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Abstract

Originally motivated by default risk management applications, this paper investigates a
novel problem, referred to as the profitable bandit problem here. At each step, an agent
chooses a subset of the K ≥ 1 possible actions. For each action chosen, she then respectively
pays and receives the sum of a random number of costs and rewards. Her objective is
to maximize her cumulated profit. We adapt and study three well-known strategies in
this purpose, that were proved to be most efficient in other settings: kl-UCB, Bayes-
UCB and Thompson Sampling. For each of them, we prove a finite time regret bound
which, together with a lower bound we obtain as well, establishes asymptotic optimality
in some cases. Our goal is also to compare these three strategies from a theoretical and
empirical perspective both at the same time. We give simple, self-contained proofs that
emphasize their similarities, as well as their differences. While both Bayesian strategies are
automatically adapted to the geometry of information, the numerical experiments carried
out show a slight advantage for Thompson Sampling in practice.

Keywords: credit risk, multi-armed bandits, thresholding bandits, index policy, bayesian
policy

1. Introduction

1.1. Motivation

A general and well-known problem for lenders and investors is to choose which prospective
clients they should grant loans to, so as to manage credit risk and maximize their profit. A
classical supervised learning approach, referred to as credit risk scoring consists in ranking
all the possible profiles of potential clients, viewed through a collection of socio-economic
features Z by means of a (real valued) scoring rule s(Z): ideally, the higher the score s(Z),
the higher the default probability. A wide variety of learning algorithms have been proposed
to build, from a historical database, a scoring function optimizing ranking performance
measures such as the ROC curve or its summary, the AUC criterion, see e.g. West (2000),
Thomas (2000), Li et al. (2004), Yang (2007) or Creamer and Freund (2004): the credit
risk screening process then consists in selecting the prospects whose score is below a certain
threshold. However, this approach has a serious drawback in general, insofar as new scoring
rules are often constructed from truncated information only, namely historical data (the
input features X and the observed debt payment behavior) corresponding to past clients,
eligible prospects who have been selected by means of a previous scoring rule, jeopardizing
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Achab Clémençon Garivier

thus the screening procedure when applied to prospects who would have been previously
non eligible for credit. Hence, the credit risk problem leads to an exploration vs exploitation
dilemma there is no way around for: should clients be used for improving the credit risk
estimates, or should they be treated according to the level of risk estimated when they
arrive? Lenders thus need sequential strategies able to solve this dilemma.

For simplicity, here we consider the very stylized situation, where each individual from
a given category applies for a loan of the same amount in expectation. Extension of the
general ideas developed in this paper to more realistic situations will be the subject of
further research. In this article, we propose a mathematical model that addresses this
issue. We propose several strategies, prove their optimality (by giving a lower bound on
the inefficiency of any uniformly efficient strategy, together with tight regret analyses) and
empirically compare their performance in numerical experiments.

1.2. Model

We assume that the population (of credit applicants) is stratified according to K ≥ 1
categories a ∈ {1, . . . ,K}. For each category a, the credit risk is modelled by a probability
distribution νa. We assume that at each step t ∈ {1, . . . , T}, where T denotes the total
number of time steps (or time horizon), the agent is presented a random number Ca(t) ≥ 1
of clients of each category a. She must choose a subset At ⊂ {1, . . . ,K} of categories to
which they grant the loans. We denote by Xa,c,t − La,c,t the profit brought by the client
number c of category a at step t, La,c,t being the loan amount and Xa,c,t the corresponding
reimbursement. In addition, we assume that all loans La,c,t for the same category a have the
same known expectation τa. We assume that the variables {Xa,c,t} are independent, and
that Xa,c,t has distribution νa and expectation µa. We further assume that for any category
a ∈ {1, . . . ,K}, the Ca(t)’s are bounded i.e. there exist two positive integers (c−a , c

+
a ) ∈ N∗2

such that: c−a ≤ Ca(t) ≤ c+
a for all t ≥ 1.

Here and throughout, a sequential strategy is a set of mappings specifying for each t
which categories to choose at time t given the past observations only. In other words,
denoting by It =

(
Xa,c,s, Ca(s)

)
1≤s≤t,a∈As,1≤c≤Ca(s)

the vector of variables observed up to

time t ≥ 1, a strategy specifies a sequence (At)t≥1 of random subsets such that, for each
t ≥ 2, At is σ(It−1)-measurable.

It is the goal pursued in this work to define a strategy maximizing the expected cumu-
lated profit given by

ST = E

 T∑
t=1

K∑
a=1

I{a ∈ At}
Ca(t)∑
c=1

Xa,c,t − La,c,t

 .
This is equivalent to minimizing the expected regret

RT =
∑
a∈A∗

∆aC̃a(T )− ST

=
∑
a∈A∗

∆a

(
C̃a(T )− E[Na(T )]

)
+
∑
a/∈A∗

|∆a|E[Na(T )],
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where C̃a(T ) = E
[∑T

t=1Ca(t)
]

is the expected total number of clients from category a over

the T rounds, Na(t) =
∑t

s=1Ca(s) I{a ∈ As} is the number of observations obtained from
category a up to time t ≥ 1, ∆a = µa − τa is the (unknown) expected profit provided by a
client of category a and A∗ =

{
a ∈ {1, . . . ,K},∆a > 0

}
is the set of profitable categories.

1.3. Illustrative example

Let us consider the credit risk problem in which a bank wants to identify categories of
the population they should accept to loan. It may be naturally formulated as a bandit
problem with K arms representing the K categories of the population considered. The
bank pays τa when loaning to any member of some category a ∈ {1, . . . ,K}. Each client
c ∈ {1, . . . , Ca(t)} of category a receiving a loan from the bank at time step t is characterized
by her capacity to reimburse it, namely the Bernoulli r.v. Ba,c,t ∼ B(pa) with pa ∈ [0, 1]:

• Ba,c,t = 0 in case of credit default, occurs with probability 1 − pa: the bank gets no
refunding,

• Ba,c,t = 1 otherwise, occurs with probability pa: the bank gets refunded (1 + ρa)τa
with τa the loan amount and ρa the interest rate.

All individuals from the same category are considered as independent i.e. the Ba,c,t’s are
i.i.d. realizations of B(pa). Hence the refunding Xa,c,t received by the bank writes as follows:
Xa,c,t = (1 + ρa)τaBa,c,t. Therefore the bank should accept to loan to people belonging to
all categories a ∈ {1, . . . ,K} such that E[Xa,1,1] > τa. This condition rewrites:

pa >
1

1 + ρa
. (1)

Hence the role of the bank is to sequentially identify categories verifying Eq. (1) in order
to maximize its cumulative profit over the T rounds.

1.4. State of the art

In the multi-armed bandit (MAB) problem, a learner has to sequentially explore and ex-
ploit different sources in order to maximize the cumulative gain. In the stochastic setting,
each source (or arm) is associated with a distribution generating random rewards. The
optimal strategy in hindsight then consists in always pulling the arm with highest expec-
tation. Many approaches have been proposed for solving this problem such as the UCB1
algorithm (Auer et al. (2002)) for bounded rewards or the Thompson Sampling heuristic
first proposed in Thompson (1933). More recently many algorithms have been proven to
be asymptotically optimal, particularly in the case of exponential family distributions, such
as kl-UCB (Garivier and Cappé (2011)), Bayes-UCB (Kaufmann (2016)) and Thomp-
son Sampling (Kaufmann et al. (2012), Korda et al. (2013)). In this paper we consider
a variation of the MAB problem, where, at each time step, the learner may pull several
arms simultaneously or no arm at all. To each arm is associated a known threshold and the
goal is to maximize the cumulative profit which sums, for each arm pulled by the learner,
the difference between the mean reward and the corresponding threshold. This threshold is
typically the price to pay for observing a reward from a given arm, e.g. a coin that has to
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be inserted in a slot machine. Here the optimal strategy consists in always pulling the arms
whose expectations are above their respective thresholds. The case where all arms share the
same threshold is studied in Reverdy et al. (2017) with a different definition of regret, which
only penalizes pulls of non-profitable arms and hence do not refer to the notion of profit.
A similar problem has been tackled in Locatelli et al. (2016) in a best arm identification
setting with fixed time horizon and for a unique threshold, where rate-optimal strategies are
studied. The purpose of this paper is however different, and we argue that the strategies
proposed here are more relevant in many applications (e.g. bank loan management, see
Section 1.1).

