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Abstract

The power of randomized algorithms in numerical methods have led to fast solutions which
use the Singular Value Decomposition (SVD) as a core routine. However, given the large
data size of modern and the modest runtime of SVD, most practical algorithms would
require some form of approximation, such as sketching, when running SVD. While these
approximation methods satisfy many theoretical guarantees, we provide the first algorithmic
implementations for sketch-and-solve SVD problems on real-world, large-scale datasets. We
provide a comprehensive empirical evaluation of these algorithms and provide guidelines on
how to ensure accurate deployment to real-world data. As an application of sketched SVD,
we present Sketched Leverage Score Ordering, a technique for determining the ordering
of data in the training of neural networks. Our technique is based on the distributed
computation of leverage scores using random projections. These computed leverage scores
provide a flexible and efficient method to determine the optimal ordering of training data
without manual intervention or annotations. We present empirical results on an extensive
set of experiments across image classification, language sentiment analysis, and multi-modal
sentiment analysis. Our method is faster compared to standard randomized projection
algorithms and shows improvements in convergence and results.

Keywords: Dimensionality Reduction, Random Projections, Curriculum Learning

1. Introduction

Many problems in numerical methods rely heavily on the Singular Value Decomposition
(SVD), a technique for factorizing a real or complex matrix. Such problems include low-
rank approximations, computation of leverage scores, pseudo-inverses, and including their
weighted and robust variants. These applications have become more important with the
advent of big data and large-scale machine learning. For example, weighted low rank
approximations are used in recommendation systems (Razenshteyn et al., 2016; Markovsky,
2008) and leverage scores are heavily used in statistical data analysis (Wei et al., 1998;
Drineas et al., 2011). While the exact computation of the SVD can provide deterministic
solutions to these problems, these algorithms are often too slow on large-scale datasets. As
a result, research has focused on efficient approximate algorithms for scalable computation
of the SVD.

Recently, the power of randomized algorithms has led to much faster solutions to these
problems. These randomized algorithms for numerical linear algebra were popularized by
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the sketching method (Woodruff, 2014). The basis for these sketching algorithms involves
multiplying the data matrix X ∈ Rn×d with a smaller randomized matrix. The sketched
problem is then smaller and can be solved using the same algorithm in faster input runtime.
Although the truncated SVD (Hansen, 1987) and other iterative SVD algorithms (Cho and
Reyhani, 2012) also provide efficient alternatives, sketching algorithms are more efficient
and accurate, especially when the input is sparse (Woodruff, 2014).

While these sketching methods satisfy theoretical guarantees (Drineas et al., 2011;
Woodruff, 2014) (see details in section 2), our contribution lies in the first implementations of
these algorithms for sketching SVD problems on real-world, large-scale datasets. We found
that the naive implementation of sketched SVD leads to several problems such as difficulties
in estimating true ranks of real-world datasets, corruption by high-dimensional noise, and
impact of small singular values. We provide a comprehensive empirical evaluation of these
algorithms and summarize guidelines on how to ensure accurate deployment to real-world
data. Finally, we examine an application of sketched SVD on the efficient computation of
leverage scores. We apply the sketched leverage scores as an ordering method for curriculum
learning, and show improved performance over random ordering when training deep neural
networks on three datasets. Although (Dahiya et al., 2018) also empirically evaluate sketching,
they focus on general algorithms rather than a treatment of SVD problems. We further
provide an application of sketched SVD for curriculum learning.

The remainder of the paper is organized as follows. We first state several preliminary
results in section 2. We then provide valuable insights into the practical implementations of
sketched SVD on large-scale datasets in section 3. In section 4 we outline the application of
sketched SVD: the Sketched Leverage Score Ordering algorithm. We present experimental
results in section 5. We then discuss our observations in section 6. Finally, we describe
related work and conclude the paper in sections 7 and 8 respectively.

