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Abstract

Convolutional Neural Networks achieve state of the art results in many image recogni-
tion tasks. While their structure makes predictions invariant to small translations, some
recognition tasks require invariance to other transformations, like rotation and reflection.
We apply group convolutions to build an Equivariant Autoencoder with embeddings that
change predictably under the specified set of transformations. We then introduce two
approaches to extracting invariant features from these embeddings—Gram Pooling and
Equivariant Attention. These two methods separate transformation-relevant information
from all other image features. We use obtained embeddings in classification and clustering
tasks and show an improvement of the classification quality on the learned embeddings
compared to pure autoencoder and average pooling method. A visualization of the learned
manifold shows that objects of the same class tend to cluster together, which was not
observed for the pure autoencoder embeddings.

1. Introduction

Convolutional Neural Networks (CNNs) are extremely successful in computer vision tasks.
Their hierarchical structure with convolutional weight sharing provides a strong prior ca-
pable of extracting relevant features from raw pixels. Due to the translation symmetry of
the network, local patterns can be detected regardless of the spatial position in the image.
However, while CNNs are invariant to local shifts, they do not exhibit rotation or reflection
invariance. In many applications, we expect learned hidden representations and predictions
of the model to be independent of the rotation angle. Medical, biological, aerial, astronomy
images usually exhibit partial or full rotational symmetry. In this work, we explore mul-
tiple approaches to creating transformation invariant feature representations and validate
our model on the augmented MNIST and Plankton (Cowen et al., 2015) datasets.

The most common method to promote the invariance is to augment the training dataset
with randomly transformed images (Krizhevsky et al., 2012; Kuzminykh et al., 2018; Ron-
neberger et al., 2015). This approach, however, has multiple drawbacks. First, models
have to extract implicit information about invariances directly from the data, leading to
slower training. Also, there are no guarantees that learned features and predictions are the
same across all transformations—invariance can be achieved only approximately. Another
approach is averaging model outputs across all possible augmentations to make predictions
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invariant. While it is a viable approach for small invariance sets (like horizontal symmetries),
this method significantly increases computational and memory costs for larger groups.

In this paper, we focus on creating transformation invariant image embeddings using
convolutional autoencoders. Working with a dataset with natural invariances, we would
expect transformed versions of the same object to have similar embeddings. However, this
does not happen for standard models. Embeddings of transformed images tend to spread
across the latent space. Consider, for example, an autoencoder trained on the augmented
MNIST dataset. To visualize the embeddings, we apply a 3D Principal Component Analysis
(PCA) to the embeddings obtained from an autoencoder and show the manifold in Figure 1.
Notice that manifolds of images with a digit “one” form a circle, corresponding to different
angles of this digit. This structure of the manifold is not optimal for classification. A
more useful representation would map images of similar objects closer together, ignoring
information like the degree of rotation. To get such embeddings, we focus on building
invariant embeddings that remain constant across specified transformations.

Figure 1: PCA of the augmented MNIST embeddings, obtained from an autoencoder.
Notice how embeddings of ones form a circle.

We introduce a two-step process: first, we apply an Equivariant Autoencoder to ex-
tract equivariant features from the image. For any considered transformation of the input,
we know exactly how the embeddings change. Then we apply a function that extracts
invariant features from the equivariant embeddings (Figure 2). These features are trans-
formation invariant and contain enough information to reconstruct an initial image up to a
transformation. Our main contributions are as follows:

• We introduce two novel approaches to extracting transformation invariant features
from equivariant ones, while preserving most of the relevant information—Gram Pool-
ing and Equivariant Attention;
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• We empirically evaluate our approach and show that learned latent space is better
structured compared to the standard convolutional autoencoder in terms of the clas-
sification accuracy and visual assessment of the manifold.

Figure 2: An overview of our model. We train an Equivariant Autoencoder that embeds
input images into the latent code matrix V . Any considered transformation of an input
image results in a permutation of rows of V . We then extract invariant features Q that are
constant across all considered transformations.

