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Abstract

Vanilla Gaussian processes (GPs) have prohibitive computational needs for very large data
sets. To overcome this difficulty, special structures in the covariance matrix, if exist, should
be exploited using decomposition methods such as the Kronecker product. In this paper,
we integrated the Kronecker decomposition approach into a multiple kernel learning (MKL)
framework for GP regression. We first formulated a regression algorithm with the Kronecker
decomposition of structured kernels for spatiotemporal modeling to learn the contribution
of spatial and temporal features as well as learning a model for out-of-sample prediction.
We then evaluated the performance of our proposed computational framework, namely,
structured GPs with twin MKL, on two different real data sets to show its efficiency and
effectiveness. MKL helped us extract relative importance of input features by assigning
weights to kernels calculated on different subsets of temporal and spatial features.

Keywords: spatiotemporal modeling, regression, knowledge extraction, structured Gaus-
sian processes, multiple kernel learning

1. Introduction

The kernel functions are the basic building blocks of kernel-based algorithms, and they
directly affect the prediction performance and allow to try different levels of model com-
plexities without changing the inference and/or training procedures. The standard training
procedure is to select the best single kernel using, for example, a cross-validation step before
testing. Instead, combinations of kernel functions have also been proposed to capture the
relative importance of input features/representations (Gönen and Alpaydın, 2011).

For large data sets, Gaussian processes (GPs) might become computationally intensive.
That is why several decomposition algorithms have been previously proposed to make the
inference faster such as Nyström approximation (Rasmussen and Williams, 2006), approx-
imation using Hadamard and diagonal matrices (Le et al., 2013), or Kronecker method-
s (Bonilla et al., 2007; Finley et al., 2009; Saatçi, 2011; Stegle et al., 2011; Riihimäki and
Vehtari, 2014; Wilson et al., 2014; Gilboa et al., 2015).
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Figure 1: Our computational framework for spatiotemporal inference: (i) temporal and spatial
feature extraction, (ii) twin multiple kernel learning, (iii) Kronecker product based GP regression
(GPR), and (iv) prediction scenarios: (a) Given response values for observed location and time pairs
to make inference in three different scenarios: (b) spatial prediction, (c) temporal prediction, and
(d) spatiotemporal prediction.

GPs have been used in many applications for temporal and spatial prediction such as
environmental surveillance (Nguyen et al., 2017), reconstruction of sea surface tempera-
tures (Luttinen and Ilin, 2012), drug–target interaction prediction (Airola and Pahikkala,
in press), global land-surface precipitation prediction (Wang and Chaib-draa, 2013), and
wind power forecasting (Chen et al., 2013) as well as spatiotemporal modeling (Särkkä and
Hartikainen, 2012; Andrade-Pacheco, 2015). There is also a significant number of studies
on GPs with application to epidemiology (Vanhatalo et al., 2010; Andrade-Pacheco et al.,
2014; Senanayake et al., 2016; Bhatt et al., 2017).

1.1. Our Contributions

In this study, we proposed a GP approach with Kronecker decomposition for spatiotemporal
regression problems to learn combinations of kernels for both pattern discovery and fast
inference. We performed experiments under three prediction scenarios on two real-life data
sets from two different domains.

Figure 1 illustrates the overview of our proposed computational framework with three
possible prediction scenarios. Our framework has four main components: (i) extracting
spatial and temporal features using the input data, (ii) calculating multiple kernels for
both spatial and temporal features, (iii) using Kronecker product-based spatiotemporal GP
formulation for prediction, and (iv) three different prediction scenarios that can be seen in
real-life applications.

We first begin with a review of GPs and introduce structured GPs (SGPs) in Section 2.
In Section 3, we describe a multiple kernel learning (MKL) approach for inference and hyper-
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parameter learning in SGPs. Finally, in Section 4, we elaborate on the model specifications
that we used for computational experiments and report the empirical results obtained by
comparing our proposed approach against other machine learning algorithms.

