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Abstract

Gaussian Process Latent Variable Model (GPLVM) is a powerful nonlinear dimension re-
duction model and has been widely used in many machine learning scenarios. However,
the original GPLVM and its variants do not explicitly model the correlations among the
original features, leading to the underutilization of underlying information involved in the
data. To compensate for this shortcoming, we propose a feature-correlation-aware GPLVM
(fcaGPLVM) to simultaneously learn the latent variables and the feature correlations. The
main contributions of this paper are 1) introducing a set of extra latent variables into the
original GPLVM and proposing a feature-correlation-aware kernel function to explicitly
model the feature-description information and infer the feature correlations; 2) defining a
joint objective function and developing a stochastic optimization algorithm based on the
stochastic variational inference (SVI) to learn all the latent variables. To the best of our
knowledge, this is the first work that explicitly considers the feature correlations in the
GPLVM and makes many existing GPLVMs become its special cases. Furthermore, it can
be applied to both unsupervised and supervised learnings to improve the performance of
dimension reduction. Experimental results show that in these two learning scenarios the
proposed models outperform their state-of-the-art counterparts.

Keywords: Gaussian Process, GPLVM, feature correlations, stochastic optimization

1. Introduction

Gaussian Process Latent Variable Model (GPLVM) (Lawrence, 2005) is a powerful nonlinear
dimension reduction model and can effectively discover the low dimensional manifold em-
bedded in the high dimensional space. Furthermore, it naturally inherits the characteristics
of probabilistic non-parametric Gaussian Process (GP) such as uncertainty quantification
(Iwata and Ghahramani, 2017), flexible non-parametric modeling (Huang et al., 2015a),
etc., and has been widely used in many machine learning scenarios (Lu and Tang, 2015;
Xiong and Tao, 2017).

To date, many extensions to the conventional GPLVM have been proposed, including
local distance preservation GPLVM (Lawrence and Quiñonero-Candela, 2006), supervised
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GPLVMs (Urtasun and Darrell, 2007; Gao et al., 2011; Jiang et al., 2012), semi-supervised
GPLVM (Wang et al., 2010), shared GPLVMs (Eleftheriadis et al., 2013, 2015; Song et al.,
2017), transfer GPLVM (Gao et al., 2010) and so on. All these GPLVMs just inherit the
basic structure of the original GPLVM and assume that all the features in the original space
are independent conditioned on the latent variables. Obviously, these models just implicitly
model the feature-correlation information into the low-dimensional latent variables and
mainly focus on learning representative latent variables for tasks such as classification,
regression etc., leading to the underutilization of underlying information involved in the
data and limiting the final performance. In fact, feature correlation is as important as
the feature value itself. It often involves explicit or implicit valuable information that
is beneficial to the promotion of dimension reduction tasks. For example, when dealing
with structured data such as spatial and temporal data (whose feature correlations are
known), we can significantly improve the performance of related learning algorithms by
utilizing such correlation information (Cai et al., 2007; Huang et al., 2015b). For more
general data whose feature correlations are unknown, a learning-from-data method (Hsieh
et al., 2011) can also firstly be used to infer the feature correlations. It is these above-
mentioned observations that motivate us to propose a Feature-Correlation-Aware GPLVM
(fcaGPLVM) to simultaneously learn the low dimensional latent variables and the feature
correlations. Compared with the existing GPLVMs, our fcaGPLVM has three advantages:

• it can explicitly model and learn the correlations among the original input features.

• it scales well with large-scale data by using stochastic variational inference (SVI)
method for the optimization.

• it can be applied to both supervised and unsupervised learning scenarios to improve
the performance of dimension reduction.

To the best of our knowledge, this is the first work that explicitly models the feature corre-
lations in the GPLVM and makes many existing GPLVMs become its special cases. Exper-
imental results on four real-world data sets demonstrate that, in both the unsupervised and
supervised scenarios, the proposed models outperform their state-of-the-art counterparts.