Indeed, in this paper we mainly focus on deriving asymptotically optimal strategies in the
case of one-dimensional exponential family distributions. Section 2 contains an asymptotic
lower bound for the profitable bandit problem for any uniformly efficient policy. The three
following sections (respectively 4, 5 and 6) are devoted to the adaptation of three celebrated
MAB strategies (respectively kl-UCB, Bayes-UCB and Thompson Sampling) to the
present problem. We provide in each case a finite-time regret analysis. Asymptotical
optimality properties of these algorithms are discussed in Section 7. The final Section 8
contains an empirical comparison of the three strategies through numerical experiments.

2. Lower Bound

The goal of this section is to give an asymptotic lower bound on the expected regret of any
uniformly efficient strategy. In this purpose, we adapt the argument of Lai and Robbins
(1985), rewritten by Garivier et al. (2016), on asymptotic lower bounds for the expected
regret in MAB problems. First we define a model D = D1× · · · ×DK where, for a any arm
a ∈ {1, . . . ,K}, Da is the set of candidates for distribution-threshold pairs (νa, τa). Then,
we introduce the class of uniformy efficient policies that we focus on.

Definition 1 A strategy is uniformly efficient if, for any profitable bandit problem
(νa, τa)1≤a≤K ∈ D, it satisfies for all arms a ∈ {1, . . . ,K} and for all α ∈]0, 1],
E[Na(T )] = o(C̃a(T )α) if µa < τa or C̃a(T )− E[Na(T )] = o(C̃a(T )α) if µa > τa.

Now we can state our lower bound which applies to these strategies.

Theorem 2 For all models D, for all uniformly efficient strategies, for all profitable bandit
problems (νa, τa)1≤a≤K ∈ D, for all non-profitable arms a such that µa < τa,

lim inf
T→∞

E[Na(T )]

log T
≥ 1

Kinf(νa, τa)
,

where Kinf(νa, τa) = inf{KL(νa, ν
′
a), (ν

′
a, τa) ∈ Da, µ′a > τa} with KL(νa, ν

′
a) the Kullback-

Leibler divergence between distributions νa and ν ′a and µ′a the expectation of ν ′a.

In the remainder of the article, we mainly focus on proposing asymptotically optimal
strategies inspired by classical algorithms for MAB, namely kl-UCB (Garivier and Cappé
(2011) and Cappé et al. (Jun. 2013)), Bayes-UCB (Kaufmann (2016)) and Thompson
Sampling (Kaufmann et al. (2012) and Korda et al. (2013)). For each policy, we prove a
corresponding upper bound on its expected regret which will be hopefully tight with respect
to the lower bound stated above.
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3. Preliminaries

3.1. Comparison with the classical bandit framework

One-armed problems. We point out that the objective of a profitable bandit problem,
characterized by K pairs of reward distributions and thresholds {(ν1, τ1), . . . , (νK , τK)},
can be equivalently reformulated as simultaneously solving K independent instances of one-
armed subproblems: {(ν1, τ1)}, . . . , {(νK , τK)}. In other words, we could without loss
of generality only consider one-armed instances of the profitable bandit problem i.e. the
case K = 1. Nevertheless, we will still write this paper in the general case K ≥ 1 in
order to refer to MAB notations and to our main motivating application, credit risk, which
naturally formulates with several categories. As a consequence of this ’separation’ property,
the theoretical guarantees on the expected regret that we provide for different policies come
with simpler proofs than in MAB: the proofs proposed in this paper contain all core ideas
of regret analyses of some of the most sucessful bandit strategies (Thompson Sampling,
Bayes-UCB and kl-UCB) with a somewhat simpler and thus more accessible setting.
Per round numbers of observations. Another difference with the classical MAB model
(where at each round t ≥ 1 the learner observes only one reward drawn from pulled arm
a) is that we consider here a more general setting where a random number Ca(t) of i.i.d.
rewards sampled from νa are observed. On the other hand, a multiplicative constant (larger
than or equal to 1) appears in the upper bounds on the expected regret that we propose
for different policies and some parts of their proofs become more intricate.

3.2. One-dimensional exponential family

We consider arms with distributions belonging to a one-dimensional exponential family. It
should be noted that the kl-UCB-4P algorithm presented next, as kl-UCB, can be shown
to apply to the non-parametric setting of bounded distributions, although the resulting
approach has weaker optimality properties (see Section 4.3).
Definitions and properties. A one-dimensional canonical exponential family is a set
of probability distributions PΘ = {νθ, θ ∈ Θ} indexed by a natural parameter θ liv-
ing in the parameter space Θ =]θ−, θ+[⊆ R and where for all θ ∈ Θ, νθ has a den-
sity fθ(x) = A(x) exp(G(x)θ − F (θ)) with respect to a reference measure ξ. A(x) and
the sufficient statistic G(x) are functions that characterize the exponential family and
F (θ) = log

∫
A(x) exp(G(x)θ)dξ(x) is the normalization function. For notational simplicity,

we only consider families with G(x) = x, which includes many usual distributions (e.g.
normal, Bernoulli, gamma among others) but not heavy-tailed distributions, commonly
used in financial models, such as Pareto (G(x) = log(x)) or Weibull (G(x) = x` with
` > 0). Nevertheless generalizing all the results proved in this paper to a general sufficient
statistic G(x) is straightforward and boils down to considering empirical sufficient statis-
tics ĝ(n) = (1/n)

∑n
s=1G(Xs) instead of empirical means. We additionally assume that

F is twice differentiable with a continuous second derivative (classic assumption, see e.g.
Wasserman (2013)) which implies that µ : θ 7→ EX∼νθ [X] is strictly increasing and thus
one-to-one in θ. We denote µ− = µ(θ−) and µ+ = µ(θ+). The Kullback-Leibler divergence
between two distributions νθ and νθ′ in the same exponential family admits the following
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closed form expression as a function of the natural parameters θ and θ′:

K(θ, θ′) := KL(νθ, νθ′) = F (θ′)− [F (θ) + F ′(θ)(θ′ − θ)].

We also introduce the KL-divergence between two distributions νµ−1(x) and νµ−1(y):

d(x, y) : = K(µ−1(x), µ−1(y))

= sup
λ
{λx− logEµ−1(y)[exp(λX)]}, (2)

where the last equality comes from the proof of Lemma 3 in Korda et al. (2013). This last
expression of d allows to build a confidence interval on x based on a fixed number of i.i.d.
samples from νµ−1(x) by applying the Cramér-Chernoff method (see e.g. Boucheron et al.
(2013)).
Examples. In Figure 1 we recall some usual examples of one-dimensional exponential
families. For some of these distributions that are characterized by two parameters (namely
normal, gamma, Pareto and Weibull), one of the two parameters is fixed to define one-
dimensional families.

Distribution Density Parameter θ

Bernoulli B(λ) λx(1− λ)1−xI{0,1}(x) log
(

λ
1−λ

)
Normal N (λ, σ2) 1√

2πσ2
e−

(x−λ)2

2σ2
λ
σ2

Gamma Γ(k, λ) λk

Γ(k)x
k−1e−λxIR+(x) −λ

Poisson P(λ) λxe−λ

x! IN(x) log(λ)

Pareto(xm, λ) λxλm
xλ+1 I[xm,+∞[(x) −λ− 1

Weibull(`, λ) `λ(xλ)`−1e−(λx)`IR+(x) −λ`

Figure 1: Usual examples of one-dimensional exponential families (parameters σ2, k, xm
and ` are fixed).

We mainly investigate the profitable bandit problem in the parametric setting, where all
distributions {νθa}1≤a≤K belong to a known one-dimensional canonical exponential family
PΘ as defined above.