2. Background on Structured Gaussian Processes

2.1. Gaussian Processes

Let {(xi, yi)}Ni=1 be given input vectors and target outputs of a data set. GPs model the
relationship between inputs and outputs as follows:

y = f + ξ,

where y =
[
y1 y2 · · · yN

]>
is the vector of outputs, f =

[
f1 f2 · · · fN

]>
is the

vector of underlying true outputs, and ξ =
[
ξ1 ξ2 · · · ξN

]>
is the noise vector. Both f

and ξ assumed to be normally distributed:

p(f) ∼ N (f |0,K),

p(ξ) ∼ N (ξ|0, σ2
yI),

where K = {k(xi,xj)}N,N
i=1,j=1 is a positive semi-definite kernel matrix (i.e., covariance ma-

trix), and σ2
y is noise variance. Then, the likelihood can be written as

p(y|X, σ2
y) ∼ N (y|0,K + σ2

yI),

where X =
[
x1 x2 · · · xN

]
is the input data matrix.

The predictive distribution of the target output y? of a given new data point x? condi-
tioned on the training data has also a Gaussian density:

p(y?|x?,X,y, σ
2
y) ∼ N (y?|µ?, σ2

?),

µ? = k(x?,X)(K + σ2
yI)−1y, (1)

σ2
? = k(x?,x?)− k(x?,X)(K + σ2

yI)−1k(X,x?). (2)

Note that k(x?,X) = k(X,x?)
> is a row vector.

2.2. Structured Gaussian Processes

GPs have intensive computational and memory requirements for large data sets. GP infer-
ence requires evaluating (K + σ2

yI)−1y for Equations (1) and (2). For this operation, the
most common approach is to take the Cholesky decomposition of (K + σ2

yI), which is also
computationally demanding. However, by exploiting the structure of the covariance matrix
K, this step can be performed very efficiently.

In this section, we describe an approach to exploit the special structure of the kernel
matrix to speed up inference, which allows us to efficiently determine the singular values
of the covariance matrix K and enables us to efficiently compute (K + σ2

yI)−1y for faster
training and prediction.
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We consider data sets such that each input data point xi is defined as a pair of spatial
and temporal information (sl, tp), where l indexes locations, and p indexes time periods.
Let L be the number of locations and P be the number of time periods. The response
matrix Y is then a matrix of size L × P , and the output yl,p corresponds to the input
(sl, tp). In such a case, the covariance function is separable as follows:

k(xi,xj) = k((sl, tp), (sm, tq)) = ks(sl, sm)kt(tp, tq),

where ks and kt functions are defined on the spatial and temporal features, respectively.
The kernel matrix K is of size LP × LP , which can be written as a Kronecker product:

K = Ks ⊗Kt,

where Ks and Kt are L × L and P × P kernel matrices for spatial and temporal features
obtained using ks and kt functions, respectively. Kronecker decomposition was first used
within GP to model data, where inputs lie on a Cartesian grid (Saatçi, 2011). We can
replace this more complex kernel formulation into standard GP Equations (1) and (2), and
obtain SGPs to exploit spatiotemporal structures.

p(y?|x?,X,Y, σ2
y) ∼ N (y?|µ?, σ2

?),

µ? = (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2
yI)−1 vec(Y), (3)

σ2
? = ks(s?, s?)kt(t?, t?)− (ks,? ⊗ kt,?)>(Ks ⊗Kt + σ2

yI)−1(ks,? ⊗ kt,?), (4)

where vec(·) converts the input matrix into a column vector. Fortunately, these matrix
computations can be performed efficiently using the following properties:

(A⊗B)−1 = A−1 ⊗B−1, (5)

(AB) vec(X) = vec(BXA>), (6)

(A⊗B)(C⊗D) = (AC)⊗ (BD). (7)

Equation (5) helps efficient computation of the inverse of Ks ⊗Kt even though it is size of
LP ×LP . This property is easy to implement if there is no noise term in the inverse using
singular value decomposition (SVD). We can also develop an efficient implementation to
take the inverse of (Ks ⊗Kt + σ2

yI) as follows:

Ks = UsDsU
>
s ,

Kt = UtDtU
>
t ,

where the left-singular vectors and right-singular vectors are identical since the kernel ma-
trices are positive semi-definite. Hence, Kronecker product has the following decomposition:

Ks ⊗Kt = (Us ⊗Ut)(Ds ⊗Dt)(Us ⊗Ut)
>.