2. Group Equivariance

In this section, we apply group convolutions (Cohen and Welling, 2016) to extract image
features that are equivariant to the group D12 of 30◦ rotations and reflections along the
vertical axis. We progressively build the D12 group, starting with 90◦ rotations, then
adding 30◦ rotations and finally including reflections. Formally, the function f(x) is called
equivariant to a class of transformations T , if for all transformations t ∈ T of x, its output
changes in a predictable way:

f(tx) = t′f(x), (1)

where t′ is some transformation of the output. Similarly, we call function f invariant to this
class of transformations, if all transformations t ∈ T do not affect the output representation:

f(tx) = f(x). (2)

2.1. Group p4: 90◦-equivariant features

We start by building an equivariant encoder network p4-CNN that produces features equiv-
ariant to the group of 90◦ rotations. This network takes an image as an input and returns a
feature matrix Vp4 ∈ R4×m. Rows of this matrix correspond to the features extracted at dif-
ferent 90◦ rotations of the initial image. The first row corresponds to features of the initial
image, second—to 90◦ rotation of the image, third—to 180◦ rotation, and the fourth—to
270◦ rotation. If we feed a 90◦ rotated image to the p4-CNN, it produces a feature matrix
with cyclically shifted rows of Vp4.
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A naive method of building a p4-CNN would be to pass 90◦ rotated instances of an
initial image through the same network and to concatenate the resulting features as rows
of the matrix Vp4. Indeed, if we rotate the initial image by 90◦ and extract its features, cor-
responding representations in the matrix will shift one row upwards. For example, features
of an initial image will now be stored in the 4-th row of Vp4, since this row is obtained as a
270◦ rotation of a 90◦ rotated initial image. However, in this approach, intermediate layers
do not use features extracted at different angles, ignoring features from other branches.
This encoder also tends to learn multiple rotated copies of the same filter, resulting in an
inefficient use of learnable parameters.

Passing a rotated image through a filter is equivalent to passing an initial image through
a rotated filter and then rotating the output in the opposite direction. This leads us to the
idea that the number of learnable parameters can be reduced by adding rotated instances
of filters. We use group convolutions (Cohen and Welling, 2016) with correlation operator
as a building block of the network. This architecture encourages feature sharing between
different computational branches corresponding to different rotation angles and reduces the
number of learnable parameters. Correlation operator applied to an image X with filter k
at shift ∆ is defined as

[X ∗ k](∆) =
∑
y∈Z2

X[y]k[y −∆]. (3)

Here, we compute a dot product between an image and a shifted filter. If we consider Z2

as a group of integer translations, the operation y−∆ would be an inverse shift of y by ∆.
This can be written as ∆−1(y), giving an equivalent representation to the equation 3:

[X ∗ k](∆) =
∑
y∈Z2

X[y]k[∆−1(y)]. (4)

For an arbitrary group G, we can extend the correlation operation by replacing transfor-
mations ∆ ∈ Z2 with elements g ∈ G:

[X ∗ k](g) =
∑
y∈Z2

X[y]k[g−1(y)]. (5)

Group p4 contains all combinations of integer translations and 90◦ rotations around the
center of an image. We apply p4 group convolutions to the input images by computing
the dot product with rotated and shifted filters. These transformations output four feature
banks corresponding to different rotations of filters. By stacking group convolutions multiple
times, we eliminate spatial dimensions and obtain a feature matrix Vp4. Notice that all layers
after the first one should use the summation from Eq. 5 with respect to the group p4 and
not to Z2:

[X ∗ k](g) =
∑
y∈p4

X[y]k[g−1(y)]. (6)

Figure 3 illustrates the transformation made by each layer of the p4-CNN. Here, we operate
with four source feature banks, corresponding to different rotations of the initial image.
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We apply rotated filters to different source banks and combine the results. Consider, for
example, calculation of the forth target bank—270◦ rotated image. As one of the steps,
we apply a filter bank rotated by 180◦ to the source bank corresponding to the 90◦. These
transformations combine features extracted at different angles, resulting in a more powerful
embedding. Also, such layers require less parameters, since the network does not have to
learn rotated filters anymore.