3.3. Index policies

All bandit strategies considered in this paper are index policies: they are fully characterized
by an index ua(t) which is computed at each round t ≥ 1 for each arm separately; only arms
with an index larger than the threshold τa are chosen. Index policies are formally described
in Algorithm 1.

4. The kl-UCB-4P Algorithm

We introduce the kl-UCB-4P algorithm, ’4P’ meaning ’for profit’, as a variant of the UCB1
algorithm (Auer et al. (2002)) and more precisely of its improvement kl-UCB introduced
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Algorithm 1 Generic index policy

Require: time horizon T , thresholds (τa)a∈{1,...,K}.
1: Pull all arms: A1 = {1, . . . ,K}.
2: for t = 1 to T − 1 do
3: Compute ua(t) for all arms a ∈ {1, . . . ,K}.
4: Choose At+1 ← {a ∈ {1, . . . ,K}, ua(t) ≥ τa}.
5: end for

in Garivier and Cappé (2011). It is defined by the index

ua(t) = sup
{
q > µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ log t + c log log t

}
,

where µ̂a(t) = (1/Na(t))
∑t

s=1

∑Ca(s)
c=1 Xa,c,s is the empirical average reward at time t, d is

the divergence induced by the Kullback-Leibler divergence defined in Equation (2) and c
is a positive constant typically smaller than 3. Due to its special importance for bounded
rewards, we name kl-Bernoulli-UCB-4P the case d = dBern : (x, y) 7→ x log(x/y) + (1−
x) log((1−x)/(1−y)) and kl-Gaussian-UCB-4P the choice d = dGauss : (x, y) 7→ 2(x−y)2.

4.1. Analysis for one-dimensional exponential family

We show for the kl-UCB-4P algorithm a finite-time regret bound that proves its asymptotic
optimality up to a multiplicative constant c+

a /c
−
a (see Section 7 for further discussion). To

this purpose, we upper-bound the expected number of times non-profitable arms are pulled
and profitable ones are not. The analysis is sketched below, while detailed proofs are
deferred to the Supplementary Material.

Theorem 3 The kl-UCB-4P algorithm satisfies the following properties.
(i). For any non-profitable arm a ∈ {1, . . . ,K} \ A∗ and all ε > 0,

E[Na(T )] ≤ (1 + ε)
c+
a (log T + c log log T )

c−a d(µa, τa)
+ c+

a

{
1 +

H1(ε)

T β1(ε)

}
,

where H1(ε) and β1(ε) are positive functions of ε depending on c−a , µa and τa.
(ii). For any profitable arm a ∈ A∗, if T ≥ max(3, c+

a ) and c ≥ 3, we have:

C̃a(T )− E[Na(T )] ≤ c+
a

{
e(2c+ 3) log log T + c+

a + 3
}
.

4.2. Sketch of proof

The analysis goes as follows:
(i). For a non-profitable arm a ∈ {1, . . . ,K} \ A∗, we must upper bound E[Na(T )].

At first, a sub-optimal arm is drawn because its confidence bonus is large. But after some
KT ≈ κ log(T ) draws (where κ is the information constant given in the theorem), the
index ua(t) can be large only when the empirical mean of the observations deviates from
its expectation, which has small probability. Thus, we write

E[Na(T )] ≤ c+
a

KT +
∑
t≥1

P(a ∈ At+1, Na(t) > KT )

 .
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One obtains that KT gives the main term in the regret. The contribution of the remaining
sum is negligible: denoting d+(x, y) = d(x, y)I{x < y}, we observe that:

(a ∈ At+1) = (ua(t) ≥ τa)
⊂ (d+(µ̂a(t), τa) ≤ d(µ̂a(t), ua(t)))

=

(
d+(µ̂a(t), τa) ≤

log(t) + c log log(t)

Na(t)

)
.

As a deviation from the mean, the last event proved to have small probability when Na(t) >
KT . Summing over these probabilities produces a term negligible compared to KT .

(ii). For a profitable arm a ∈ A∗, we must upper bound C̃a(T )−E[Na(T )]. We write

C̃a(T )− E[Na(T )] ≤ c+
a

T−1∑
t=1

P(a /∈ At+1) ,

and we control the defavorable events by noting that

(a /∈ At+1) = (ua(t) < τa) ⊂ (ua(t) < µa) ,

where the probability of the last event can be upper bounded by means of a self-normalized
deviation inequality such as in Lemma 10 in Cappé et al. (Jun. 2013).

4.3. Extension to general bounded rewards

In this subsection, rewards bounded in [0, 1] are considered and we build confidence intervals
ua(t) with Bernoulli and Gaussian KL divergence, i.e. d = dBern or d = dGauss, which respec-
tively define kl-Bernoulli-UCB-4P and kl-Gaussian-UCB-4P algorithms. Then, with
the same proof as in the one-dimensional exponential family setting, we obtain similar guar-
antees as in Theorem 3 except that the divergence d is either dBern or dGauss. By Pinsker’s
inequality, dBern(µa, τa) > dGauss(µa, τa), which implies that kl-Bernoulli-UCB-4P per-
forms always better than kl-Gaussian-UCB-4P. However, this upper bound is not tight
w.r.t. the lower bound stated in Theorem 2 obtained for general bounded distributions.
Hence, none of these two approaches is asymptotically optimal. A truly non-parametric,
optimal strategy might be obtained by the use of Empirical-Likelihood (EL) confidence
intervals, as in Cappé et al. (Jun. 2013), but this is beyond the scope of this article.

5. The Bayes-UCB-4P Algorithm

5.1. Analysis

We now propose a Bayesian index policy which is derived from Bayes-UCB (Kaufmann
(2016)). For all arms a ∈ {1, . . . ,K}, a prior distribution is chosen for the unknown mean
µa. At each round t ≥ 1, we compute the posterior distribution πa,t using the Na(t) observed
realizations of νa. We compute the quantile qa(t) = Q(1− 1/(t(log t)c);πa,t), where Q(α, π)
denotes the quantile of order α of the distribution π. The Bayes-UCB-4P is the index
policy defined by ua(t) = qa(t). In other words, arm a is pulled (a ∈ At+1) whenever the
quantile qa(t) of the posterior is larger than the threshold τa. The following results, proven
in the Supplementary Material, show that Bayes-UCB-4P is asymptotically optimal up
to a multiplicative constant c+

a /c
−
a (see Section 7).
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Theorem 4 When running the Bayes-UCB-4P algorithm the following assertions hold.
(i). For any non-profitable arm a ∈ {1, . . . ,K}\A∗ and for all ε > 0 there exists a problem-
dependent constant Na(ε) such that for all T ≥ Na(ε),

E[Na(T )] ≤
(

1 + ε

1− ε

)
c+
a (log T + c log log T )

c−a d(µa, τa)
+ c+

a

{
1 +H2 +

H3(ε)

T β2(ε)

}
,

where H2, H3(ε) and β2(ε) are respectively a constant and two positive functions of ε de-
pending on c−a , τa, µa and a constant µ−0 verifying µ− < µ−0 ≤ µa.
(ii). For any profitable arm a ∈ A∗, if T ≥ ta and c ≥ 5,

C̃a(T )− E[Na(T )] ≤ c+
a

{
e(2(c− 2) + 4)

A
log log T + ta + 1

}
,

where ta = max(e/A, 3, A, c+
a , Ac

+
a ) and A is a constant depending on the chosen prior

distribution.

5.2. Sketch of proof

We present the main steps of the proof of Theorem 4 (see the Supplementary Material for
the complete version). The idea is to capitalize on the analysis of kl-UCB-4P, and to
relate the quantiles of the posterior distributions to the Kullback-Leibler upper-confidence
bounds.