The matrix inversion operation can be replaced by the following formula:

(Ks ⊗Kt + σ2
yI)−1 = (Us ⊗Ut)(Ds ⊗Dt + σ2

yI)−1(Us ⊗Ut)
>. (8)
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We can rewrite mean and variance of SGPs using Equation (8). After this change, mean
and variance calculations in Equations (3) and (4) can be performed very efficiently using
Equations (6) and (7) without explicitly storing the inverse of (Ks ⊗ Kt + σ2

yI). In this
step, we calculate the SVDs of smaller matrices Ks and Kt, which have complexities O(L3)
and O(P 3), respectively. At the end, we have to take the inverse of the diagonal matrix
(Ds⊗Dt+σ

2
yI) in Equation (8), which has O(LP ) complexity. These steps make the overall

complexity of our algorithm O(L3 + P 3).

3. Structured Gaussian Processes with Twin Multiple Kernel Learning

In the previous section, we proposed a computational framework using SGP regression
for spatiotemporal modeling, which is suitable to capture highly complex dependencies
between input and output variables thanks to its nonlinear nature brought by kernel func-
tions. In this section, we show how to combine SGP with an MKL approach to conjointly
perform knowledge extraction and prediction, which we named as SGPs with twin MKL
(SGP2MKL). In our formulation, each spatial and temporal feature is fed into a kernel func-
tion, and then MKL provides us with the relative importance of these features by assigning
weights to their respective kernels.

Our main hypothesis about the spatiotemporal processes is that response values depend
on both time and location. We need a kernel function, such that nearby observations in
time and/or space, should produce similar values. The squared exponential covariance
function (Rasmussen and Williams, 2006), which is also known as Gaussian kernel function,
between two data instances xi and xj can be defined as

kG(xi,xj) = exp

(
−‖xi − xj‖22

2s2

)
,

where s is the kernel width, and ‖ · ‖2 is the `2-norm. We chose to use the Gaussian kernel
for both spatial and temporal features.

3.1. Twin Multiple Kernel Learning

To identify the importance of individual and pairwise interaction effects of features, we
defined both spatial and temporal kernels as linear combinations of Gaussian kernels and
their pairwise interactions:

Ks = ηs,1Ks,1 + · · ·+ ηs,PsKs,Ps + ηs,Ps+1 (Ks,1 ◦Ks,2)︸ ︷︷ ︸
Ks,Ps+1

+ · · ·+ η
s,

Ps(Ps+1)
2

(Ks,Ps−1 ◦Ks,Ps)︸ ︷︷ ︸
K

s,
Ps(Ps+1)

2

,

Kt = ηt,1Kt,1 + · · ·+ ηt,PtKt,Pt + ηt,Pt+1 (Kt,1 ◦Kt,2)︸ ︷︷ ︸
Kt,Pt+1

+ · · ·+ η
t,

Pt(Pt+1)
2

(Kt,Pt−1 ◦Kt,Pt)︸ ︷︷ ︸
K

t,
Pt(Pt+1)

2

,

where ◦ is Hadamard product of two given matrices, and Ps and Pt are the total numbers
of spatial and temporal features, respectively.
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3.2. Inference Procedure

Here, we explain how we infer the noise variance σ2
y , spatial and temporal kernel weights

{ηs,m}Ps(Ps+1)/2
m=1 and {ηt,n}Pt(Pt+1)/2

n=1 . We can learn them using a maximum likelihood ap-
proach because the required computations (integrals over the parameters) are analytically
tractable for standard GPs. The marginal likelihood and its partial derivatives with respect
to the hyper-parameters of a GP are given as follows (Rasmussen and Williams, 2006):

log p(y|X,θ) = −1

2
y>K−1y − 1

2
log |K| − N

2
log 2π, (9)

∂ log p(y|X,θ)

∂θm
=

1

2
y>K−1 ∂K

∂θm
K−1y − 1

2
tr
(
K−1 ∂K

∂θm

)
, (10)

where θ is the vector of the parameters of the covariance function, and α = K−1y. In our
case, θ = ({ηs,m}, {ηt,n}, σy), and K = Ks ⊗Kt + σ2

yI.
To learn the model parameters, we need to take the derivatives of K with respect to the

spatial kernel weights {ηs,m}, temporal kernel weights {ηt,n}, and noise deviation σy:

∂(Ks ⊗Kt + σ2
yI)

∂ηs,m
=

∂Ks

∂ηs,m
⊗Kt, (11)

