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Abstract

Restoring degraded underwater images is a challenging ill-posed problem. Existing priors-
based approaches have limited performance in many situations due to their hand-designed
features. In this paper, we propose an effective convolutional neural network (CNN) based
approach for underwater image restoration, which consists of a transmission estimation
network (T-network) and a global ambient light estimation network (A-network). By learn-
ing the relationship between the underwater scenes and their corresponding blue channel
transmission map and global ambient light respectively, we can recover and enhance the
underwater images with an underwater optical imaging model. In T-network, we use cross-
layer connection and multi-scale estimation to prevent halo artifacts and to preserve edge
features. Moreover, we develop a new underwater image synthetic method for training,
which can simulate underwater images captured in various underwater environments. Ex-
perimental results of synthetic and real images demonstrate that our restored underwater
images exhibits more natural color correction and better visibility improvement against
these state-of-the-art methods.

Keywords: underwater image restoration, convolutional neural network, transmission,
color correction, contrast enhancement

1. Introduction

Underwater imaging is widely used in scientific research and technology such as marine
biology and archaeology. Generally, captured underwater images are degraded by scattering
and absorption. Scattering means a change of direction of light after collision with suspend-
ed particles, which causes the blurring and low contrast of images. Absorption means light
absorbed by suspended particles which depends on the wavelength of each light beam. The
light with shorter wavelength (i.e., green and blue light) travels longer in water. As a result,
underwater images generally have predominantly green-blue hue. Contrast loss and color
deviation are main consequences of underwater degradation processes, which bring difficul-
ties to further processing. Hence, there is great significance to restore degraded underwater
images.

Many methods are proposed to enhance this special degraded images, which can be
classified into two categories. The first kind is image enhancement based method, such as
white balance based methods Henke et al. (2013), color correction methods( Iqbal et al.
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(2010), Zhang et al. (2017b)), retinex-based methods ( Fu et al. (2015), Zhang et al.
(2017a))and fusion-based methods( Ancuti et al. (2011) Ancuti et al. (2018)). This kind
of methods are not based on the physical degradation principle. Since they ignore the
correlation between image degradation and depth, these kind of methods usually enhance
the visual effect of the images, but cannot correctly reflect the true color features of scene.

The other kind of methods is image restoration based on a physical model. The at-
mospheric degradation model Chiang and Chen (2012) is widely used in underwater image
restoration. According to this model, two important parameters, i.e., transmission map
and global ambient light, need to be estimated for restoring the underwater images. Nu-
merous works on parameters estimation have emerged in recent years. These methods can
be divided into two categories, i.e., prior driven models and data driven networks.

In past years, some prior information has been proposed to estimate the transmission.
Chiang and Chen (2012) restored an underwater image by the dark channel prior (DCP) He
et al. (2011). However, red channel rapidly loses intensity in underwater environment, which
leads to the failure of the DCP. Therefore, various modifications of the DCP were proposed
for underwater circumstance. For example, Li et al. (2016b) ignored the red channel when
calculating the dark channel; Galdran et al. (2015) proposed Red Channel Prior which can
be regarded as a variant of the DCP. Although the accuracy of their estimated transmission
map is improved, it is still not enough due to the decrease of the reliability of the prior.
Besides, considering that the red color channel attenuates much faster than the green and
blue ones, Carlevaris-Bianco et al. (2010) proposed a new prior which estimates the depth
of the scene by the aid of attenuation difference. Li and Guo (2015) also used this prior.
However, relying on color information, the prior underestimates the transmission of objects
with green or blue color.

Theoretically, as the depth in the scene increases, the transmission decreases to zero
gradually and the ambient light makes more significant contribution. So, image pixels with
maximum depth are always used to estimate ambient light as reference pixels. For selecting
these reference pixels accurately, two main rules are proposed. Chiang and Chen (2012)
considered that ambient light can be assumed to be the pixel with the highest brightness
value in an image. Galdran et al. (2015) and Li and Guo (2015) considered that red
channel intensity of reference pixels is much lower than the other two channels. However,
both two rules select reference pixels according to color information. Some objects with
same color feature may interfere with the selection process, such as objects are blue-green
colors. Moreover, sometimes there is no ideal reference pixels in an image. For example,
there is no pixel with deep depth if an image photographed with a downward angle.