2. Preliminaries

2.1. Sketching and Subspace Embeddings

Popular choices for the randomized sketching matrix include random Gaussian matri-
ces (Woodruff, 2014), the Fast Johnson Lindenstrauss transform (FJLT) (Sarlos, 2006), the
Subsampled Randomized Hadamard Transform (SRHT) (Boutsidis and Gittens, 2012; Tropp,
2011), the CountSketch matrix (Bourgain et al., 2015; Clarkson and Woodruff, 2017; Cohen,
2016; Meng and Mahoney, 2013) or the OSNAP matrix (Nelson and Nguyên, 2013). All
these sketching matrix S are useful because they satisfy the subspace embedding property:

Definition 1 Subspace Embedding: Let A be a n by d matrix. A (1 ± ε) `2 subspace
embedding for the column space of A is a k by n matrix S such that ∀x ∈ Rn,

(1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22

Theorem 2 A subspace embedding preserves the set of singular values, of the input matrix
A. In particular, if S is a (1± ε) `2 subspace embedding for A, then:

σk(SA) = (1±O(ε))σk(A)
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A proof of theorem 2 is given in (Li et al., 2014). In addition to least squares regression,
L1 regression, and low-rank approximations (Woodruff, 2014), more recent applications of
sketching also include low-rank tensor regression (Haupt et al., 2017), q to p norms (Krishnan
et al., 2018), and Kronecker product regression (Diao et al., 2018).

2.2. Leverage Scores Sampling

The subspace embedding methods presented above are oblivious to the structure of the
input matrix A. For example if a CountSketch matrix S is used to embed A and A has
sparse rows, then SA has sparse rows too. However, there are applications in which the
goal is to sample the important rows thus having a sparse SA is not helpful.

The leverage score of a data point is a measure of how much an outlier the data point is
from other points in data A. The underlying data model is assumed to be linear and the
leverage score of the ith point, li, is given by ith row norm of the projection matrix of A, i.e

li = |[H]i|22, H = A(ATA)+AT

Alternatively, taking the Singular Value Decomposition, A = UΣVT , li can be expressed as

li = |Ui,∗|22
Computing the leverage scores naively requires a costly matrix inversion, which can be
prohibitive for very large data sets. Fortunately, the techniques of matrix sketching can be
used to approximate the leverage scores (Drineas et al., 2011).

3. Practical Implementation of Fast Leverage Scores

(Drineas et al., 2011) showed that sketching produces a small but good subspace embedding
for finding the orthonormal basis. In the sketch space, the orthonormal basis can then
computed using a Singular Value Decomposition (SVD). Also, (Drineas et al., 2011) gave
the procedures of finding 1) exact leverage scores by SVD and 2) an (1 + ε) approximation
to the leverage scores by sketching:

Algorithm 1 Exact Leverage Score by SVD

Input : Given n× d matrix A.
Output : Leverage score of ith row as li.
1. Compute SVD, A = UΣVT .
2. Compute li from the first d columns of the ith row li = |Ui|22.

Algorithm 2 Approximation Leverage Score by Sketching

Input : Given n× d matrix A.
Output : Approximate Leverage score of ith row as li.
1. Compute Sketch of A, SA.
2. Compute SVD, SA = UΣVT .
3. Compute Uapprox = AVTΣ−1.
4. Compute li from the first D columns of the ith row li = |Uapprox

i |22.
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3.1. Implementation Details

The following sketching schemes were implemented in Python 3.6 and tested for their
performance on a 64-bit machines with i7 CPU with 12 cores and 32 GB RAM.

3.1.1. SVD for Exact Leverage Scores

The SVD used for the exact computation of leverage scores (Algorithm 1) is from numpy.linalg.svd
which uses LAPACK’s SVD routines. It is highly optimized and multithreaded, take advan-
taging of the multi-cores CPU.

3.1.2. Approximate Leverage Scores

To compute approximate leverage scores via sketching (Algorithm 2), we examine the follow-
ing choices for sketching matrices S:

Subsampled Randomized Hadamard Transform: A Fast Johnson Lindenstrauss s-
ketching matrix was implemented as a Subsampled Randomized Hadamard Transform
(SRHT). The core Hadamard Transform was implemented using the Faster Fast Hadamard
Transform (FFHT) of (Andoni et al., 2015) and uses Advanced Vector Extensions (AVX)
CPU instructions to speed up the Hadamard Transform. Below is a synthetic data test run
for comparing SVD vs SRHT to compute leverage scores (Table 1). However, we decided to
drop SRHT from future experiments as it is difficult to meet the SRHT unique requirement
of the row having to be a power of 2.