∂(Ks ⊗Kt + σ2
yI)

∂ηt,n
= Ks ⊗

∂Kt

∂ηt,n
, (12)

∂(Ks ⊗Kt + σ2
yI)

∂σy
= 2σyI, (13)

where the derivatives of spatial and temporal kernels with respect to the weight param-
eters are just the Gaussian kernels or the Hadamard products of two Gaussian kernels:
∂Ks/∂ηs,m = Ks,m and ∂Kt/∂ηt,n = Kt,n. We first plugged these derivatives into Equa-
tions (11)–(13) and then plugged these resulting equations into the gradient calculation in
Equation (10). The first term of the gradient can be computed efficiently using partial
derivatives in Equations (11)–(13) and Kronecker properties in Equations (5)–(7). The sec-
ond term of the gradient can also be computed efficiently by exploiting the cyclic property
of trace function and the SVD decompositions as follows:

tr

(
K−1 ∂K

∂θm

)
= diag(Ds ⊗Dt + σ2I)−1 diag

(
(Us ⊗Ut)

>
( ∂K

∂θm

)
(Us ⊗Ut)

)
where the latter term can be computed efficiently as a Kronecker product since the partial
derivatives are Kronecker product and its diagonal as a Kronecker product of the diagonals
of each factor in the product. As a result, we obtained three general gradient equations for
the spatial kernels weights, temporal kernel weights, and noise deviation parameters.

We estimated the parameters using a constrained optimization method in R package
alabama (Varadhan, 2015). We used the function constrOptim.nl, which uses an objective
function to be optimized (i.e., likelihood function in Equation (9)), the gradient of the
objective function evaluated at the argument (i.e., gradient in Equation (10)), constraints
on parameters, and starting values for parameters (i.e., uniform kernel weights) as inputs.
We constrained the parameters as follows: (a) They all should be non-negative: ηs,m ≥ 0,
ηt,n ≥ 0, and σy > 0. (b) Kernel weights for spatial and temporal features should sum up
to one:

∑
ηs,m = 1 and

∑
ηt,n = 1.
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4. Experiments

We performed experiments on two real-life data sets: (a) an infectious disease surveillance
data set and (b) a monthly average surface temperature data set. We compared SGP
and SGP2MKL against two other machine learning algorithms used in ecological and epi-
demiological applications for spatial and temporal prediction scenarios, namely, boosted
regression tree (BRT) and random forest regression (RFR) algorithms. These two algo-
rithms are frequently used machine learning algorithms in this type of applications (Bhatt
et al., 2013; Hay et al., 2013; Kane et al., 2014), and they are readily available as R software
packages (Liaw and Wiener, 2015; Ridgeway, 2017). Our implementations of SGP and SG-
P2MKL in R and source codes to reproduce the experimental results reported are publicly
available at https://github.com/cigdemak/sgp2mkl.

Two performance measures were used to evaluate the predictive accuracy of the pro-
posed approaches: the Pearson’s correlation coefficient (PCC) and the normalized root
mean square error (NRMSE). Predictive performances of the algorithms were tested under
three different prediction scenarios: (i) temporal prediction scenario (i.e., predicting future
time points by looking at historical data), see Figure 1(c), (ii) spatial prediction scenario
(i.e., predicting historical data for new locations using data for observed locations), see
Figure 1(b), (iii) spatiotemporal prediction scenario (i.e., predicting future time points in
new locations), see Figure 1(d).

In all experiments, instead of learning kernel hyper-parameters using type-II maximum
likelihood (Rasmussen and Williams, 2006), we used a well-known heuristic for kernel hyper-
parameter tuning, where we set the width parameter to the average pairwise Euclidean
distance between training instances for each kernel. In SGP experiments, the noise deviation
σy was chosen as the standard deviation of the training case counts, and all single and
pairwise kernels were used with uniform weights.

Last one sixth of time periods for each data set was taken as the test set, and remaining
time periods were used as training set. Half of the geographical locations were sampled
randomly as the training set. For temporal scenario, since we have an ordered training and
test sets, we had a single experiment, whereas, for spatial and spatiotemporal scenarios, we
repeated the experiments 100 times with randomly sampled training sets to minimize the
effect of sampling and to get more robust results.