The rest of this paper is organized as follows. In Section 2, we review the original G-
PLVM and other related GP-based models. In Section 3, we firstly propose our fcaGPLVM
for latent variables and feature correlations learnings. Secondly, we develop a stochas-
tic fcaGPLVM to speed up the model optimization. Finally, we propose a supervised
fcaGPLVM to utilize the label information of data. Section 4 gives three special cases
of fcaGPLVM and shows that, in these three cases, fcaGPLVM becomes the existing G-
PLVMs. We present the experimental results in Section 5 and give conclusion in Section
6.

2. Related Work

2.1. Gaussian Process Latent Variable Model

In original GPLVM (Lawrence, 2005), given N training samples Y = [y1, · · · ,yN ]T ∈
RN×D, our goal is to learn the corresponding low dimensional latent variablesX = [x1, · · · ,xN ]T
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where xn ∈ RQ denotes the latent variable of the observed data yn (n = 1, · · · , N). In gen-
eral, Q � D, thus we realize the dimension reduction. We assume that the dth feature of
yn is generated by function fd with input xn:

ynd = fd(xn) + εnd (1)

where εnd denotes the noise term which follows a Gaussian distribution: εnd ∼ N (0, σ2).
For all the functions {fd}Dd=1, we assume that they have the same GP prior and thus the
vector fd ∈ RN (composed by the function values of all the N training samples) follows a
multivariate Gaussian distribution:

p(fd) = N (fd|0,KXX) (2)

where KXX ∈ RN×N denotes the kernel matrix computed by using the kernel function
(e.g., RBF kernel) k(·, ·) on X. By integrating out all the D variables {fd}Dd=1, we write
the marginal likelihood as

p(Y |X,θ) =

D∏
d=1

exp
(
−1

2y
T
:,d(KXX + σ2I)−1y:,d

)
(2π)N/2|KXX + σ2I|1/2

(3)

where y:,d ∈ RN denotes the dth column of matrix Y ; θ denotes all the hyper-parameters
(the hyper-parameters in the kernel function and noise distribution) involved in GPLVM. As
a result, we can seek the maximum likelihood solution for the hyper-parameters in θ and the
latent variables by maximizing (3). The graphical model representation of GPLVM is shown
in Figure 1(a). Obviously, GPLVM just makes a conditional independence assumption on
the features of Y , thus losing the feature-correlation information.

2.2. Modeling feature correlations

In the research of GP, we often consider GPLVM as a multiple-output prediction model
where only the output data are given. Thus we should respectively review two kinds of
GP-based models: prediction and latent variable models. On the one hand, in the context
of the former kind of model, the most relevant work to ours is the Kronecker GP (Bonilla
et al., 2008) which is actually a special design for multi-task learning. However, through
analyzing the formulation of this model, we find that it can also be extended to GPLVM
for feature correlation learning as a special case of our model under certain settings (see
Section 4 for more detail). On the other hand, in the context of GP-based latent variable
models, the most relevant works to ours are Dai et al. (2017) and Bodin et al. (2017),
both of which introduce a set of additional latent variables to expand the input domain
for the constructions of multi-output GP (Jawanpuria et al., 2015) and non-stationary GP
(Lázaro-Gredilla and Titsias, 2011) respectively. In this paper, inspired by both, we also
introduce a set of extra latent variables for the inference of feature correlations. However,
both the structure and the solution of our model highlight its significant differences from
those above-mentioned two models. More specifically, instead of using only a set of shared
latent variables to model the output information in Dai et al. (2017) or using only one
latent variable for one sample to model the non-stationary behaviour of function in Bodin
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Figure 1: The graphical model representations of the original GPLVM and stochastic
fcaGPLVM. The red dashed arrows in 1(b) denotes the projection functions
{h(d)}Dd=1.

et al. (2017), we impose a set of latent variables on each sample to model its feature-
description information, which results in a specially designed model structure. In order to
incorporate the feature correlation learning mechanism into this model, we firstly propose
a feature-correlation kernel function and then define a joint objective function with respect
to all the latent variables. At last, we develop a stochastic optimization algorithm by using
the stochastic variational inference (SVI) (Hoffman et al., 2013; Hensman et al., 2013) to
maximize the objective.