Data size = n× 50 Running Time in Seconds
n = 216 218 220 222 224

Sketching 0.9 3.3 5.4 13.5 122.5
SVD 0.7 3.3 13.9 57.2 2114.0

Table 1: Running time for Synthetic Data. Sketching’s ε = 0.25. Sketching matrices indeed
increase running time significantly when n increases.

CountSketch, OSNAP: OSNAP is a variant of CountSketch as described in (Nelson and
Nguyên, 2013). Both CountSketch and OSNAP are implemented in Python using the Numpy
Library without additional acceleration. They are implemented in the streaming model
where the sketching matrix rows are updated as the rows of the original matrix are read.
Both sketches are implemented as a pair of hash functions.

3.1.3. Distributed Sketch, Coordinator Model

We implemented the distributed sketching, coordinator model framework for CountSketch
and OSNAP as described in (Balcan et al., 2015). The simulation of a distributed computing
network was done using multiple processes using the Multiprocessing library in python.
To simulate a row partition model, the data was fed to each process before sketching was
completed. A single process acted as the coordinator. In this setup, there is minimal
overhead penalty for the communication cost.
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3.2. Implementation Experiments for Timing Performance

The following experiments were meant to compare the performance of approximate leverage
scores under different matrices. The number of rows for each sketching matrix was determined
using their theoretical guarantees: O((d/ε)2) for CountSketch and O(d/ε2 log d) for OSNAP.
For all experiments, the timings shown are for the actual time taken to compute the leverage
scores. This excludes the time for data generation, setup and the output of the final scores.
Synthetic Data, Skinny Matrix: Table 2 shows that CountSketch is competitive when
the number of column dimensions are small.

K SVD CountSketch OSNAP

10 0.001 0.22 0.22

14 0.009 0.23 0.63

18 0.21 0.73 5.12

22 3.76 0.11 73.5

Table 2: N = 2k, D = 16, 8 Threads, Sketching’s ε = 0.5, Timings in seconds.

Synthetic Data: Table 3 shows that sketching is faster than SVD as the matrices increase
in size.

K SVD CountSketch OSNAP

10 0.06 0.28 0.29

14 0.41 1.02 0.98

18 10.26 16.44 12.15

22 257.55 45.16 169.44

Table 3: N = 2k, D = 256, 8 Threads, Sketching’s ε = 0.5, Timings in seconds.

Synthetic Data, Squarish Matrix: Table 4 shows that OSNAP sketching is slightly
faster than SVD for large matrices in both rows and columns. CountSketch was not used as
it does not meet the requirements on the number of rows.

K SVD OSNAP

16 192.43 155.53

Table 4: N = 216, D = 212 8 Threads, Sketching’s ε = 0.5, Timings in seconds.

3.3. Implementation Experiments on the Effects of Column Rank on Leverage
Scores Approximation

An assumption in most of the bounds for sketching matrices for subspace embedding is that
the matrix A has full column rank (Drineas et al., 2011; Clarkson and Woodruff, 2017).
However this is not a realistic assumption for most real world data as the latent dimension
of the data might not be known. Real world data is often generated from a low dimensional
subspace and corrupted with high dimensional noise. The following experiments test the
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effects of getting a wrong estimate for the column rank of the matrix that sketching is
applied on. The two sketching matrices tested were CountSketch and SRHT. OSNAP was
not tested as it can be seen as a variant of CountSketch.

Figure 1: Plot of sketched (Countsketch, FJLT) vs actual leverage scores when the data
matrix has full column rank. Approximate leverage scores are close to the actual
scores.