4.1. Predicting Crimean–Congo Hemorrhagic Fever Infection Case Counts

Crimean–Congo hemorrhagic fever (CCHF) is a fatal viral infection mostly seen in parts
of Africa, Asia, Eastern Europe, and Middle East. The virus causes severe complications
in humans with the reported mortality rate of 5–40%. CCHF is the most widely spread
infectious disease among tick-borne diseases (Ergönül, 2006). Humans might get infected
through the bites of the ticks carrying the virus, direct contact with the bodily fluids of a
patient with CCHF during the acute phase of infection, or contact with blood or tissues
from viremic livestock.

The surveillance data set consists of monthly infected case counts for each province
in Turkey (81 provinces) between January 2004 to December 2015. Thus, there are 81
locations and 144 (12 × 12) time periods. Figure 2 reports the yearly CCHF case counts
between 2004 and 2015 for 81 provinces.
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Figure 2: Yearly CCHF case counts between years 2004 and 2015 for 81 provinces of Turkey.
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To be able to model case counts using Gaussian distribution, we first log2-scaled the
CCHF surveillance data set. Using a Gaussian model on the logarithm of the case count
data has been used in previous GP research (Andrade-Pacheco, 2015). First ten years (i.e.,
2004–2013) were used as temporal training set and last two years (i.e., 2014 and 2015)
as test set. 41 out of 81 locations were randomly chosen as spatial training set and the
remaining 40 locations were used as the spatial test set. Hence, we had 9,720 (81×10×12)
instances, 5,904 (41 × 12 × 12) instances, and 4,920 (41 × 12 × 12) instances for training;
1,944 (81× 2× 12) instances, 5,760 (40× 12× 12) instances, and 960 (40× 2× 12) instances
for testing in temporal, spatial, and spatiotemporal prediction scenarios, respectively.

CCHF cases had been observed frequently during hot months (e.g., May, June, and
July), moderately during warm months (e.g., April, August, and September) and rarely
during cold months (e.g., October, November, December, January, February, and March).
We encoded each time period by three temporal covariates: the year, month, and seasonal
group (i.e., hot, warm, or cold) it belongs to.

Latitude and longitude coordinate information of province centers were used as spatial
covariates, and each time period is encoded with its year, month, and season information.
The model had 10 parameters to learn, namely, the noise variance σy and nine kernel
weights, which are the weights of the kernels of individual spatial features Lat. and Lon.,
the weights of the kernels of individual temporal features Year, Month, and Season, the
weight of the spatial pairwise interaction kernel Lat.×Lon., and the weights of the temporal
pairwise interaction kernels Year× Month, Year× Season, and Month× Season.

The spatial interaction kernel had the highest weight in all of the prediction scenarios,
approximately one in spatial and spatiotemporal scenarios (see Figure 3). For spatial and
spatiotemporal scenarios, the month feature was the most informative temporal covariate
with coefficient about 0.5, whereas the year feature was the least informative temporal co-
variate. On the other hand, for temporal prediction scenario, temporal pairwise interaction
kernel weights were mostly significantly larger than the weights of kernels of individual
features, contrary to the results for spatial and spatiotemporal prediction scenarios. We
note that interactions of the season feature with the other features were more important in
temporal prediction scenario.
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Figure 3: Averaged kernel weights found by SGP2MKL on CCHF data set.

Table 1 reports PCC and NRMSE values for temporal prediction scenario. The proposed
SGP2MKL performed best, and RFR was the worst in terms of both PCC and NRMSE.
SGP and SGP2MKL had comparable results, but RFR and BRT were quite separated espe-
cially in NRMSE values. Performance comparison for spatial and spatiotemporal scenarios
are given in Figure 4. SGP2MKL had the best result followed by SGP. RFR performed bet-
ter than BRT, contrary to the temporal scenario results. We observed a consistent ranking
in all of the prediction scenarios, where SGP2MKL outperformed all other methods.
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Table 1: Pearson’s correlation coefficients (PCC) and normalized root mean squared errors (NRMSE)
of four algorithms on CCHF data for temporal prediction scenario together with ranks in parentheses.