The above-mentioned conventional prior driven methods heavily rely on their priors.
They may make large estimation error when their assumptions of priors and rules are
not valid on specific data. To overcome this limitation, deep learning technology is used to
estimate the unkown parameters. Recently, several Convolutional Neural Networks (CNNs)
Cai et al. (2016), Ren et al. (2016), and Zhao et al. (2017) have been applied to estimate
transmission. These deep learning models are trained with synthetic training set to regress
transmission and obtain more refined restorations than conventional methods. However, due
to assumption that three channels have same transmission, these dehazing methods only
solve the influence of scattering. They improve image contrast, but cannot correct color
cast of underwater images. Shin et al. (2016) proposed a method for estimating ambient
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light and local transmission of underwater images using same network architecture. Shin′s
method is also used to dehaze the underwater images, moreover, they proposed a new
method to estimate the global ambient light of the underwater images based on CNN.

The performances of these data driven learning-based methods are tightly depended on
the quality of the training data. Cai et al. (2016), Ren et al. (2016), Zhao et al. (2017)
synthetic images without color cast. Shin et al. (2016) generates a large number of patches
with different color cast for training the network, which contains all kinds of color cast.
In fact, due to complex underwater environment, the color cast of underwater images only
contains various tones of blue or green. So, now, an effective underwater images synthetic
method is lacked.

Our purpose in this paper is to explore underwater image restoration techniques with
CNN. The contributions of this work are summarized as follows: 1) We propose a new
underwater restoration algorithm using CNN which improves the image contrast and color
cast. A new network for estimating transmission which can preserve fine spatial structures
and edges features is proposed. And we also introduce a robust global ambient light esti-
mation method based on CNN. 2) To improve the performance of the networks, we design a
new underwater images synthetic method which can simulate underwater images captured
in various underwater environments.

2. Optical Model

Following the previous research Chiang and Chen (2012), the simplified underwater
optical imaging model can be described as:

Ic(x) = Jc(x)tc(x) +Ac(1− tc(x))
(1)

where x denotes a pixel in the underwater image, Ic(x) is the image captured by the camera,
Jc(x) is the scene radiance, Ac is global ambient light, tc(x) is the transmission map which
represents the residual energy ratio of the scene radiance reaching the camera. According
to Schechner and Karpel (2004), tc(x) can be expressed as:

tc(x) = e−ηcd(x), cε{r, g, b}
(2)

where d(x) is the object-camera distance, η is attenuation coefficient, it is a sum of the
absorption coefficient α and the scattering coefficient β, so η = α+ β.

In addition, after deriving formulas, Li et al. (2016a) found that the ratios of the total
attenuation coefficients between different color channels in water can be expressed as:

ηr
ηb

= (−0.00113λr+1.62517)Ab
(−0.00113λb+1.62517)Ar

ηg
ηb

=
(−0.00113λg+1.62517)Ab
(−0.00113λb+1.62517)Ag

(3)
where ηr

ηb
and

ηg
ηb

are the red-blue and green-blue total attenuation coefficient ratios, re-
spectively. And λc is the wavelength of different color channels, λr, λg, λb are respectively
620nm, 540nm, and 450nm in general. Thus, the transmission maps of the green and red
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channels can be estimated as:

tg(x) = (tb(x))
ηg
ηb

tr(x) = (tb(x))
ηr
ηb

(4)
The purpose of restoring underwater image is to recover Jc(x) from Ic(x), thus tc(x) and
Ac need to be estimated first.

3. Proposed Algorithm

Aiming to improve the image contrast and color cast, an underwater image restoration
approach based on CNN and underwater optical model is proposed in this paper. Like most
of methods, the unkown parameters can be estimated respectively. The architecture of our
approach is presented in Fig.1. It consists of three modules: A-network, T-network, and
J-estimator. The A-network is used to estimate global ambient light. And the T-network is
used to estimate blue channel transmission map of the underwater image. After that, the
image is finally restored in J-estimator module.