Figure 2: Plot of sketched (Countsketch, FJLT) vs actual leverage scores when the data
matrix has column rank half of column dimension. When the column rank is
wrong, even by a factor of 2, the approximate leverage scores computed can be
significantly off.

From Figures 1 and 2, we observe that when the column rank is the same as the dimension,
then as suggested by the theoretical bounds, the quality of the approximated leverage scores
is a function of the approximation factor ε. However, when the column rank is wrong, even
by a factor of 2, then the approximate leverage scores computed can be significantly off and
the approximation error can be unbounded.
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Figure 3: Plot of sketched (Countsketch, FJLT) vs actual leverage scores when the column
orthonormal basis that is computed from the sketched matrix is truncated to the
true rank of the original data. Approximate leverage scores are now close to the
actual scores, as desired.

However, if the column orthonormal basis that is computed from the sketched matrix is
truncated to the true rank of the original data, the approximate leverage score is a function
of the approximation factor ε (Figure 3). Both experiments show that having the column
rank meeting the column dimension is a hard requirement, failing which would result in an
unbounded approximation error.

3.4. Effects of Small Singular Values on Leverage Scores Approximation

When the data is corrupted by small amount of high rank noise, it would appear as though it
has full column rank. An example of high rank noise would be additive Gaussian white noise.
For example, shown in Figure 4 is a plot of the singular values of the MNIST handwriting
training data, where each training example is flattened into a row vector and the entire data
set is stacked vertically to form a 60000× 764 matrix.

Figure 4: Singular values of the MNIST dataset, on original (left) and log (right) scale.
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After applying the approximation leverage score described so far, we can see from Figure 5
(left) that the approximation error can be much larger than the ε factor used and it looks
similar to the case where the column rank was less than the column dimension. The error
can be attributed to numerical precision errors when very small singulars are inverted to
compute the orthonormal basis from the sketch. i.e step 3, Uapprox = AVTΣ−1.

3.5. Modified Leverage Scores Approximation by Sketching

Algorithm 3 Approximate Leverage Score with Truncation

Input : Given n× d matrix A, threshold ε.
Output : Approximate Leverage score of ith row as li.
1. Compute Sketch of A, SA.
2. Compute SVD, SA = UΣVT .
3. Truncate V,Σ at small singular values less than ε. Let this truncated matrices be V′, Σ′

4. Compute Uapprox = AV′TΣ′−1.
5. Compute li from the first d columns of the ith row li = |Uapprox

i |22.

Small singular values would appear in the sketched matrix SA since the sketching matrix
is a subspace embedding of A. To see this, consider the smallest non-zero eigenvalue, λ1:

Av = λ1v

|SAv| = (1 + ε)|Av|2
= (1 + ε)λ1

This agrees with the experimental results on the MNIST dataset. With the modified leverage
score approximation algorithm, we recover the leverage scores to the approximation factor
as guaranteed, from Figure 5 (right). Using these insights, we summarize the following
modifications to the Approximate Leverage Score algorithm, in Algorithm 3.

Figure 5: Sketched leverage scores in comparison with actual leverage scores. Left: without
truncation, right: after truncation for smallest singular values, giving the desired
accuracies.
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3.6. Practical Implementation Remarks

We tested different implementations of sketched leverage scores to compare theoretical
guarantees and practical performance. The sketches tested included Subsampled Randomized
Hadamard Transform, CountSketch and OSNAP. In addition, sketching for CountSketch
and OSNAP was implemented in a distributed setting using the central coordinator model.

We found that the SRHT requirement of having rows as a power of 2 was impractical. The
memory and timing overheads required to satisfy that requirement is prohibitive. OSNAP is
more useful for real world data as it requires less rows. Most curated datasets do not have
enough rows (n) so that CountSketch requirements can be satisfied.

Figure 6: Popular image datasets for deep learning tasks. All of these datasets do not satisfy
the n ≥ 4d2 requirement for CountSketch. The situation is worse when temporal
data (i.e. text, videos, time series) is concerned since d grows in both the feature
and temporal dimensions.

