 = x0u0w
′v0ay1 = x0u0w

′v1y1 = x1u1w
′v1y1.

With this in hand, we can show that Mw accepts the desired language.

Lemma 18 L(Mw) = {u]v : uw′v ∈ L(Gw)}.

Proof For the inclusion from left to right, suppose that x ∈ L(Mw). We then know that
〈q0, x, $〉 |=∗Mw

〈u1]v1, ε, $〉 such that there exists an A ∈ I with ϑGw(A) = u1w
′v1. Thus,

x = u0]v0 such that 〈q0, u0]v0, $〉 |=∗Mw

〈
], v0, u

R
0 $
〉
|=∗Mw

〈u1]v1, ε, $〉. By Lemma 17, we
have u0w

′v0  Gw u1w
′v1 = ϑGw(A). By Lemma 6, also u0w

′v0 ∈ L(Gw, A) ⊆ L(Gw).
For the inclusion from right to left, suppose that u, v ∈ Σ∗ are such that uw′v ∈ L(Gw);

our aim is to show that u]v ∈ L(Mw). By construction of Mw, this DPDA first processes
the input up to ] to reach C] =

〈
], ε, v, uR$

〉
.

Let C =
〈
u1]v1, y, z

R$
〉

be the unique halting configuration of Mw starting from C]; this
configuration exists uniquely, because every transition of Mw either advances the input, or
performs a reduction using  Gw . We then have that u1w

′v1 ∈ IGw , otherwise C would not
be halting. Now, we observe that (i) either z is empty, or |u1| = N — for otherwise Mw

could pop letters off the stack into the left buffer, meaning that C would not be halting,
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and (ii) either y is empty, or |v1| = N — for otherwise Mw could consume letters from the
input into the right buffer, and so C would again not be halting.

A reducible substring of zu1w
′v1y must start at least N positions before the start of w′,

and end at most N positions from the end of w′ (by Lemma 8). Consequently,  Gw cannot
reduce (a) a substring overlapping z — otherwise |u1| < N and z 6= ε, nor (b) a substring
overlapping y — otherwise |v1| < N and y 6= ε. Thus, if zu1w

′v1y were reducible, then the
reducible substring must occur in u1w

′v1 — but this is a contradiction, since u1w
′v1 ∈ IGw ;

hence, zu1w
′v1y is irreducible.

By Lemma 17, we know that uw′v  Gw zu1w
′v1y; also, by (the proof of) Lemma 4, we

have that uw′v ≡L(Gw) zu1w
′v1y, and hence zu1w

′v1y ∈ L(Gw). By Lemma 6, it follows that
there exists an A ∈ I such that zu1w

′v1y  Gw ϑGw(A). Consequently, ϑGw(A) = zu1w
′v1y,

and so either |u1| < N , and thus z = ε, or |u1| = N , in which case z = ε again, as
|ϑGw(A)| ≤ N . By a similar argument, we find that y = ε. But then ϑGw(A) = u1w

′v1, and
thus u1]v1 ∈ F . We can conclude that u]v ∈ L(Mw).
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