Figure 3: Single layer of p4-CNN. Rotated filter bank is applied to source banks, preserving
the total degree of the rotation. One color corresponds to the same rotation degree.

2.2. Groups C12 and D12—30◦ rotations and reflections

In this section, we build a neural network equivariant to the group C12 of 30◦ rotations, and
then extend the model for the equivariance to the group D12 of 30◦ rotations and reflections
along vertical axis. Note that D12 also contains reflections along the rotated axis. While the
described approach can be used for arbitrary complex groups, we would have to interpolate
the feature maps for all rotations except for the rotation multiple of 90◦. This may lead to
the loss of equivariance due to numerical errors, for example, for the interpolation of a 30◦

rotated 3 × 3 patch. Hoogeboom et al. (2018) solved this issue by introducing hexagonal
feature maps. However, this approach requires an implementation of a new, less efficient
type of convolutions. Here, we adopt the initial naive method and feed all transformed
versions of an initial image through the network. We compute Vp4 matrix for an initial
image and images rotated by 30◦ and 60◦. We then obtain an equivariant feature matrix
VC12 ∈ R12×m for a group of 30◦ rotations by stacking these three matrices. Any rotation
that is multiple of 30◦ will cyclically shift rows of VC12 . Finally, we apply group convolution
layers to this matrix, mixing features from different rotations. As spatial dimensions at this
point are already eliminated, interpolation of filters is no longer needed.

We can also add equivariance to reflections and create a group D12 of 30◦ rotations and
reflections along vertical axis. We pass a mirrored image through a C12-CNN to obtain
a feature matrix V C12 , concatenate V C12 with VC12 , and pass the result through a few
group convolution layers. These steps produce the final feature matrix VD12 ∈ R24×m. For
this matrix, rotation of an initial image by 30◦ cyclically permutes first 12 and last 12
components of VD12 in the same direction. In the meantime, reflection along vertical axis
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inverts the order of components. We illustrate these permutations on a smaller group, D4

of reflections and 90◦ rotations in Figure 4.

Figure 4: Permutations induced by the transformation from the group D4. M corresponds
to reflection along vertical axis. Left: 90◦ clockwise rotation. Right: reflection along
vertical axis.

Finally, to build an autoencoder, we use a symmetric architecture and obtain initial
images from VD12 with a decoder network. The final architecture is shown in Figure 5.

Figure 5: Architecture of an autoencoder producing D12-equivariant features. Networks
with the same color share the same weights.

3. Related Work

Over the recent years, many publications addressed the problem of obtaining invariant rep-
resentations for 2D and 3D images. Cohen and Welling (2016) described group equivariant
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convolutional neural networks (G-CNNs) with G-convolution operator. By exploiting sym-
metries p4 (translations and 90◦ rotations) and p4m (p4 and reflections), convolutional
layers can be used as a drop-in replacement of standard convolutions and can improve the
results on image datasets without increasing the number of network parameters. Recent
works by Kondor and Trivedi (2018) and Cohen et al. (2018b) generalized G-CNN frame-
work for any compact group.

Dieleman et al. (2016) proposed four new cyclic operations (slice, roll, pool, and stack)
for convolutional networks in order to achieve rotation equivariance for finite groups. Laptev
et al. (2016) applied multiple convolutional Siamese networks (Koch, 2015) for each spatial
transformation of an input followed by element-wise max-pooling. Gonzalez et al. (2016)
performed convolutions on rotated filters with a global pooling over different orientations.
Weiler et al. (2017) introduced roto-translational steerable filters on top of group convo-
lutions. Novel SFCNN architecture with weight-sharing between learnable filters achieved
state-of-the-art results on rotated MNIST and ISBI 2012 EM segmentation challenge.

Harmonic Networks, presented by Worrall et al. (2017b), use circular harmonics instead
of convolutions, achieving patch-wise continuous 360◦ rotational equivariance. By applying
encoder-decoder architecture with feature transform layer, Worrall et al. (2017a) was able
to explicitly disentangle transformation features on the hidden representations.