We found that the quality of the sketch is highly dependent on the column rank of
the data. If the column rank of the data is less than the column dimension, then the
approximation error can be unbounded. Requiring a full rank matrix for sketching as
described in (Clarkson and Woodruff, 2017) is a hard requirement.

Lastly, we found that small singular values in real data can corrupt the approximate
leverage scores returned by sketching. This happens often as real data have high rank noise.
We proposed a new algorithm to compute approximate leverage scores by first truncating
the singular values before computing an approximate orthonormal basis. Experimentally,
this modification recovers the approximate leverage scores to within the approximation
guarantees given by sketching.

4. Sketched Leverage Score Ordering

In this section, we describe an application of sketched leverage scores for training deep
neural networks. The optimization of deep neural networks is largely based on stochastic
gradient methods. Given the immense applications of deep neural networks, the empirical
convergence and training speed of these networks and stochastic gradient methods have
become important research areas.

We focus on curriculum learning, a research area which aims to determine optimal
orderings of training data to improve convergence and performance of neural networks (Bengio
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et al., 2009). Curriculum Learning has traditionally focused on either manually determining
a training order (Bengio et al., 2009; Spitkovsky et al., 2010; Khan et al., 2011) or using
auxiliary networks to jointly optimize for the optimal training order (Kumar et al., 2010;
Jiang et al., 2015). However, neither manual annotations nor costly overhead training times
are ideal for training large neural networks on huge datasets.

Algorithm 4 Sketched Leverage Score Ordering

Input : Given n data points each with d features
1. Stack data points to form a n× d matrix A
2. Compute leverage scores, L =ApproxLeverageScoreWithTruncation(A)
3. Form the sampling probability Pi for each data point from the leverage scores, P = Li/ΣiLi

for each training epoch do
4. Order the data points using sampling policy π on distribution P .
5. Send the mini-batches for training in the given order.

end

To address the shortcomings in Curriculum Learning, we present Sketched Leverage Score
Ordering (SLSO), a novel technique for determining the ordering of data in the training
of neural networks. SLSO does not rely on manual annotations and is faster than policy
gradient sampling methods in training auxiliary networks.

SLSO is shown in Algorithm 4 and is based on approximating the leverage scores using
matrix sketching techniques, so as to cater to the size of large datasets. These computed
leverage scores provide a flexible and efficient method to determine the optimal ordering of
training data without manual intervention or annotations. In particular, leverage scores can
be used to estimate the importance of a training example. Larger leverage scores correspond
to training examples that are more important. The sampling policy π allows flexible design
of the curriculum: leverage scores can be used independently or combined with an existing
curriculum based on prior knowledge of the task. Furthermore, the leverage scores can be
computed on either raw features or from semantic latent spaces using a pretrained network.

5. Experiments

5.1. Datasets

We perform extensive evaluations across 3 datasets from 3 different domains: CV (Computer
Vision), NLP (Natural Language Processing) and multimodal machine learning.
MNIST (LeCun and Cortes, 2010) is a collection of handwritten digits each labeled from 0
through 9. Results are reported in 10 class classification accuracy.
SST (Socher et al., 2013) is a collection of sentences from movie reviews each annotated
with sentiment in the range [-2,2]. Results are reported in 5 class classification accuracy.
CMU-MOSI (Zadeh et al., 2016) is a collection of 2199 opinion video clips. Each opinion
video is annotated with sentiment in the range [-3,3]. Consistent with previous work (Pham
et al., 2018), Mean Absolute Error (MAE) is used as the loss function and results are
reported in binary accuracy (A2), F1-score (F1), MAE and Pearson correlation (r).
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5.2. Experimental Setup

Given these leverage scores, we use ideas from curriculum learning to generate 3 different
orderings of the data based on several different sampling policies π: (1) dec indicates that
the training data is ordered based on strictly decreasing leverage scores. As a result, the most
important and diverse training points are seen first. (2) dec, sampling with replacement
(dec, swr) indicates that the training data is ordered based on sampling with replacement
from a discrete distribution defined by the leverage scores. As a result, the most important
and diverse training points are seen first, but with randomness introduced into the order so
that the order of training labels are less correlated. Note that sampling with replacement
might duplicate datapoints with very high leverage scores and ignore datapoints with very
low leverage scores. (3) dec, sampling without replacement (dec, swor) is the same
but sampling without replacement. Additionally, we compare to the (4) shuffle baseline
where models are trained on shuffled training data.