Figure 1: The architecture of our approach.

3.1. Model Architecture

A-network: As mentioned before, most of the conventional ambient light estimation
methods select pixels with infinite depth to estimate ambient light. But the selection is
often limited by camera angle and interfered by some special pixels. To address these issues
and improve the robustness of the estimation, we proposed a new global ambient light
estimation method based on CNN by learning the mapping between underwater images
and their corresponding ambient light.

Figure 2: The architecture of A-network.

The illustration of the A-network architecture is given in Fig.2. It consists of mainly of
two operations: convolution and max-pooling. The input of the A-network is an underwater
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image after downsampling. And the output is global ambient light, which size is the same
as a pixel value. We use three convolution layers to extract features, and two max-pooling
layers to overcome local sensitivity and to reduce the resolution of feature maps. The last
layer is also a convolution layer for non-linear regression. In addition, we add the widely
used ReLU layer after every convolution layer to avoid problems of slow convergence and
local minima during the training phase.

The major difference between our algorithm and the method proposed by Shin et al.
(2016) lies in the following two aspects. Firstly, we estimate three channel values of the am-
bient light at the same time by our A-network, instead of one by one like Shin et al. (2016),
which reduces the number of parameters. Secondly, considering that the depth information
is helpful to ambient light estimation, we adopt the lower resolution underwater images
which generated by depth map and underwater optical model as the training samples of our
network, rather than small local patches which lack of global transmission information. In
this way, we can get a more accurate estimate because of a better training set. Moreover,
because the image details are not important when we estimate global ambient light. So, we
reduce the size of A-network training images to improve the training speed.

T-network: Recently, several CNN architectures were proposed on similar topics for
estimating one channel transmission map. They assume that transmission of the three
channels is the same. However, the assumption fails in the problem of underwater image
restoration. We need to estimate three channel transmission respectively. For reducing
complexity of training, we estimate the blue channel transmission by CNN and estimate
the other two channel with the help of Ep(4). So, we simplify the problem to one channel
transmission estimation problem. Since Ic(x) is dependent on tc(x) according to Ep(1), we
build a CNN model, and train the model by minimizing the reconstruction errors between
its output tb(x) and the ground truth blue channel transmission map.

The U-net structure is often adopted in the network to estimate transmission map, such
as the deep fully convolutional regression network(DFCRN) which proposed by Zhao et al.
(2017). The U-net structure is used to expand the receptive field, filter noisy and reduce the
network parameters. But the pooling layer results in a shrinkage of the feature maps and a
loss of detail features. For obtaining an output with the same size as the input image, Zhao
adopted an up-projection blocks. The transmission estimated by the network can preserve
fine spatial structures, but can not preserve some detail features well(e.g., edges).

Figure 3: The architecture of T-network.

For restoring the underwater images, we design a T-network to estimate blue channel
transmission and the T-network architecture is given in Fig.3. We also adopt the U-net
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structure. But for preserving detail features, we adopt cross-layer connection and multi-
scale estimation. The connection between the first convolutional layer and the penultimate
convolutional layer is used to compensate for the information loss, especially edge informa-
tion. Moreover, we adopt a multi-level pyramid pooling as the second pooling layer, which
helps that features from different scales are embedded in the final result Zhang and Patel
(2018). Each scale size is half the size of its next scale. Inspired by Ren’s fusion network
Ren et al. (2018), after a multi-level pyramid pooling, we fuse multi-scale transmission map.
There is an up-sampling layer after the output of every scale. And the output of small scale
will be added to the next scale as a feature map. The multi-scale approach provides a conve-
nient way to incorporate local image details over varying resolutions Ren et al. (2018). We
perform estimation by varying the image resolution in a small-to-large manner to prevent
halo artifacts and preserve edge features.