Following previous works on group convolutions, Cohen et al. (2018a) designed spher-
ical CNN architecture that can be applied to spherical signals and achieves equivariance
on SO(3) manifold. 3D G-CNN model by Winkels and Cohen (2018) showed significant
improvement over regular convolutions in the task of pulmonary nodule detection. Another
extension of group convolutions for the hexagonal grid (Hoogeboom et al., 2018) was applied
to the classification task on AID aerial dataset. Bekkers et al. (2018) proposed using SE(2)
group convolutional layers for medical image analysis and obtained state-of-the-art results
on three medical imaging tasks in histopathology, retinal imaging, and electron microscopy.

The proposed equivariant attention method distantly resembles a Spatial Transformer
(Jaderberg et al., 2015) capable of learning standard image representations. Here, however,
we produce a distribution over all possible transformations which allows the attention to
learn in a more stable way.

4. Extracting invariant features

In this section, we introduce two novel approaches to extracting invariant features from
equivariant ones obtained in the previous section. We validate the predictive quality of
extracted features on the classification task. Trained fully-connected network shows im-
provement in prediction performance compared to the embeddings of a pure convolutional
autoencoder (see section 5). To achieve a good performance, we try to retain as much
information about the initial image as possible, while removing transformation-relevant
information.

4.1. Gram Pooling

Consider a group of transformations T and Equivariant Encoder that maps an input image
to an embedding matrix V ∈ Rn×m. Any transformation t ∈ T permutes rows of V .
With a slight abuse of notation, we denote corresponding permutations as elements of T .
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The simplest way to extract invariant features from the matrix V is to average its rows:
wmean = 1

n

∑n
i=1 vi. Since permutation of rows will only change the summation order, wmean

is an invariant vector. However, this aggregation loses a lot of information about the initial
image. While the embedding matrix V obtained from an encoder-decoder architecture
contains all information about the input object, wmean cannot be used to reconstruct an
initial image, even if we specify transformation parameters. In this section, we introduce
a Gram Pooling method that extracts an invariant embedding, keeping more information
about an image than wmean.

The proposed approach is based on the notion of Gram matrices. The Gram matrix of
vectors {vi}mi=1 is an m×m matrix G of pairwise scalar products: Gij = 〈vi, vj〉. A Gram
matrix G = V TV of columns of V forms an invariant set of features. If we denote columns of
V as vi, a scalar product 〈vi, vj〉 =

∑n
k=1 VkiVkj remains constant after any transformation

from T , since a permutation only changes the order of the summation. Note that if the
number of features is smaller than the size of the group, the initial set of vectors can be
reconstructed up to isometry from its Gram matrix using Cholesky decomposition. The
Gram matrix retains much more information about the initial image than simple averaging.

However, reconstruction up to isometry still loses some relevant information. To find
other invariant features, we look for them in a class of qπij = 〈ui, πuj〉, where π is a per-
mutation of vector components. We denote a set of permutations that generate invariant
features as P . Note that this set is always non-empty, since features qeij produce a Gram
matrix. Formally, P can be defined as:

P = {π ∈ S | 〈u, πv〉 = 〈tu, πtv〉,∀t ∈ T, ∀u, v ∈ Rn}, (7)

where S is a set of all operators that permute vector elements. We now show that P consists
of all elements that commute with T , i.e. P = {π ∈ S | πt = tπ, ∀t ∈ T}. This is true,
since if 〈tv, πtu〉 = 〈v, πu〉, then 〈v, t−1πtu〉 = 〈v, πu〉 and 〈v, t−1πtu − πu〉 = 0. Since
this equality holds for all vectors u and v, t−1πt = π, which implies tπ = πt. Note that
it is sufficient to check that π commutes with all elements of a generating set of T . For
the D12 group we have to check that π commutes with both 30◦ rotation and reflection.
Also, note that P is a group, since inverse and composition of commuting elements also
commutes. The constructed set P of all commuting elements is also known as a centralizer
of a subgroup T of a group S.