(i). For a non-profitable arm a ∈ {1, . . . ,K} \ A∗, we want to upper bound E[Na(T )].
Again, we use the following decomposition:

E[Na(T )] ≤ c+
a

KT +
∑
t≥1

P(a ∈ At+1, Na(t) > KT )

 ,

where KT ≈ κ log(T ) of the same order of magnitude as the asymptotic lower bound
derived in Theorem 2. This cut-off KT is expected to be the dominant term in our upper
bound, since the contribution of the remaining sum is negligible compared to KT : when
Na(t) > KT , we first observe that

(a ∈ At+1) = (qa(t) ≥ τa) =

(
πa,t([τa, µ

+[) ≥ 1

t(log t)c

)
, (3)

where the πa,t is the posterior distribution on µa at round t and qa(t) is, under πa,t, the
quantile of order 1− 1

t(log t)c . The key ingredient here is Lemma 4 from Kaufmann (2016),
which relates a quantile of the posterior to an upper confidence bound on the empirical
mean:

πa,t([τa, µ
+[) .

√
Na(t)e

−Na(t)d(µ̂a(t),τa).

This permits to conclude as for kl-UCB-4P.
(ii). For a profitable arm a ∈ A∗, we must upper bound C̃a(T )− E[Na(T )]. We write

C̃a(T )− E[Na(T )] ≤ c+
a

T−1∑
t=1

P(a /∈ At+1).

9
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Then we note that for all t ≥ 1,

(a /∈ At+1) = (qa(t) < τa) =

(
πa,t([τa, µ

+[) <
1

t(log t)c

)
.

Using again the bridge between posterior quantiles and upper-confidence bounds of Lemma
4 in Kaufmann (2016):

πa,t([τa, µ
+[) &

e−Na(t)d(µ̂a(t),τa)

Na(t)
,

we can again argue as for kl-UCB-4P.

6. The TS-4P Algorithm

6.1. Analysis

The TS-4P algorithm described in this section is inspired from the analysis of Thompson
Sampling provided in Korda et al. (2013). Although the guarantees given in Section 5
for Bayes-UCB-4P are valid for any prior distribution, the Bayesian approach proposed
in this section will be analyzed only for Jeffreys priors (see Korda et al. (2013) for more
details). πa(0) will refer to the prior distribution on θa and πa(t) to the posterior distribution
updated with the Na(t) observations collected from arm a up to time t. At each time step
t ≥ 1, sample θa(t) ∼ πa(t) and define the TS-4P algorithm (see Algorithm 1) pulling arm
a (i.e. a ∈ At+1) if ua(t) = µ(θa(t)) is larger than or equal to τa.

Theorem 5 When running the TS-4P algorithm the following assertions hold.
(i). For any non-profitable arm a ∈ {1, . . . ,K} \ A∗ and for all ε ∈]0, 1[,

E[Na(T )] ≤
(

1 + ε

1− ε

)
c+
a log T

c−a d(µa, τa)
+H4,

where H4 is a problem dependent constant.
(ii). For any profitable arm a ∈ A∗,

C̃a(T )− E[Na(T )] ≤ H5,

with H5 a problem dependent constant.

6.2. Sketch of proof

Here we give the main steps of the proof of Theorem 5 (see the Supplementary Material for
complete proof).

(i). For a non-profitable arm a ∈ {1, . . . ,K} \ A∗, we must upper bound E[Na(T )]. We
first write:

E[Na(T )] . c+
a

KT +
∑
t≥1

P (a ∈ At+1, Ea(t), Na(t) > KT )

 ,

where KT ≈ κ log(T ) is, as in the proofs of kl-UCB-4P and Bayes-UCB-4P, a cut-off
corresponding to the main term in our bound as suggested by the asymptotic lower bound

10
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in Theorem 2 and Ea(t) is a high probability event ensuring that the current empirical
mean at times t, namely µ̂a(t), is well concentrated around the true mean µa. It remains
to prove that the sum of defavorable events (for Na(t) > KT and under Ea(t)) is negligible
compared to KT . Observe that the following holds:

P(a ∈ At+1, Ea(t), Na(t) > KT ) ≤ P(µ(θa(t)) ≥ τa, Ea(t), Na(t) > KT ), (4)

where θa(t) is sampled from the posterior distribution πa(t). Then we upper bound the
right-hand side expression in Eq. (4) thanks to the deviation inequality stated in Theorem
4 in Korda et al. (2013) and that we recall in Lemma 8 in the Supplementary Material.
Summing over these probabilities produces a term negligible compared to KT .

(ii). For a profitable arm a ∈ A∗, we must upper bound C̃a(T ) − E[Na(T )], which we
decompose as follows:

C̃a(T )− E[Na(T )] ≤ c+
a

T−1∑
t=1

P(a /∈ At+1).

Then, we control the defavorable events: for all t ≥ 1 and b ∈]0, 1[,

T−1∑
t=1

P(a /∈ At+1) .
+∞∑
t=1

P
(
µ(θa(t)) < τa, Ea(t)

∣∣∣Na(t) > tb
)

+

+∞∑
t=1

P
(
Na(t) ≤ tb

)
,

where the first series is proved to converge thanks to Lemma 8 and the second too by Lemma
9 provided in the Supplementary. We point out that our proof of Lemma 9, which is a much
simplified version of the proof of Proposition 5 in Korda et al. (2013), takes advantage of
the independence of arms in our objective (see Section 3.1).

7. Asymptotic Optimality

A direct consequence of theorems 3, 4 and 5 is the following asymptotic upper bound on
the regret of kl-UCB-4P (with c ≥ 3), Bayes-UCB-4P (with c ≥ 5) and TS-4P:

lim sup
T→∞

RT
log T

≤
∑

a, µa<τa

c+
a |∆a|

c−a d(µa, τa)
.

Observe that this asymptotic upper bound on the regret is tight with the asymptotic
lower bound in Section 2 when c+

a = c−a for all non-profitable arms a ∈ {1, . . . ,K} \ A∗,
which is achieved if and only if the Ca(t)’s are constant. In this particular case these three
algorithms are asymptotically optimal.

8. Numerical Experiments

We perform three series of numerical experiments for three different one-dimensional ex-
ponential families: Bernoulli, Poisson and exponential. In each scenario, we consider five
arms (K = 5) with distributions belonging to the same one-dimensional exponential family.
For all arms a ∈ {1, . . . , 5} and time steps t ∈ {1, . . . , T}, Ca(t) − 1 is sampled from a

11
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Poisson distribution P(λa), where (λ1, . . . , λ5) = (3, 4, 5, 6, 7). Moreover, the time horizon
is chosen equal to T = 10000 and the regret is empirically averaged over 10000 independent
trajectories. Our experiments also include algorithms, all index policies, whose theoretical
properties have not been discussed in this article, namely:

• UCB-V-4P: same index as UCB-V introduced in Audibert et al. (2009) and using
empirical estimates of the variance of each distribution,

• KL-Emp-UCB-4P: same index as empirical KL-UCB introduced in Cappé et al.
(Jun. 2013) and using the empirical likelihood principle,

• kl-UCB+-4P: derived from kl-UCB+ introduced in Kaufmann (2016) and defined

by the index ua(t) = sup
{
q > µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ log(t(log t)c/Na(t))

}
.

We also define kl-Bernoulli-UCB+-4P by replacing the divergence d by dBern in the
index of kl-UCB+-4P.

8.1. Scenario 1: Bernoulli

In the first scenario, the K = 5 categories have Bernoulli distributions B(pa) with parame-
ters (p1, . . . , p5) = (0.1, 0.3, 0.5, 0.5, 0.7) and thresholds (τ1, . . . , τ5) = (0.2, 0.2, 0.4, 0.6, 0.8).
Hence the profitable arms are the second and the third ones. Notice that although arms 3
and 4 have the same distribution, namely B(0.5), their thresholds are different such that
arm 3 is profitable but not arm 4.
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Figure 2: Regret of various algorithms as a function of time in the Bernoulli scenario.
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Observe that kl-Gaussian-UCB-4P produces large regret, which confirms the discus-
sion in Section 4.3 stating that it always performs worse than kl-Bernoulli-UCB-4P,
which here coincides with kl-UCB-4P.