Algorithm PCC NRMSE

RFR 0.7480 (4) 0.8754 (4)
BRT 0.8460 (3) 0.7465 (3)
SGP 0.9027 (2) 0.4364 (2)
SGP2MKL 0.9124 (1) 0.4131 (1)
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Figure 4: Pearson’s correlation coefficients (PCC) and normalized root mean squared errors (N-
RMSE) of four algorithms on CCHF data set for spatial and spatiotemporal prediction scenarios.
SGP2MKL was compared against each competitor using a two-sided paired t-test to check whether
the predictive performances were statistically significantly different, and P -value for each compar-
ison was also reported. If the P -value is less than 0.05, it is typeset with the color of the winning
algorithm.

Figure 5 shows the comparison between observed and predicted cases of years 2014
and 2015 for temporal scenario (monthly predictions are summed over each province for
illustration purposes). For most of the provinces, the predicted case counts are very close
to the observed case counts, which shows that SGP2MKL was able to capture the temporal
dynamics of the disease.

Figure 5: Country-wide observed versus predicted case counts of years 2014 and 2015 for temporal
scenario. Observed and predicted case counts of 81 provinces aggregated yearly after prediction for
illustration purposes.
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4.2. Predicting Monthly Average of Surface Temperature

We used monthly average surface temperature observations from January 1995 to De-
cember 2000 in Central America. This data set comes from the NASA 2007 data ex-
po, http://stat-computing.org/dataexpo/2006/, which contains geographic and atmo-
spheric measures on a very coarse 24 by 24 grid covering Central America (see Figure 6).
Thus, there are 576 spatial locations and 72 time periods.

January February March April

May June July August

September October November December

● ●

●●

−3.22 °C 23.23 °C 39.38 °C

Figure 6: Observed monthly averages of surface temperature on 24 by 24 grid locations between
years 1995 and 2000 over the central America. Here, we show the mean of monthly averages in
each grid location over all years. We color the overall mean temperature (23.23 ◦C) with white, and
temperatures lower (higher) than this mean with blue (red).

The first five years (i.e., 1995–1999) were used as the temporal training set, and the
last year (i.e., 2000) was the test set. Half of the 576 spatial regions were randomly chosen
as spatial training set, and the remaining 288 regions were the spatial test set. Hence, we
had 34,320 (572×5×12) instances, 20,736 (288×6×12) instances, and 17,280 (288×5×12)
instances for training; 6,864 (572×1×12) instances, 20,736 (288×6×12) instances, and 3,456
(288×1×12) instances for testing in temporal, spatial, and spatiotemporal prediction sce-
narios, respectively.

Latitude and longitude coordinate information of regional centers were used as spatial
covariates, and year and month information of each time period were used as temporal
covariates. Thus, the model had seven parameters to learn, namely, the noise deviation σy
and six kernel weights, which are the weights of the kernels of individual spatial features
Lat. and Lon., the weights of the kernels of individual temporal features Year and Month,
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the weight of the spatial pairwise interaction kernel Lat. × Lon., and the weight of the
temporal pairwise interaction kernel Year× Month.

Learned kernel weights are shown in Figure 7. Spatial interaction kernels had the highest
weights, approximately one in all scenarios. Month feature had the first rank among the
temporal covariates with weights between 0.7 and 0.8, and year feature had the least weight,
i.e., almost zero, in all scenarios.
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Figure 7: Averaged kernel weights found by SGP2MKL on NASA’s surface temperature data set.

Table 2 reports PCC and NRMSE values for temporal prediction scenario. Our proposed
method SGP2MKL performed best followed by SGP, and RFR was the worst in terms of
both metrics. SGP and SGP2MKL were comparable in NRMSE values. Figure 8 shows
PCC and NRMSE values for spatial and spatiotemporal scenarios. SGP2MKL had the best
results followed by SGP. RFR performed better than BRT in terms of PCC values contrary
to the temporal scenario results, but its NRMSE values were significantly the worst.

Table 2: Pearson’s correlation coefficients (PCC) and normalized root mean squared errors (NRMSE)
of four algorithms on NASA’s surface temperature data for temporal prediction scenario together
with ranks in parentheses.