Finding P in general requires to brute force over all permutations. However, if T is
an abelian (commutative) group, any permutation of rows induced by T satisfies Eq. 7,
meaning that T ⊂ P .

The D4 group, generated by 90◦ rotations and reflections along vertical axes is not
abelian. However, a non-identical permutation π ∈ P exists. D4 contains n = 8 elements. In
a cycle notation, rotation performs permutation R = (1234)(5678), while reflection performs
M = (87654321). Permutation π = (15)(26)(37)(48) induces invariant features, since it
commutes with both rotation and reflection.

An important note about the constructed set of features is that it is not required to
store the whole m×m Gram matrix, since its elements are linearly dependent when n < m.
In this case, it is sufficient to store elements of the first n diagonals.

Finally, we notice that diagonal features of constructed matrices are invariant for some
permutations besides P . Because of this, we also add diagonal features q̃πi,i = 〈ui, πui〉 for
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permutations π ∈ P ′, where

P ′ = {π ∈ S | 〈u, πu〉 = 〈tu, πtu〉,∀t ∈ T, ∀u ∈ Rn} (8)

For the group D4, for example, permutation R, corresponding to the 90◦ rotation, lies
in P ′ as well as its powers R2 and R3. In practice, sets P and P ′ can be very large, but
the performance of predictive models already saturates when a few elements of P or P ′ are
added. The final set of features consists of two parts, corresponding to P and P ′:

qπi,j = 〈ui, uj〉,∀π ∈ P, i ∈ [1, n], j ∈ [i,min(i+m,n)] (9)

q̃πi,i = 〈ui, ui〉,∀π ∈ P ′, i ∈ [1, n] (10)

4.2. Equivariant Attention

In this section, we propose an alternative attention-based approach to extracting invariant
features. Consider equivariant features V ∈ Rn×m such that any transformation t ∈ T
permutes rows of V with a permutation πt, giving πt(V ).

Attention mechanism (Vaswani et al., 2017; Xu et al., 2015) encourages neural network
to focus on relevant parts of the data. For example, a neural network with attention applied
to image pixels learns to focus on the object, ignoring the background. Attention is usually
organized as a neural network that outputs a distribution over a set of objects. Represen-
tations of these objects are then averaged according to the obtained weights, resulting in
a larger contribution from objects with larger weights. In our model, we apply attention
to different permutations of V , i.e, we use {πt(V )}t∈T as objects of attention. Attention
network outputs weight wπt for every transformation t ∈ T . These weights are non-negative
and sum up to one. We achieve this by passing the output of the network through a Softmax
function. Permutations are then averaged, resulting in a feature matrix Q given as:

Q =
∑
t∈T

wt−1πt(V ) ∈ Rn×m. (11)

Attention weights should be consistent with transformations T and change accordingly
when an input image is transformed. This is achieved when the attention network is also
equivariant. As we show further, the matrix Q forms invariant features.

Note that permutations πt(V ) in Eq. 11 are taken with the weights wt−1 corresponding
to inverse permutations. If we transform an input image with t′ ∈ T , components of w and
rows of V are permuted with πt′ , resulting in∑

t∈T
[πt′ (w)]t−1 πt (πt′ (V )) =

∑
t∈T

[πt′ (w)]t−1 πtt′ (V ) . (12)

Note that [πt′ (w)]t−1 is the weight that we get after first permuting components of w and
then taking a weight at position t−1. The weight that ended up at position t−1 after
permutation πt′ was stored at position [π−1t′ ]t−1 before permutation. This results in the
following equation:

[πt′ (w)]t−1 = w(t′)−1t−1 = w(tt′)−1 . (13)
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Combining it all together, we get∑
t∈T

[πt′ (w)]t−1 πtt′ (V ) =
∑
t∈T

w(tt′)−1πtt′ (V )

=
∑
t∈T

wt−1πt (V )

= Q,

(14)

indicating that the total sum is invariant. Having weights w and the invariant feature
matrix Q, we can invert the linear transformation in Eq. 11 to reconstruct initial equivariant
weights V .