8.2. Scenario 2: Poisson

In the second scenario, the five categories a ∈ {1, . . . , 5} have Poisson distributions P(θa)
with respective mean parameters (θ1, . . . , θ5) = (1, 2, 3, 4, 5) and thresholds (τ1, . . . , τ5) =
(2, 1, 4, 3, 6): the profitable arms are 2 and 4. In order to run KL-Emp-UCB-4P which
assumes boundedness, the rewards are truncated at a maximal value equal to 100.
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Figure 3: Regret of various algorithms as a function of time in the Poisson scenario. The
right hand-side plot only displays the best performing policies on a harder prob-
lem.

The right-hand side plot in Figure 3 only displays the regret of the best performing
strategies on a harder problem with same distributions but thresholds closer to expectations:
(τ1, . . . , τ5) = (1.1, 1.9, 3.1, 3.9, 5.1).

8.3. Scenario 3: exponential

In the third scenario, we consider exponential distributions E(λa) with respective mean
values (λ−1

1 , . . . , λ−1
5 ) = (1, 2, 3, 4, 5) and thresholds (τ1, . . . , τ5) = (2, 1, 4, 3, 6). As in the

Poisson scenario, the rewards are truncated at a maximal value of 100.
The right-hand side plot in Figure 4 only displays the best performing strategies. Here

again, the distributions are kept the same but the problem is made harder with new thresh-
olds: (τ1, . . . , τ5) = (1.1, 1.9, 3.1, 3.9, 5.1).

8.4. Interpretation

In each scenario and for each algorithm, the regret curve presents a linear regime corre-
sponding to a logarithmic growth as a function of time. We observe that the best per-
forming policies (i.e. with small regret) are those adapting to the parametric family of
the reward distributions: through the Kullback-Leibler divergence for kl-UCB-4P and
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Figure 4: Regret of various algorithms as a function of time in the exponential scenario.
The right hand-side plot only displays the best performing policies on a harder
problem.

kl-UCB+-4P, or through prior distributions for Bayes-UCB-4P and TS-4P. By con-
trast, kl-Gaussian-UCB-4P always uses the Gaussian Kullback-Leibler divergence, both
kl-Bernoulli-UCB-4P and kl-Bernoulli-UCB+-4P the Bernoulli divergence and KL-
Emp-UCB-4P only assumes that the rewards are bounded. Hence we see that prior knowl-
edge on reward distributions is critical in the efficiency of these algorithms.

9. Conclusion

Motivated by credit risk evaluation of different populations in a sequential context, this pa-
per introduces the profitable bandit problem, evaluates its difficulty by giving an asymptotic
lower bound on the expected regret and proposes and theoretically analyzes three algo-
rithms, kl-UCB-4P, Bayes-UCB-4P and TS-4P, by giving finite-time upper bounds on
their expected regret for reward distributions belonging to a one-dimensional exponential
family. All three algorithms are proven to be asymptotically optimal in the particular set-
ting where for each catefory, a same number of clients is presented to the loaner at each time
step. An extension to general bounded distributions is proposed through two algorithms
kl-Bernoulli-UCB-4P and kl-Gaussian-UCB-4P coming with finite-time analysis di-
rectly derived from the analysis of kl-UCB-4P. We finally compare all these strategies
empirically and also against other policies inspired from other multi-armed bandits algo-
rithms. Bayes-UCB-4P and TS-4P perform the best in our numerical experiments and
we observe that policies having prior information on the distributions, through appropriate
prior distribution for Bayes-UCB-4P and TS-4P or Kullback-Leibler divergence for kl-
UCB-4P, perform much better than non-adaptive strategies like kl-Bernoulli-UCB-4P
and kl-Gaussian-UCB-4P.

14



Profitable Bandits

Acknowledgments

This work was supported by a public grant (Investissement d’avenir project, reference
ANR-11-LABX-0056-LMH, LabEx LMH) and by the industrial chair Machine Learning for
Big Data from Télécom ParisTech.
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Appendix A. Technical Proofs

A.1. Proof of Theorem 2

We use the inequality (F ) in Section 2 in Garivier et al. (2016), a consequence of the
contraction of entropy property, which straightforwardly extends from the classical multi-
armed bandit setting to ours where several arms can be pulled at each round t and a number
Ca(t) ≥ 1 of observations are observed simultaneously for each pulled arm a. Then we have

K∑
a=1

Eν [Na(T )]KL(νa, ν
′
a) ≥ kl(Eν [Z],Eν′ [Z]), (5)

where Z is any σ(IT )-measurable random variable with values in [0, 1]. Consider a thresh-
olding bandit problem (ν, τ) ∈ D with at least one non-profitable arm a ∈ {1, . . . ,K}, we
define a modified problem (ν ′, τ) such that ν ′k = νk for all k 6= a and ν ′a ∈ Da verifies
µ′a > τa. Then, considering Z = Na(T )/C̃a(T ), Eq. (5) rewrites as follows:

Eν [Na(T )]KL(νa, ν
′
a) ≥ kl(Eν [Na(T )]/C̃a(T ),Eν′ [Na(T )]/C̃a(T ))

≥
(

1− Eν [Na(T )]

C̃a(T )

)
log

(
C̃a(T )

C̃a(T )− Eν′ [Na(T )]

)
− log(2),

where we used for the last inequality that for all (p, q) ∈ [0, 1]2,

kl(p, q) ≥ (1− p) log

(
1

1− q

)
− log(2).

Then, by uniform efficiency it holds: Eν [Na(T )] = o(C̃a(T )) and C̃a(T ) − Eν′ [Na(T )] =
o(C̃a(T )α) for all α ∈ (0, 1]. Hence for all α ∈ (0, 1],

lim inf
T→∞

1

log T
Eν [Na(T )]KL(νa, ν

′
a) ≥ lim inf

T→∞

1

log T
log

(
C̃a(T )

C̃a(T )α

)
= 1− α.

Taking the limit α→ 0 in the right-hand side and taking the infimum over all distributions
ν ′a ∈ Da such that µ′a > τa in the left-hand side conclude the proof.

A.2. Proof of Theorem 3

For any arm a ∈ {1, . . . ,K}, the average reward at time t is denoted by µ̂a(t) = Sa(t)/Na(t)

where Sa(t) =
∑t

s=1

∑Ca(s)
c=1 Xa,c,s I{a ∈ As} and Na(t) =

∑t
s=1Ca(s) I{a ∈ As}. For every

positive integer s, we also denote by µ̂a,s = (Xa,1 + · · · + Xa,s)/s with Xa,1, . . . , Xa,s the
first s samples pulled from arm a, so that µ̂t(a) = µ̂a,Na(t). The upper confidence bound for
µa appearing in kl-UCB-4P is then given by:

ua(t) = sup {q > µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ log t+ c log log t} .

For all (x, y) ∈ [µ−, µ+]2, define d+(x, y) = d(x, y)I{x < y}.
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(i). Let a ∈ {1, . . . ,K} \ A∗ be a non-profitable arm i.e. such that µa < τa. Given
ε ∈]0, 1[, we upper bound the expectation of Na(T ) as follows,

E[Na(T )] = E

[
T∑
t=1

Ca(t)I{a ∈ At}

]
≤ c+

a E

[
T∑
t=1

I{a ∈ At}

]
.

Now observe for t ≥ 1 that a ∈ At+1 implies ua(t) ≥ τa and hence,

d+(µ̂a(t), τa) ≤ d(µ̂a(t), ua(t)) =
log t+ c log log t

Na(t)
.

Then,

T∑
t=1

I{a ∈ At}

= 1 +
T−1∑
t=1

I {a ∈ At+1}
t∑

s=1

∑
1≤i1<···<is≤t

I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t}\{i1,...,is}

Ai


× I
{

(Ca(i1) + · · ·+ Ca(is))d
+
(
µ̂a,Ca(i1)+···+Ca(is), τa

)
≤ log t+ c log log t

}
.