Figure 4: Transmission map estimation results using different modules.(a)underwater im-
ages (b)ground truth (c)U-net structure + up-projection blocks(DFCRN) (d) U-
net structure + up-projection blocks + multi-scale estimation (e) U-net structure
+ multi-scale estimation + cross layer connection(our T-network)

To verify the effectiveness of our T-network, we train three different networks by the
same training dataset generated by our method. Fig.4 shows transmission estimated by
them. As shown in Fig.4(c), the U-net structure(DFCRN) can not preserve edge features
well. After adopting multi-scale estimation method to the U-net structure, the result shows
more details. And when adopt multi-scale estimation and cross-layer connection to the U-
net (our T-network), the result preserves much sharper edges. The comparison experiment
proves the T-network proposed in this paper can better refine the detail for objects.

J-estimator: After Ac and tb(x) are estimated by the A-network and the T-network,
we first recover tg(x) and tr(x) using Eq.(4). Then, according to Eq.(1), scene radiance can
be restored as follows:

Jc(x) = Ic(x)−Bc
tc(x)

+Bc
(5)

3.2. Training Data and Method

Training Data: The quality of the training data plays an important role in the perfor-
mance of network architectures. Training of CNN requires a pair of underwater images and
corresponding parameters (e.g. transmission map or global ambient light). It is very diffi-
cult to obtain such a training dataset via experiments. Therefore, as many researchers have
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done, we synthesize training images using underwater optical model and publicly available
depth datasets.

Since underwater images generally have predominantly green-blue hue, we propose a
synthetic method which enables us to synthesize the underwater images with different green-
blue hue color distortions. Our goal is to simulate underwater images captured in various
underwater environments.

First, to simulate different underwater environments, we select indoor depth dataset
and outdoor depth dataset simultaneously for constructing training dataset. We choose
Middlebury Stereo dataset Scharstein and Szeliski (2003), Scharstein et al. (2014) as indoor
depth dataset. Besides, we use clear outdoor images from the Internet and Liu’s depth map
estimation model Liu et al. (2015) to generate outdoor depth dataset. They have abundant
colors in clean images and better edge-preserving ability in depth maps. Then we reduce
images size of the datasets and cut them into smaller ones with a canonical size of 160×160
pixels.

Figure 5: Hue and brightness distribution of global ambient light. (a)uniform distribution
to generate Ar (b)revised method to generate Ar (note that the value of blue-
green hue is 0.33-0.66)

Having 477 clean images J(x) and corresponding depth maps d(x), we generate random
ηbε[0.5, 2.5], Acε[Ar, Ag, Ab] and synthesize images using the physical model mentioned in
section 2. Here, we use the relationship between the transmission of three channels in
Li et al. (2016a) to reduce unknown parameters. Hence, we just generate blue channel
attenuation coefficient. After blue channel transmission is calculated via Eq.(2), the other
two channels can be calculated via Eq.(4) and the underwater image can be generated via
Eq.(1). Because longer wavelengths travel shorter in water, red channel attenuates much
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faster and underwater images generally have predominantly green-blue hue. We assume
that Ar is smaller than Ag and Ab, so we generate random Arε[0.1, 0.6], Agε[Ar, 1] and
Abε[Ar, 1]. The dataset generated in this manner enables the network to estimate more
accurate transmission and ambient light of underwater images with different green-blue hue
color cast.

Because ambient light contributes more to simulate various underwater environments.
We make a statistic of the hue and brightness of ambient light generated by our method.
At first, we follow uniform distribution to generate Ac. As shown in Fig.5(a), ambient
light generated by this method contain all sorts of green-blue hue color, but have uneven
distribution of brightness. For simulating various underwater environments, we modify
the distribution of Ac by increasing the proportion of dark background light. And the
way is shown as Table.1. For comparing the effect of two Ac distribution, two datasets
with different Ac distribution are used to train out network respectively. The restoration
comparison is showed in Fig.6. After increasing the proportion of dark background light, we
simulate more varied underwater environments and our networks perform better especially
in dark underwater images.

Figure 6: The results comparison of before and after modifying Ac distribution. (a)raw
underwater images (b)before modifying Ac distribution (c)after modifying Ac
distribution
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Finally, we generate 13780 underwater images and their corresponding transmission
maps to train T-network, and 20670 underwater images and their corresponding ambient
light to train A-network. Note that the training images for training A-network are resized
to 49×49 pixels.