5.3. Models for MNIST dataset

We implement the following five models: LR is a Logistic Regression classifier (Collins
et al., 2002), NN Small is a small neural network, NN Large is a large neural network,
CNN Small is a small convolutional neural network (Krizhevsky et al., 2012), CNN Large
is a large convolutional neural network. Sketched leverage scores are computed for the
28× 28 = 784 dimensional images.

5.4. Models for SST dataset

We use GloVe 300 dimensional word embeddings (Pennington et al., 2014) to convert words
into vectors. A sequence length of 56 is selected and shorter sequence are zero-padded on
the left. Longer sequences are truncated. We implement the following five models: LR is
a Logistic Regression classifier, DAN Small is a small non-linear deep averaging network
(Iyyer et al., 2015) that performs averaging of temporal features, DAN Large is a large
non-linear deep averaging network, LSTM Small is a small Long Short Term Memory
network (Hochreiter and Schmidhuber, 1997), LSTM Large is a large 2 layer Stacked
Bidirectional Long Short Term Memory network (Graves et al., 2013). Sketched leverage
scores are computed for the 56× 300 = 16800 dimensional sequences.

5.5. Models for CMU-MOSI dataset

We process the features and align the data using the same methods as (Tsai et al., 2018).
Early Fusion (concatenation of language, visual and acoustic modalities) (Chen et al., 2017)
is performed at each time step to form a temporal sequence of length 20. The same five
models for the SST dataset are used here. Sketched leverage scores are computed for the
20× 325 = 9750 dimensional sequences.

Throughout the comparisons across ordering methods, all other hyperparameters (e.g.
network size, learning rates, batchsize, number of epochs) are kept constant. Different runs
use different settings of optimizers, learning rates and batchsizes. All hyparameter details
and model configurations can be found in the Table captions and supplementary material.
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5.6. Sketched Leverage Score Ordering Results

Table 5 shows the accuracies for image classification on the MNIST dataset. Table 6 shows
the accuracies for sentiment classification on the SST dataset. Table 7 show the results for
multimodal sentiment analysis on the CMU-MOSI dataset over 2 different runs using an
early fusion method. For results on the CMU-MOSI dataset using late fusion methods and
convergence graphs, please refer to the supplementary material.

Task MNIST 10 Class Image Classification Accuracy (%)

Method LR NN Small NN Large CNN Small CNN Large

shuffle 92.84 98.50 98.28 98.98 99.34

dec 89.09 98.43 98.34 99.01 98.99

dec, swr 92.70 98.42 98.46 99.01 99.35

dec, swor 92.88 98.55 98.57 99.01 99.39

Table 5: Results on MNIST dataset. 50 epochs, batchsize 256, Adam optimizer learning
rate 0.001.

Task SST 5 Class Sentiment Classification Accuracy (%)

Method LR DAN Small DAN Large LSTM Small LSTM Large

shuffle 42.22 39.68 40.27 42.35 41.67

dec 42.94 39.86 42.76 42.35 41.31

dec, samp w rep 41.22 40.72 40.72 42.44 43.71

dec, samp wo rep 42.26 39.41 40.14 41.27 41.36

Table 6: Results on SST dataset. Epochs determined by validation set, batchsize 256, Adam
optimizer, learning rate 0.005.