3. The Proposed Model

The original GPLVM just assumes that all the dimensions of the original data are indepen-
dent conditioned on the latent variables, thus leaving the room of performance promotion.
In this section, we first propose our fcaGPLVM and then develop a stochastic fcaGPLVM
for efficiently model learning. At last we also explore the supervised learning of fcaGPLVM
by utilizing the label information to improve the performance of dimension reduction.

3.1. Feature-correlation-aware GPLVM

In order to model the feature correlations into the GPLVM, apart from the latent xn, we

also assume that there are D feature-description variables X̄(n) = [x̄
(n)
1 , ..., x̄

(n)
D ]T ∈ RD×P

for the nth sample yn. Thus X̄(n) contains the description information of D features in
sample yn and we can synchronously learn the variable xn and X̄(n) (for n = 1, · · · , N)
to realize the dimension reduction and infer the feature correlations. Specifically, we define
that the nth row and dth column element of matrix Y is obtained as follows:

ynd = f(xn, x̄
(n)
d ) + εnd (4)

where εnd denotes the noise term that follows a Gaussian distribution: εnd ∼ N (0, σ2). We
denote F as the noise-free part of Y where the nth row and dth column element of matrix
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F is fnd = f(xn, x̄
(n)
d ). Assuming that function f follows a GP prior, we have

vec(F ) ∼ N (0, cov(F ,F )) (5)

where vec(·) denotes the vectorization operator of matrix; cov(F ,F ) ∈ RND×ND is the
covariance matrix that encodes the correlation between arbitrary two elements of matrix
F . We therefore should design a suitable kernel function that can utilize the information
involved in both the low dimensional latent variables and feature-description variables.
In this paper, we propose the following feature-correlation-aware kernel function for the
computation of the covariance matrix cov(F ,F ):

k̂(d−1)N+n,(t−1)N+j = cov(fnd, fjt) = k̄(x̄
(n)
d , x̄

(j)
t )k(xn,xj) (6)

where k̄(·, ·) and k(·, ·) are two different kernels (e.g., two different RBF kernels) for feature-
description variables and low dimensional latent variables. Then, we use the kernel matrix
K̂ ∈ RND×ND (induced by the kernel function k̂) to replace the covariance matrix cov(F ,F )
where K̂ has the following form:

K̂ = K̄X̄X̄ ◦ (ED ⊗KXX) (7)

X̄ = [x̄
(1)
1 , · · · , x̄(N)

1 , · · · , x̄(1)
D , · · · , x̄(N)

D ]T ∈ RND×P ; K̄X̄X̄ denotes the kernel matrix
computed by using kernel function k̄(·, ·) on X̄; KXX is the same as in Equation (2);
ED ∈ RD×D is a matrix with all elements being one; ⊗ denotes the Kronecker product; ◦
denotes the Hadamard product; k̂(d−1)N+n,(t−1)N+j denotes the ((d − 1)N + n)th row and

((t− 1)N + j)th column element of K̂.
Making a deep analysis on the GP that uses the above formulated kernel function, we can

find that it models the covariance of the two elements fnd and fjt in matrix F by four latent

variables x̄
(n)
d , x̄

(j)
t , xn and xj . Thus the kernel functions k̄(x̄

(n)
d , x̄

(j)
t ) and k(xn,xj) are

used to encode the correlation between features and samples respectively. Different from the
original GPLVM which models the covariance between fnd and fjt as k(xn,xj) if d = t, and

0 otherwise, our fcaGPLVM models the covariance as the product of two terms (k̄(x̄
(n)
d , x̄

(j)
t )

and k(xn,xj)) by which we can explicitly obtain the feature-description variables and thus
the feature correlations.