Training Method: Our CNN-based regression tasks optimized over pixel-wise L2-
norm (Euclidean loss) and L1-norm between the predicted and ground truth images. The
A-network is learned by minimizing Euclidean loss. And the T-network is learned by mini-
mizing a weighted combination of the pixel-wise Euclidean loss and L1-norm loss, and it is
defined as follows: Losst =0.7L2+0.3L1. Where L2 is the Euclidean loss, L1 is the L1-norm
loss. Additionally, the back-propagation algorithm and the widely-used stochastic gradient
descent (SGD) algorithm are used to train our models. In T-network, We use a batch size
of 8 images, the initial learning rate is 0.001 and decreased by 0.1 after every 1k iterations.
The optimization is stopped at 20k iterations. Weight decay and momentum are 0.0001
and 0.9. In A-network, mini-batch, weight decay and momentum are 128, 0.005 and 0.9,
respectively. The initial learning rate is 0.001 and decreased by 0.1 after every 1k iterations.
The optimization is stopped at 20k iterations.

4. Experimental Results

We quantitatively evaluate the proposed algorithm on synthetic datasets and real-world
underwater images, with comparisons to several state-of-the-art methods.

4.1. Evaluation on Parameters Estimation

In Fig.7, we compare our transmission map and global ambient light estimated results
on synthetic underwater images with other methods. Theoretically, objects with deeper
depth will have smaller transmission. And the value of image pixels whose transmission is
close to 0 are approximate to the value of ambient light.

Galdran et al. (2015) selects pixels with maximum depth(or minimum transmission) in
an underwater image as global ambient light. And the method estimates transmission and
ambient light based on the Red Channel Prior. As shown in Fig.7(b), the method overes-
timates the transmission of objects with small depth. Besides, the estimation of objects in
blue or green color may inaccurate due to the limitation of the prior. For improving the
robustness of the method, Shin et al. (2016) and us estimate transmission and ambient
light based on CNN. Based on the hypothesis that transmission of a local region is the same,
Shin synthesizes a large number of small local patches as training data, and the network
is used to estimate transmission of local region. Because only local information is consid-
ered, transmission estimation is influnced by color information. It brings some estimation
errors as shown in Fig7.(c). Besides, without helping of depth information, ambient light
estimated by Shin et al. (2016) is affected by the overall tone of the image.

We propose a synthetic method which enables us to simulate underwater images cap-
tured in various underwater environments. Our method estimates transmission and global
ambient light by learning the mapping between underwater images and their corresponding
transmission and ambient light respectively. As shown in Fig7., the transmission and global
ambient light estimated by our method are closer to the ideal value. Moreover, Galdran
and Shin use guided filter to refine the transmission after estimating, which helps to form a
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Figure 7: Visual comparison for transmission map and global ambient background light es-
timation results on synthetic underwater images. (a)Original images (b) Galdran
et al. (2015) (c) Shin et al. (2016) (d)Proposed method (e)Ground truth images.

more accurate edges. Our T-network preserves edges information by cross layer connection
and multi-scale estimation.

4.2. Qualitative Evaluation on Synthetic Images

We rely on several referenced metrics to evaluate similarity between ground truth images
and restored images. We synthesize 30 indoor underwater images using Middlebury Stereo
dataset and other 30 outdoor underwater images using Make3D dataset Saxena et al. (2009)
and Liu′s model. We evaluate the proposed algorithm with Zhang, Galdran, Shin using
Features Similarity (FSIM), the Peak Signal-to-Noise Ratio (PSNR) and color difference
formula (CIEDE2000) metrics. FSIM is used to measure the features similarity of two
images. FSIM characterizes the image quality based on human visual system by the phase
congruency and the image gradient magnitude. A lager value of FSIM indicates that two
images is more similar on local structure and contrast. PSNR is used to measure image
distortion, which based on error between the corresponding pixels. The human visual
characteristic is not taken into account. A lager value of PSNR indicates higher image
quality. CIEDE2000 is used to measure the color difference of two images. A smaller value
of CIEDE2000 indicate a more effective color correction. As shown in Table 1, our algorithm
performs better on the three metrics. Our results are closer to ground truth images.