Algorithm PCC NRMSE

RFR 0.8328 (4) 0.7019 (4)
BRT 0.8499 (3) 0.5286 (3)
SGP 0.8856 (2) 0.5068 (2)
SGP2MKL 0.9071 (1) 0.4975 (1)
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Figure 8: Pearson’s correlation coefficients (PCC) and normalized root mean squared errors (N-
RMSE) of four algorithms on NASA’s surface temperature data set for spatial and spatiotemporal
prediction scenarios. SGP2MKL was compared against each competitor using a two-sided paired
t-test to check whether the predictive performances are statistically significantly different, and P -
value for each comparison was also reported. If the P -value is less than 0.05, it is typeset with the
color of the winning algorithm.
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5. Conclusions

We proposed a joint framework that couples SGP and MKL. By doing this, we were able to
benefit from the special structure of kernel matrices to increase efficiency and from the kernel
weights in MKL to increase interpretability. We were able to improve the predictive accuracy
of SGP and to provide greater insight about which components are more informative thanks
to the MKL component.

We used two data sets from two different domains to show the validity of our proposed
method SGP2MKL in real-life applications. Infectious diseases, especially vector borne-
diseases, and surface temperature have strong spatial and temporal dependencies, due to
the environmental factors. If we are able to learn these dependencies and integrate them
into our model, we would be able to improve our characterization of the disease and the
temperature dynamics to develop even better tools for forecasting.

In this study, we tried to understand if the geographical dependency is affected by the
latitude or longitude information or both. We noted that latitude and longitude define
spatial dynamics usually together. Similarly, for temporal features, we investigated year,
month, and season information and found out that month information alone is strong enough
for the temporal dynamics for these particular data sets except, in some experiments, season
information may be needed along with the month information (e.g., temporal prediction
scenario of CCHF). We showed that our proposed method SGP2MKL improved predictive
accuracy over the alternatives in all experiments.

The use of spatiotemporal modeling tools might help us better understand the character-
istics of diseases to develop different types of interventions to prevent and treat vector-borne
diseases, such as vector or larva control, or timely treatment (World Health Organization,
2014). The success of such interventions depend on how well the case counts can be predict-
ed and how fast the health care policy makers react to it. Within this context, mathematical
modeling can be a powerful companion for decision making and health care services plan-
ning. Our proposed method SGP2MKL can be used for modeling infectious diseases other
than CCHF.

The decomposition approach we used over two separate feature sets (e.g., locations and
time periods in our case) is applicable to many different problems in different domains such
as econometrics, gene expression, geostatistics, ensemble learning, multi-output regression,
time series, image repainting, texture extrapolation, and video extrapolation.
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Young Scientist Award Program) and the Science Academy of Turkey (BAGEP; The Young
Scientist Award Program).

References

Antti Airola and Tapio Pahikkala. Fast Kronecker product kernel methods via generalized
vec trick. IEEE Transactions on Neural Networks and Learning Systems, in press.

77



Ak Ergönül Gönen

Ricardo Andrade-Pacheco. Gaussian Processes for Spatiotemporal Modelling. PhD thesis,
The University of Sheffield, 2015.

Ricardo Andrade-Pacheco, Martin Mubangizi, John Quinn, and Neil Lawrence. Consistent
mapping of government malaria records across a changing territory delimitation. Malaria
Journal, 13(Suppl 1):P5, 2014.

Samir Bhatt, Peter W. Gething, Oliver J. Brady, Jane P. Messina, Andrew W. Farlow,
Catherine L. Moyes, John M. Drake, John S. Brownstein, Anne G. Hoen, Osman Sankoh,
Monica F. Myers, Dylan B. George, Thomas Jaenisch, G. R. William Wint, Cameron P.
Simmons, Thomas W. Scott, Jeremy J. Farrar, and Simon I. Hay. The global distribution
and burden of dengue. Nature, 496(7446):504–507, 2013.

Samir Bhatt, Ewan Cameron, Seth R. Flaxman, Daniel J. Weiss, David L. Smith, and
Peter W. Gething. Improved prediction accuracy for disease risk mapping using Gaussian
process stacked generalisation. Journal of the Royal Society Interface, 14(134):20170520,
2017.

Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K. I. Williams. Multi-task Gaussian
process prediction. In Advances in Neural Information Processing Systems 20, pages 153–
160, 2007.

Niya Chen, Zheng Qian, Xiaofeng Meng, and Ian T. Nabney. Short-term wind power
forecasting using Gaussian processes. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, pages 2790–2796, 2013.
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