When attention weights w are concentrated in one permutation (one-hot), i.e. only one
permutation of V is selected, attention weights can be inverted using

V =
∑
t∈T

wtπt(Q). (15)

Notice that when wt is close to one-hot, Eq. 15 holds approximately. A case of one-hot
attention weights has an important theoretical advantage, since the selected permutation
corresponds to a standardizing transformation. This results in decomposition of an equivari-
ant feature matrix into two entities: invariant feature matrix and transformation required to
standardize the image. Such decomposition extracts all invariant information about the ini-
tial image, removing only transformation-relevant part. To promote concentrated weights,
we add an entropy regularizer to the model:

minH(w) = −
∑
t∈T

wt logwt. (16)

Finally, we apply Equivariant Attention to build an autoencoder, shown in Figure 6.
The model first extracts equivariant features using an Equivariant Encoder and computes
equivariant attention weights w. These weights are used to obtain an invariant matrix using
Eq. 11. Since the embedding no longer contains transformation-relevant information, we
can further compress the embedding using a small fully-connected neural network, resulting
in a final set of invariant features. During the decoding procedure, a symmetric architecture
is used to reconstruct an initial image. We use Eq. 15 to invert equivariant attention, reusing
attention weights from the encoder.

5. Experiments

In this section, we compare the proposed models with a standard autoencoder in terms
of classification performance on embeddings and visual assessment of the manifold. We
validate our models on augmented MNIST and Plankton datasets.

5.1. Augmented MNIST

For the experiment on the MNIST, we constructed an augmented version of the original
data. MNIST is a standard image classification dataset with 70,000 handwritten digits. We
augmented images of the initial dataset with random rotations and reflections.
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Figure 6: An autoencoder with Equivariant Attention. Networks with the same color share
the same weights.

We trained an unsupervised Equivariant Autoencoder and extracted an invariant rep-
resentation from the embeddings. Then, we trained a multinomial logistic regression and
a fully-connected neural network to predict a class label from these features. When the
classifier has a higher performance, we assume that similar images are better localized in
the latent space.

We compared our model with two baselines. As a first trivial baseline, we built a
convolutional autoencoder and trained a classifier on its embeddings. These embeddings
are not invariant and may contain irrelevant information about rotations and reflections.
As a second baseline, we used a simple mean pooling to extract invariant features from
equivariant embeddings, instead of using Gram Pooling or Equivariant Attention. This
method by design loses some relevant information about the initial image. For each model,
we tuned hyperparameters independently, based on the performance on the validation set.
Experimental results are provided in Table 1.

Table 1: Classification accuracy on the extracted embeddings for the augmented MNIST
dataset

Model Group
Accuracy, %

Logistic regression Neural network

Autoencoder — 47.8 58.3
Average Pooling D4 58.2 60.8
Average Pooling D12 80.7 82.5

Equivariant Attention D4 81.6 83.8
Equivariant Attention D12 72.6 76.5

Gram Pooling D4 65.2 67.5
Gram Pooling D12 87.9 88.8

448



Equivariant Autoencoder

5.2. Plankton dataset

For experiments on the Plankton data, we used a publicly available part of the Plankton
dataset from the National Data Bowl competition 2015 Cowen et al. (2015). The data
contain approximately 160,000 images of small sea creatures from 127 different classes.
However, labels are available only for approximately 30,000 images. As a preprocessing
step, we padded all images to have a square shape and rescaled them to the resolution of
32× 32 pixels. The type of the plankton present on the image is invariant to rotations and
reflections. Since the goal of this paper is not to achieve the state of the art classification
results, but to introduce a general framework for extracting invariant features, we restrict
ourselves to rather shallow models and ignore important features such as the original image
aspect. Classification results are provided in Table 2.