Task CMU-MOSI Sentiment Analysis

Method LR DAN Small DAN Large LSTM Small LSTM Large

Metric A2 F1 MAE r A2 F1 MAE r A2 F1 MAE r A2 F1 MAE r A2 F1 MAE r

shuffle 56.7 52.4 1.367 0.373 60.3 58.5 1.288 0.434 61.2 59.9 1.314 0.438 73.9 74.0 1.068 0.624 73.3 73.3 1.067 0.604

dec 59.6 57.1 1.353 0.392 63.0 61.3 1.276 0.460 59.0 56.0 1.365 0.415 73.5 73.5 1.073 0.626 73.5 73.4 1.038 0.621

dec, swr 56.7 53.1 1.356 0.389 61.4 60.3 1.274 0.440 60.1 58.0 1.336 0.413 74.6 74.7 1.061 0.620 74.1 73.9 1.043 0.612

dec, swor 58.5 55.8 1.353 0.360 59.6 57.0 1.315 0.436 64.3 64.3 1.271 0.432 73.5 73.5 1.068 0.623 72.9 72.6 1.057 0.600

Table 7: Results on CMU-MOSI dataset. Epochs determined by validation set, batchsize
128, Adam optimizer, learning rate 0.001.

6. Observations

Given these empirical results on convergence rates and final accuracies, we make the following
observations: (1) changing the sequence which the training data is presented during training
does affect the final testing accuracy. This shows that the conventional setup of uniform
sampling during training can be improved upon. (2) on MNIST, decreasing order without
sampling improves performance. (3) on SST, decreasing order with replacement improves
performance. (4) on CMU-MOSI, sampling in a decreasing order improves accuracies.
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7. Related Works

7.1. Leverage Scores

(Clarkson and Woodruff, 2017) developed and gave an overview of sketching techniques
with provable guarantees. (Balcan et al., 2015) proposed distributed leverage scores based
on sketching methods to speed up computation. Previous work proposed using leverage
score to select data points in an active learning setup (Orhan and Tastan, 2015). (Dahiya
et al., 2018) did an empirical evaluation of sketching for on general algorithms rather than a
treatment of SVD problems.SLSO differs in the efficient computation of sketched leverage
scores and more extensive evaluations on multiple datasets and models spanning CV, NLP
and multimodal tasks.

7.2. Curriculum Learning

Curriculum learning studies how the order of training data affects model performance.
Proposed methods include using clearer examples at the beginning of training and slowly
introducing difficult examples (Bengio et al., 2009). The curriculum is often obtained via
heuristics unique to individual problems. For example, in the task of classifying geometric
shapes, the curriculum was derived by an increasing variability in shapes (Bengio et al.,
2009). Other works have proposed using the length of a sentence as a curriculum for learning
grammar induction (Spitkovsky et al., 2010) or determining a curriculum for robot learning
using human participants (Khan et al., 2011). SLSO is a flexible complement to these
curriculum learning techniques by automatically deriving a ranking of the importance of
each data point without the need for manual intervention or annotations.

More recently, proposed algorithms embed the curriculum design into the learning
objective and jointly optimize the learning objective together with the curriculum (Kumar
et al., 2010; Jiang et al., 2015). Other approaches propose algorithms for automatically
selecting the training path by reducing it to a multi-armed bandit problem (Graves et al.,
2017) or a Markov decision process (Fan et al., 2017). These techniques often train an
auxiliary network using REINFORCE (Williams, 1992) algorithm or other policy gradient
methods (Fan et al., 2017) to learn the curriculum. These methods involve multiple rounds
of sampling and further slows down the runtime. SLSO computes leverage scores via an
efficient sketching approach to minimize the overhead.

8. Conclusion

In conclusion, we provide algorithmic implementations for sketched SVD problems on real-
world, large-scale datasets, and more importantly, we provide a comprehensive empirical
evaluation of these algorithms and provide guidelines on how to ensure accurate deployment
to real-world data. As an application of sketched SVD, we presented Sketched Leverage Score
Ordering (SLSO), a novel technique for determining the ordering of data in the training of
neural networks. SLSO computes leverage scores efficiently via sketching, and these leverage
scores provide a fast method to determine better orderings of training data. The strength
of SLSO is justified by an extensive set of experiments across CV, NLP and multi-modal
tasks and datasets. Our method shows improvements in convergence and results. We believe
that our method will inspire more research in using sketched leverage scores to analyze
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intermediate layers of neural networks, as well as to further understand the importance of
each data point for online learning and never-ending learning.
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