(6)

Given ε ∈]0, 1[, we upper bound the last indicator function appearing in Eq. (6) by

I{s < KT }+

c+a s∑
k=c−a s

I
{
s ≥ KT , kd

+(µ̂a,k, τa) ≤ log T + c log log T
}

≤ I{s < KT }+

c+a s∑
k=c−a s

I
{
s ≥ KT , d

+(µ̂a,k, τa) ≤
d(µa, τa)

1 + ε

}
,

(7)

where KT =
⌈
(1 + ε) log T+c log log T

c−a d(µa,τa)

⌉
. The last expression in Eq. (7) is not using the indices

t, i1, . . . , is which allows us to exchange the sums over t and s in Eq. (6) and to obtain

T∑
t=1

I{a ∈ At}

≤ 1 +

T∑
s=1

I{s < KT }+

c+a s∑
k=c−a s

I
{
s ≥ KT , d

+(µ̂a,k, τa) ≤
d(µa, τa)

1 + ε

}
×
T−1∑
t=1

I {a ∈ At+1}
∑

1≤i1<···<is≤t
I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t}\{i1,...,is}

Ai


≤ KT +

T∑
s=KT

c+a s∑
k=c−a s

I
{
d+(µ̂a,k, τa) ≤

d(µa, τa)

1 + ε

}
,
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where the last inequality is implied by

T−1∑
t=1

I {a ∈ At+1}
∑

1≤i1<···<is≤t
I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t}\{i1,...,is}

Ai

 ≤ 1. (8)

Hence,

E[Na(T )] ≤ c+
a

KT +
+∞∑
s=KT

+∞∑
k=c−a s

P
(
d+(µ̂a,k, τa) ≤

d(µa, τa)

1 + ε

)
≤ (1 + ε)

c+
a

c−a

log T + c log log T

d(µa, τa)
+ c+

a

{
1 +

H1(ε)

T β1(ε)

}
,

comes from Lemma 6 with H1(ε) and β1(ε) positive functions of ε.

(ii). Now consider a ∈ A∗ i.e. verifying µa > τa. It follows,

C̃a(T )− E[Na(T )] = E

[
T∑
t=2

Ca(t)I{a /∈ At}

]
≤ c+

a

T−1∑
t=1

P (ua(t) < µa) .

Let t ∈ {1, . . . , T − 1} and observe that (ua(t) < µa) ⊂ (d+(µ̂a(t), µa) > d(µ̂a(t), ua(t))).
Hence for c ≥ 3 and t ≥ max(3, c+

a ),

P (ua(t) < µa)

≤ P
(
Na(t)d

+(µ̂a(t), µa) > δt
)
≤ (δt log(c+

a t) + 1) exp(−δt + 1)

=
e((log t)2 + c log(t) log log(t) + log(c+

a ) log(t) + c log(c+
a ) log log(t) + 1)

t(log t)c

≤ e(2c+ 3)

t log t
,

where δt = log t+ c log log t > 1 and the second inequality results from the self-normalized
concentration inequality stated in Lemma 10 in Cappé et al. (Jun. 2013). Then by summing
over t,

C̃a(T )− E[Na(T )] ≤ c+
a

{
2 + c+

a + e(2c+ 3)
T−1∑
t=3

1

t log t

}
≤ c+

a

{
e(2c+ 3) log log T + c+

a + 3
}
.

A.3. Lemma 6

Lemma 6 Let a ∈ {1, . . . ,K} \ A∗ a non-profitable arm (i.e. µa < τa), ε ∈]0, 1[ and

KT =
⌈
f(ε) log T+c log log T

c−a d(µa,τa)

⌉
with f a function such that f(ε′) > 1 for all ε′ ∈]0, 1[. Then

there exist H(ε) > 0 and β(ε) > 0 such that

+∞∑
s=KT

+∞∑
k=c−a s

P
(
d+(µ̂a,k, τa) ≤

d(µa, τa)

f(ε)

)
≤ H(ε)

T β(ε)
,

where H(ε) and β(ε) are positive functions of ε depeding on µa, τa and c−a .
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Proof Observe that d+(µ̂a,k, τa) ≤ d(µa, τa)/f(ε) if and only if µ̂a,k ≥ r(ε) where r(ε) ∈
]µa, τa[ verifies d(r(ε), τa) = d(µa, τa)/f(ε). Thus,

P
(
d+(µ̂a,k, τa) ≤

d(µa, τa)

f(ε)

)
= P (µ̂a,k ≥ r(ε)) ≤ e−kd(r(ε),µa)

and

T∑
s=KT

c+a s∑
k=c−a s

P
(
d+(µ̂a,k, τa) ≤

d(µa, τa)

f(ε)

)
≤

+∞∑
s=KT

+∞∑
k=c−a s

e−kd(r(ε),µa)

=
1

1− e−d(r(ε),µa)

+∞∑
s=KT

e−c
−
a sd(r(ε),µa)

=
e−c

−
a d(r(ε),µa)KT

(1− e−d(r(ε),µa))
(

1− e−c−a d(r(ε),µa)
)

≤ H(ε)

T β(ε)
,

whereH(ε) =
[(

1− e−d(r(ε),µa)
)(

1− e−c
−
a d(r(ε),µa)

)]−1
and β(ε) = f(ε)d(r(ε), µa)/d(µa, τa).

A.4. Proof of Theorem 4

We first recall that the posterior distribution on the mean of a distribution belonging to
an exponential family only depends on the number of observations n and the empirical
mean x (see e.g. Lemma 1 in Kaufmann (2016)): for a given arm a ∈ {1, . . . ,K}, we
denote this posterior by πa,n,x. Given two constants µ−0 > µ− and µ+

0 < µ+ verifying
µ−0 ≤ µa ≤ µ+

0 for all arms a ∈ {1, . . . ,K}, we define the truncated empirical mean:
µ̄a(t) = min(max(µ̂a(t), µ

−
0 ), µ+

0 ). Then, for any arm a ∈ {1, . . . ,K} and time step t ≥ 1,
the posterior distribution involved in Bayes-UCB-4P defines as follows:

πa,t = πa,Na(t),µ̄a(t).

(i). Let a ∈ {1, . . . ,K} \ A∗ be a non-profitable arm (i.e. µa < τa). We upper bound
the expectation of Na(T ) as follows:
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E[Na(T )] = E

[
T∑
t=1

Ca(t)I{a ∈ At}

]
≤ c+

a E

[
1 +

T−1∑
t=1

I{qa(t) ≥ τa}

]

= c+
a E

[
1 +

T−1∑
t=1

I
{
πa,Na(t),µ̄a(t)([τa, µ

+[) ≥ 1

t(log t)c
, a ∈ At+1

}]

≤ c+
a E

[
1 +

T−1∑
t=1

I
{
µ̄a(t) < τa, πa,Na(t),µ̄a(t)([τa, µ

+[) ≥ 1

t(log t)c
, a ∈ At+1

}
(9)

+
T−1∑
t=1

I{µ̄a(t) ≥ τa, a ∈ At+1}

]
. (10)

Using Lemma 4 in Kaufmann (2016), the first sum in (9) is upper bounded by

T−1∑
t=1

I
{
B
√
Na(t)e

−Na(t)d+(µ̄a(t),τa) ≥ 1

t(log t)c
, a ∈ At+1

}

=
T−1∑
t=1

I {a ∈ At+1}
t∑

s=1

∑
1≤i1<···<is≤t

I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t}\{i1,...,is}

Ai


× I
{
B
√
Ca(i1) + · · ·+ Ca(is)e

−(Ca(i1)+···+Ca(is))d+(µ̄a,Ca(i1)+···+Ca(is),τa) ≥ 1

t(log t)c

}
,

(11)

where B is a constant depending on µ−0 , µ+
0 and on prior densities. Then we upper bound

the last indicator function appearing in Eq. (11) by

I{s < KT }+

c+a s∑
k=c−a s

I
{
s ≥ KT , kd

+(µ̄a,k, τa) ≤ log T + c log log T +
1

2
log k + logB

}

≤ I{s < KT }+

c+a s∑
k=c−a s

I
{
s ≥ KT , kd

+(µ̂a,k, τa) ≤ log T + c log log T +
1

2
log k + logB

}
+ I{µ̂a,k < µ−0 }.