Fig.8 shows six input underwater images which are synthesized from the clean images
with known depth maps. Zhang et al. (2017b) enhances underwater images by color cor-
rection and illumination adjustment. Without using physical model, the method improves
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Figure 8: Visual comparison for restoration results on synthetic underwater images
(a)Original images (b) Zhang et al. (2017b) (c) Galdran et al. (2015) (d) Shin
et al. (2016) (e)Proposed method (f)Ground truth images.
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the visual effect of the images, but the hue of images is a little bit different from the ground
truth. Galdran et al. (2015) proposed the Red Channel Prior for restoring underwater
images. The prior develops from the Dark Channel Prior. The results sometimes look rel-
atively more reddish. Shin et al. (2016) estimates local transmission and global ambient
light based on a CNN. It still has a low contrast due to overestimation of transmission. And
the color cast of underwater images is not well corrected. In contrast, the restoration results
by the proposed algorithm are close to the ground truth images. Our method improves the
image contrast and corrects the image color cast.

4.3. Evaluation on real-world Images

Fig.9 shows a qualitative comparison with several state-of-the-art underwater restoration
algorithms on real-world underwater images.

Fu et al. (2015) and Zhang et al. (2017b) restore underwater images based on image
enhancement method, as shown in Fig.9(b)(c). Fu proposed a retinex-based method to
enhance underwater image. The method enhance the details of the images, but the color of
images is not natural enough. Zhang enhances underwater image via color correction and
illumination adjustment. The method is able to increase the contrast and unveil color of
the raw underwater images, but its results are not as natural as our results.

He et al. (2011), Galdran et al. (2015) and Li et al. (2016a) restore underwater
images based image restoration method. They estimate unkown parameters(transmission
and global ambient light) via their prior. Based on statistics on clear outdoor images, He
proposed the Dark Channel Prior which thinks that the minimum value of three channels
will be larger when depth increase. However, red channel rapidly loses intensity with the
increase of depth in underwater environment, which leads to the failure of the DCP. Due
to ignore the attenuation difference between three channels, as shown fig.9(d), the method
enhances the contrast but can not correct the color. Galdran proposed a Red Channel
method, which can be interpreted as a variant of the Dark Channel method. However,
the restoration images sometimes seem a little bit reddish, as shown fig.9(e). Built on a
minimum information loss principle, Li estimates transmission of red channel and restores
image via the physical model same with us. In order to further enhance the color, Li
enhances images based on histogram distribution at last. As shown fig.9(f), the method
enhances the contrast and color of underwater images, but the results are not natural.

For estimating more accurate parameters, Shin et al. (2016) and us estimate trans-
mission and global ambient light by deep learning. Shin generates local patch rather than
images as training dataset. Lacking of global information, the estimation of this method
is interfered by color information. To improve the performance of the networks, we design
a underwater images synthetic method which can simulate underwater images captured in
various underwater environments. The results of Shin on real-world images are low con-
trast. In contrast, our approach achieves a natural color correction and enhances visibility
significantly.
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Figure 9: Visual comparison for restoration results on real underwater images
(a)Underwater images (b) Fu et al. (2015) (c) Zhang et al. (2017b) (d) He
et al. (2011) (e) Galdran et al. (2015) (f) Li et al. (2016a) (g) Shin et al. (2016)
(h)Proposed method.
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5. Conclusions

In this paper, we propose a novel approach to restore underwater images based on CNN.
First, we propose a new underwater images synthetic method which can simulate underwater
images captured in various underwater environments. It helps to improve the performance
of our networks. And we design a new transmission estimation network, which is able
to preserve details information well by cross-layer connection and multi-scale estimation.
Besides, we also introduce a robust global ambient light estimation method based on CNN.
The qualitative and quantitative evaluations show that the proposed method can effectively
restore natural color and increase contrast. In the future, we will extend our approach to
more challenging underwater scene, like underwater images with serious color cast and poor
visibility.
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