However, as we can see, many more latent variables need to be learned in fcaGPLVM (X̄
and X), which may lead to over-fitting and lower convergence rate. To address these prob-

lems, we further assume that x̄
(n)
d (for d = 1, ..., D) is obtained by the following projection

function:
x̄

(n)
d = h(d)(yn) (8)

where h(d) is a vector-valued function RD → RP . Our goal therefore is to learn the latent
variable xn for n = 1, ..., N and projection function h(d) for d = 1, ..., D. By integrating out
F , we get the following marginal likelihood:

p
(
Y |X, {h(d)}Dd=1

)
=

exp

(
− 1

2vec(Y )T (K̂ + σ2I)−1vec(Y )

)
(2π)ND/2|K̂ + σ2I|1/2

(9)
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It is worth to note that, for notational convenience, we have dropped the dependency on
the hyper-parameters in θ during the derivation process. We can consider the log likelihood
L = ln p

(
vec(Y )|X, {h(d)}Dd=1

)
as the joint objective function and maximize it to learn the

optimal latent variables, hyper-parameters and projection functions.

3.2. Stochastic Feature-correlation-aware GPLVM

As we can see, during the optimization process, we need to compute the inversion of a
ND × ND matrix (K̂ + σ2I) with a computation complexity O(N3D3) and a storage
complexity O(N2D2) which are so high that ordinary computers are unaffordable. To
reduce the complexities of GP, many sparse GP method have been proposed (Titsias, 2009;
Hensman et al., 2013; Wang et al., 2014; Xu et al., 2014). In this subsection, we develop a
stochastic fcaGPLVM via using the stochastic variational inference (Hoffman et al., 2013;
Hensman et al., 2013). Specifically, we introduce M auxiliary points Z = [z1, ...,zM ]T ∈
RM×Q which are in the same latent space as the latent variables in X. Correspondingly,
we also define the outputs of fcaGPLVM (with the inputs in Z) as u = [u1, ..., uM ]T ∈ RM
where we just assume that the output um of zm is a scalar. In this case, the feature-
description variables of the auxiliary points must be defined as Z̄ = [z̄1, ..., z̄M ]T ∈ RM×P .
Thus we can use all these auxiliary variables to improve the scalability of fcaGPLVM. The
generation process of Y is defined as

p(u) = N
(
u|0, K̂ZZ

)
(10)

p(F |u,Z, Z̄,X) = N
(
vec(F )|K̂XZK̂

−1
ZZu, K̃

)
(11)

p(Y |F ) = N
(
vec(Y )|vec(F ), σ2I

)
(12)

where K̂ZZ = K̄Z̄Z̄ ◦KZZ ∈ RM×M ; K̂XZ = K̄X̄Z̄ ◦ (ED×1 ⊗KXZ) ∈ RND×M ; ED×1 ∈
RD×1 is a matrix with all elements being one; K̃ = K̂−K̂XZK̂

−1
ZZK̂

T
XZ . In the derivations,

we should integrate out F and u to obtain the margin likelihood. We therefore use the
stochastic variational inference method to derive out a lower bound of the log likelihood.
Assuming the variational posterior distribution of u to be q(u) = N (u|m,S) (m ∈ RM
and S ∈ RM×M are the variational parameters) and following the derivations in Hensman
et al. (2013), the log marginal likelihood can be expressed as:

L = ln

∫
p(Y |u,Z, Z̄,X)p(u)du

=

∫
q(u) ln

(
p(Y |u,Z, Z̄,X)p(u)

q(u)

)
du−

∫
q(u) ln

(
p(u|Y ,Z, Z̄,X)

q(u)

)
du

(13)

Since the KL divergence KL(q(u)||p(u|Y ,Z, Z̄,X)) = −
∫
q(u) ln

(
p(u|Y ,Z,Z̄,X)

q(u)