(12)

We are now able to upper bound the right-hand side expression in Eq. (11) by injecting
Eq. (12) and switching the sums on indices t and s, which leads to

T−1∑
t=1

I
{
µ̄a(t) < τa, πa,Na(t),µ̄a(t)([τa, µ

+[) ≥ 1

t(log t)c
, a ∈ At+1

}

≤ KT − 1 +

T∑
s=1

c+a s∑
k=c−a s

I
{
s ≥ KT , kd

+(µ̂a,k, τa) ≤ log T + c log log T +
1

2
log k + logB

}
+ I{µ̂a,k < µ−0 },

(13)
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where we used the same argument as in Eq. (8) to get rid of the sum over t.

Given ε ∈]0, 1[ we define KT =
⌈

1+ε
1−ε

log T+c log log T

c−a d(µa,τa)

⌉
and denote by Na(ε) the constant

such that T ≥ Na(ε) implies:

KT ≥
⌈

3

c−a

⌉
and

1

c−aKT

(
1

2
log(c−aKT ) + log(B)

)
≤ ε

1 + ε
d(µa, τa), (14)

where the first inequality ensures that for all k ≥ c−aKT , the function k 7→ log(x)/x de-
creases. Hence, the first indicator function appearing in the right-hand side in Eq. (13) is
upper bounded by

I
{
s ≥ KT , d

+(µ̂a,k, τa) ≤
1− ε
1 + ε

d(µa, τa)

}
. (15)

By combining equations (9), (13) and (15) we obtain

E[Na(T )] ≤ c+
a

{
KT +

T∑
s=KT

c+a s∑
k=c−a s

P
(
d+(µ̂a,k, τa) ≤

1− ε
1 + ε

d(µa, τa)

)

+
T∑
s=1

c+a s∑
k=c−a s

P(µ̂a,k < µ−0 ) +
T−1∑
t=1

P(µ̄a(t) ≥ τa, a ∈ At+1)

}
,

(16)

where the first sum can be upper bounded by H3(ε)T−β2(ε) with H3(ε) > 0 and β2(ε) > 0
thanks to Lemma 6. We upper bound the second sum in Eq. (16) with Chernoff inequality:

T∑
s=1

c+a s∑
k=c−a s

P(µ̂a,k < µ−0 ) ≤
+∞∑
s=1

+∞∑
k=c−a s

e−kd(µ−0 ,µa)

=
e−c

−
a d(µ−0 ,µa)(

1− e−d(µ−0 ,µa)
)(

1− e−c−a d(µ−0 ,µa)
) .

Finally, we upper bound the third sum in Eq. (16) by

E

[
T−1∑
t=1

I{µ̂a,s ≥ τa, a ∈ At+1}

]

≤ E

[
T−1∑
t=1

I {a ∈ At+1}
t∑

s=1

∑
1≤i1<···<is≤t

I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t}\{i1,...,is}

Ai


× I
{
µ̂a,Ca(i1)+···+Ca(is) ≥ τa

}]

≤
T∑
s=1

c+a s∑
k=c−a s

P(µ̂a,k ≥ τa) ≤
e−c

−
a d(τa,µa)(

1− e−d(τa,µa)
) (

1− e−c−a d(τa,µa)
) ,

(17)

where we respectively used Eq. (8) and Chernoff inequality in the two last inequalities.
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(ii). Now consider a ∈ A∗. We have,

C̃a(T )− E[Na(T )] = E

[
T−1∑
t=1

Ca(t+ 1)I{a /∈ At+1}

]
= c+

a

T−1∑
t=1

P(qa(t) < τa)

≤ c+
a

{
t0 − 1 +

T−1∑
t=t0

P
(
µ̂a(t) < τa, Na(t) ≥ (log t)2

)
+

T−1∑
t=1

P
(
qa(t) < τa, Na(t) ≤ (log t)2

)}
,

(18)

where t0 = max(t1, t2) with t1 the smallest integer verifying C2t0(log t0)2c ≥ 1, which implies
for all t ≥ t1 that µ̄a(t) ≤ qa(t), and t2 = dexp(2/d(τa, µa))e to ensure that d(τa, µa)(log t)2 ≥
2 log t for all t ≥ t2. To upper bound the first sum in Eq. (18) we write for t ≥ t0,

P
(
µ̂a(t) < τa, Na(t) ≥ (log t)2

)
≤

t∑
s=d(log t)2e

P(µ̂a,s < τa) ≤
+∞∑

s=d(log t)2e

e−sd(τa,µa)

≤ e−d(τa,µa)(log t)2 ≤ 1

t2
.

To upper bound the second sum in Eq. (18) use again Lemma 4 in Kaufmann (2016),

P
(
qa(t) < τa, Na(t) ≤ (log t)2

)
= P

(
πa,Na(t),µ̄a(t)([τa, µ

+[) <
1

t(log t)c
, Na(t) ≤ (log t)2

)
≤ P

(
Ae−Na(t)d(µ̄a(t),τa)

Na(t)
<

1

t(log t)c
, Na(t) ≤ (log t)2

)

= P
(
Na(t)d

+(µ̂a(t), τa) > log

(
At(log t)c

Na(t)

)
, Na(t) ≤ (log t)2

)
≤ P

(
Na(t)d

+(µ̂a(t), τa) > log(At) + (c− 2) log log t
)
,

where A is a constant depending on µ−0 , µ+
0 and on prior densities. Then for c ≥ 5, using

the self-normalized deviation inequality stated in Lemma 10 in Cappé et al. (Jun. 2013),
we have,

P(Na(t)d
+(µ̂a(t), τa) > log(At) + (c− 2) log log t) ≤ (δt log(c+

a t) + 1) exp(−δt + 1)

=
e((log(t))2 + (c− 2) log(t) log log(t) + log(Ac+

a ) log(t) + (c− 2) log(c+
a ) log log(t) + log(A) log(c+

a ) + 1)

At(log(t))c−2

≤ e(2(c− 2) + 4)

At log(t)
,

where we assumed t ≥ ta = max(e/A, 3, A, c+
a , Ac

+
a ) to ensure the last inequality and that

δt = log(At) + (c− 2) log log(t) > 1. Then by summing over t,

C̃a(T )− E[Na(T )] ≤ c+
a

{
ta +

e(2(c− 2) + 4)

A

T−1∑
t=3

1

t log t

}
≤ c+

a {e(2(c− 2) + 4) log log T + ta + 1}.
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A.5. Proof of Theorem 5

We first introduce some notations. Denote by (Xa,s)s≥1 i.i.d. samples from distribution νa.
Let L(θ) = (1/2) min(1, supx p(x|θ)) and for any δa > 0,

Ea,s =

(
∃s′ ∈ {1, . . . , s}, p(Xa,s′ |θa) ≥ L(θa),

∣∣∣∣∣
∑s

u=1,u6=s′ Xa,u

s− 1
− µa

∣∣∣∣∣ ≤ δa
)

is an event where there is at least one ’likely’ observation of arm a (namely Xa,s′) and
such that the empirical sufficient statistic is close to its true mean. We also define Ea(t) =
Ea,Na(t).

Remark 7 In the definition of Ea,s, the ’likely’ observation Xa,s′ is only needed for technical
reasons when the Jeffreys prior πa(0) is improper (see Remark 8 in Korda et al. (2013) for
further discussion).

We now recall the Theorem 4 in Korda et al. (2013), an important result on the posterior
concentration under the event Ea(t).

Lemma 8 There exists problem-dependent constants C1,a and N1,a and a function ∆ 7→
C2,a(∆) such that for δa ∈]0, 1[ and ∆ > 0 verifying 1 − δaC2,a(∆) > 0, it holds whenever
Na(t) ≥ N1,a:

P
(
µ(θa(t)) ≥ µa + ∆, Ea(t)|(Xa,s)1≤s≤Na(t)

)
≤ C1,aNa(t)e

−(Na(t)−1)(1−δaC2,a(∆))d(µa,µa+∆)

and

P
(
µ(θa(t)) ≤ µa −∆, Ea(t)|(Xa,s)1≤s≤Na(t)

)
≤ C1,aNa(t)e

−(Na(t)−1)(1−δaC2,a(∆))d(µa,µa−∆).