Table 2: Classification accuracy on the extracted embeddings for the Plankton dataset

Model Group
Accuracy, %

Logistic regression Neural network

Autoencoder — 44.3 53.3
Average Pooling D4 48.0 56.1
Average Pooling D12 53.9 58.3

Equivariant Attention D4 49.1 58.0
Equivariant Attention D12 49.5 57.8

Gram Pooling D4 55.2 57.8
Gram Pooling D12 55.7 62.2

Provided results suggest that forcing features to be invariant to rotation and reflection
improves the classification accuracy. Also, it is profitable to increase the number of angles in
a group of transformations. Compared to simple mean pooling, both Equivariant Attention
and Gram Pooling methods show better performance, suggesting that extraction of a larger
number of invariant features helps the classifier. Comparing Gram Pooling and Equivariant
Attention, we see that Gram Pooling, in general, outperforms Equivariant Attention. We
hypothesize that it is due to a more complex optimization problem stated for the attention.
However, the Equivariant Attention approach guarantees to keep all invariant information
in extracted features if attention weights are one-hot, which may be profitable for more
complex classifiers.

5.3. Manifold structure

In this experiment, we visually assess the quality of the latent space, extracted by the best
model (Gram Pooling, D12) for the Plankton dataset. We show Principal Components and t-
SNE Maaten and Hinton (2008) embeddings in Figure 7. Results suggest that the proposed
method brings objects from the same class closer together. For example, in the t-SNE
plot of the simple Autoencoder embeddings, the blue class was separated into 5 clusters,
corresponding to different angles of the similar image. Invariant embeddings produced by
the Gram Pooling, however, formed a single cluster with these images.
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Autoencoder D12, Gram Pooling

PCA

t-SNE

Figure 7: Manifold of the Plankton dataset extracted by the autoencoder and by the Equiv-
ariant Autoencoder with invariant features computed using Gram Pooling. Same colors
denote the same classes.

5.4. Intrinsic dimensionality

In this experiment, we investigate the intrinsic dimensionality of the embeddings, i.e., the
number of dimensions that are effectively used. To do so, we computed invariant embeddings
of the augmented MNIST images and calculated the explained variance ratio of the first
principal components. All considered models had almost perfect reconstruction quality,
indicating that the equivariant embedding kept almost all information about the initial
image. Also, Equivariant Attention models produced attention weights with almost zero
entropy, indicating that invariant features also kept all the required information. Results are
provided in Figure 8. The highest compression is achieved for the Gram Pooling approach,
where most of the features turn out to be linearly dependent. ComparingD4 andD12 curves,
we notice that when information about finer rotations is eliminated, much less information
is retained in the embedding. Finally, comparing these curves for the Equivariant Attention,
combined with the results from Table 1, we conclude that the Equivariant Attention was
not able to adapt to the group D12. However, the Equivariant Attention for the D4 group
uses much less dimensions than the corresponding model with Gram Pooling, even though
the latter could miss some information about the initial image.

6. Conclusion

In this paper, we introduced an Equivariant Autoencoder that extracts equivariant features
from images using group convolutions. We also proposed two approaches for invariant fea-
ture extraction from equivariant embeddings—Gram Pooling and Equivariant Attention.
Comparing these two methods, we noticed that Gram Pooling based method shows better
classification performance. However, this approach does not necessarily preserve all rele-
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Figure 8: Explained variance ratio of the first principal components of the embeddings.

vant information about the image. Equivariant Attention, on the other hand, decomposes
features into transformation-relevant and irrelevant parts. The second part is guaranteed
to keep all invariant features from the image if attention weights are one-hot. The proposed
approach can be further used for classification with bigger groups without increasing the
number of learnable parameters significantly.

In the future work, we want to compare the invariant latent space of the proposed
Equivariant Attention method with Variational (Kingma and Welling, 2013) and Adversar-
ial (Makhzani et al., 2015) Autoencoders, since both architectures force the embedding to
form a structured manifold. For the case of generative models, we can assess how invariant
features affect the properties of generated samples. As we noted in the paper, the Equivari-
ant Attention has some similarities with the Spatial Transformer (Jaderberg et al., 2015)
architecture. These models can also be compared in terms of their ability to learn invariant
image representations.
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