Thanks to these concentration inequalities we can derive bounds on the expected number
of pulls of any arm.

For all arms a ∈ {1, . . . ,K} and t ≥ 1, θa(t) is a r.v. sampled from the posterior
distribution πa(t) on θa obtained after Na(t) observations. For all s ≥ 1, we also denote by
θa,s a r.v. sampled from the posterior distribution resulting from the first s observations
pulled from arm a (with arbitrary choice when some of these random variables are pulled
together), so that θa(t) = θa,Na(t).

We now prove Theorem 5.
(i). Let a ∈ {1, . . . ,K} \ A∗ be a non-profitable arm (i.e. µa < τa). We upper bound

the expectation of Na(T ) as follows:

E[Na(T )] = E

[
Ca(t)

T∑
t=1

I{a ∈ At}

]
≤ c+

a

{
1 +

T−1∑
t=1

P (a ∈ At+1, Ea(t)) + P (a ∈ At+1, Ea(t)
c)

}
.

(19)
First observe that the first sum in the right-hand side in Eq. (19) is equal to

E

[
T−1∑
t=1

I {a ∈ At+1}
t∑

s=1

∑
1≤i1<···<is≤t

I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t−1}\{i1,...,is}

Ai


× I
{
µ(θa,Ca(i1)+···+Ca(is)) ≥ τa, Ea,Ca(i1)+···+Ca(is)

}]
.
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Then, given ε ∈]0, 1[, by choosing δa ≤ ε/C2,a(|∆a|), defining KT =
⌈

1+ε
1−ε

log T

c−a d(µa,τa)

⌉
and observing that I{µ(θa,Ca(i1)+···+Ca(is)) ≥ τa, Ea,Ca(i1)+···+Ca(is)} is upper bounded by

I{s < KT }+
∑c+a s

k=c−a s
I{s ≥ KT , µ(θa,k) ≥ τa, Ea,k}, we obtain:

T−1∑
t=1

P (a ∈ At+1, Ea(t)) ≤ KT − 1 +

T∑
s=KT

c+a s∑
k=c−a s

P (µ(θa,k) ≥ τa, Ea,k)

≤ KT − 1 +

T∑
s=KT

c+a s∑
k=c−a s

C1,ake
−(k−1)(1−ε)d(µa,τa)

≤ 1 + ε

1− ε
log T

c−a d(µa, τa)
+ C1,aT (c+

aKT )2e−(c−a KT−1)(1−ε)d(µa,τa)

≤ 1 + ε

1− ε
log T

c−a d(µa, τa)
+ C1,ae

(1−ε)d(µa,τa) (c+
aKT )2

T ε
,

where we used in the first inequality Eq. (8). In the second and third inequalities we assumed
T larger than Na(ε) verifying T ≥ Na(ε) ⇒ KT ≥ max(N1,a/c

−
a , N2,a) with N1,a defined

in Lemma 8 and N2,a such that the function u 7→ u2e−(c−a u−1)(1−ε)d(µa,τa) is decreasing for
u ≥ N2,a.

In order to upper bound the second sum in the right-hand side in Eq. (19) we first
introduce the following events:

Ba,s = (∀s′ ∈ {1, . . . , s}, p(Xa,s′ |θa) ≤ L(θa))

and

Da,s =

(
∃s′ ∈ {1, . . . , s},

∣∣∣∣∣
∑s

u=1,u6=s′ Xa,u

s− 1
− µa

∣∣∣∣∣ > δa

)
.

Then observing that Ea(t)
c ⊂ Ba,Na(t)

⋃
Da,Na(t) and it holds

T−1∑
t=1

P(a ∈ At+1, Ea(t)
c)

≤ E

[
T−1∑
t=1

I {a ∈ At+1}
t∑

s=1

∑
1≤i1<···<is≤t

I

a ∈ ⋂
i∈{i1,...,is}

Ai, a /∈
⋃

i∈{1,...,t−1}\{i1,...,is}

Ai


×

c+a s∑
k=c−a s

I {Ba,k}+ I {Da,k}

]

≤
T∑
s=1

c+a s∑
k=c−a s

P (Ba,k) + P (Da,k)

≤
+∞∑
s=1

c+
a sP (p(Xa,1|θa) < L(θa))

c−a s +
(
c+
a s
)2 (

e−(c−a s−1)d(µa−δa,µa) + e−(c−a s−1)d(µa+δa,µa)
)
< +∞,
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where we used Eq. (8) in the second inequality.
(ii). Now consider a ∈ A∗ i.e. verifying µa > τa. Let b ∈]0, 1[, we have:

C̃a(T )− E[Na(T )] = E

[
T∑
t=2

Ca(t) I{a /∈ At}

]
≤ c+

a

T−1∑
t=1

P(µ(θa(t)) < τa)

≤ c+
a

{
T−1∑
t=1

P
(
µ(θa(t)) < τa, Ea(t)

∣∣∣Na(t) > tb
)

+
T−1∑
t=1

P
(
Ea(t)

c
∣∣∣Na(t) > tb

)
+

+∞∑
t=1

P
(
Na(t) ≤ tb

)}
.

(20)

By applying Lemma 8, the first sum in Eq. (20) is upper bounded by

N
1/b
0,a +

+∞∑
t=
⌈
N

1/b
0,a

⌉C1,at
be−(tb−1)(1−δaC2,a(|∆a|))d(µa,τa) < +∞,

whereN0,a = max(N1,a, N3,a) withN3,a such that the function u 7→ ue−(u−1)(1−δaC2,a(|∆a|))d(µa,τa)

is decreasing for u ≥ N3,a.
By applying Chernoff inequality we upper bound the second sum in Eq. (20) by

T−1∑
t=1

P
(
Ea(t)

c
∣∣∣Na(t) > tb

)
≤

T∑
t=1

t∑
s=dtb/c+a e

c+a s∑
k=c−a s

P(Ba,k) + P(Da,k)

≤
+∞∑
t=1

c+
a t

2P(p(Xa,1|θa) ≤ L(θa))
c−a
c+a
tb

+ 2(c+
a )2t3

(
e
−
(
c−a
c+a
tb−1

)
d(µa−δa,µa)

+ e
−
(
c−a
c+a
tb−1

)
d(µa+δa,µa)

)
< +∞.

Finally we upper bound the third sum in Eq. (20) with the following result, inspired
from Proposition 5 in Korda et al. (2013). In our case its proof is simpler as there are no
dependencies between arms in the objective of the profitable bandit problem.

Lemma 9 For any profitable arm a ∈ A∗ and any b ∈]0, 1[, there exists a problem-
dependent constant Cb < +∞ such that

+∞∑
t=1

P
(
Na(t) ≤ tb

)
≤ Cb.

Then, by using the Bernstein-Von-Mises theorem telling us that
limj→+∞ P(µ(θa(τj)) < τa) = 0, we deduce that there exists a constant C ∈]0, 1[ such that
for all j ≥ 0, P(µ(θa(τj)) < τa) ≤ C. Hence,

+∞∑
t=1

P
(
Na(t) ≤ tb

)
≤

+∞∑
t=1

(
tb + 1

)
Ct

1−b−1 < +∞.
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A.6. Proof of Lemma 9

In all this proof we consider a fixed profitable arm a ∈ A∗. We follow the lines of the proof
of Proposition 5 in Korda et al. (2013) : let tj be the occurence of the j-th play of the arm
a (with t0 = 0 by convention). Let ξj = tj+1 − tj − 1, it corresponds to the number of time

steps between the j-th and the (j + 1)-th play of arm a. Hence, t−Na(t) ≤
∑Na(t)

j=0 ξj and
we have

P
(
Na(t) ≤ tb

)
≤ P

(
∃j ∈

{
0, . . . , btbc, ξj ≥ t1−b − 1

})
≤
btbc∑
j=0

P
(
ξj ≥ t1−b − 1

)

≤
btbc∑
j=0

P (µ(θa(τj)) < τa)
t1−b−1 .
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