)
du ≥ 0,

the remaining part L0 =
∫
q(u) ln

(
p(Y |u,Z,Z̄,X)p(u)

q(u)

)
du can be considered as a lower bound

of L. This lower bound is maximized when the KL divergence KL(q(u)||p(u|Y ,Z, Z̄,X))
vanishes, which occurs when q(u) equals the posterior distribution p(u|Y ,Z, Z̄,X). We
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further apply Jensen’s inequality to ln p(Y |u) and obtain

ln p(Y |u,Z, Z̄,X) = ln

∫
p(Y |F )p(F |u,Z, Z̄,X)dF ≥

∫
p(F |u,Z, Z̄,X) ln p(Y |F )dF

(14)
By using (13) and (14), a lower bound of L is immediately obtained:

L ≥ LB(Y ) =

∫
q(u) ln

[
exp

[∫
p(F |u,Z, Z̄,X) ln p(Y |F )dF

]
p(u)

q(u)

]
du

=
N∑
n=1

D∑
d=1

[
lnN

(
ynd|k̂iK̂−1

ZZm, σ2
)
− 1

2σ2
k̃i,i −

1

2
tr (SΛi)

]
−KL(q(u)||p(u))

(15)
where i = (d−1)N+n; k̂i ∈ R1×M denotes the ith row of matrix K̂XZ ; Λi = 1

σ2 K̂
−1
ZZ k̂

T
i k̂iK̂

−1
ZZ ;

k̃i,i is the ith diagonal element of matrix K̃.
For the projection functions {h(1), · · · , h(D)}, we just assume that they are all linear

functions1:
x̄

(n)
d = h(d)(yn) = W(d)

Tyn + b(d), for d = 1, · · · , D. (16)

where W(d) ∈ RD×P and b(d) ∈ RP denote the weight and the bias parameters respectively.
To avoid the over-fitting problem, we also impose a l1-norm regularization term on each
W(d) and therefore maximize the following joint objective function to learn the model:

LBr(Y ) = LB(Y )− λ1

D∑
d=1

‖W(d)‖1 (17)

where λ1 > 0 denotes the regularization hyper-parameter. Obviously, LBr can be factorized
into N terms with respect to each training sample. Thus, a stochastic gradient method can
be used to train fcaGPLVM. Specifically, we use the mini-batch mode (with batch size
B) to improve the precision of the gradient computation. As shown in Figure 1(b), the
variables in stochastic fcaGPLVM can be divided into two categories: (1) local variable X;
(2) global variables including m, S, {W(d), b(d)}Dd=1, Z, Z̄ and the hyper-parameters in θ.
After initializing all the variables, in each iteration, we firstly randomly draw B samples
(denoted by Y (B)) from Y and then maximize LBr(Y (B)) (with fixed global variables) to
learn all the local variables for Y (B). Finally, we update the global variables by using the
learned local variables (we use different step-sizes α1, α2 and α3 for the updating of different
global variables). The detailed implementation of the stochastic fcaGPLVM is summarised
in Algorithm 1.

It is worth to note that the computation of the lower bound seems also to be decom-
posable in terms of the D dimensions. However, as we have mentioned in this section, the
projection function h(d)(yn) in (16) depends on the complete input vector yn. As a result,
the lower bound still depends on the complete input vector yn and cannot be factorized in
terms of the D dimensions. In fact, the introduced function h(d)(yn) is one of important
contribution of this paper.

1. It is worth to note that many other projection functions (i.e., Multi-layer Perceptron, Kernel Ridge
Regression and so on) can also be used without adding any complexity in formulations.
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Algorithm 1: Stochastic fcaGPLVM
Input: Y , Q, P , M , B, λ1, α1, α2, α3

Output: X, {Wd, b(d)}Dd=1, m, S, Z, Z̄ and θ

1 Train a conventional sparse GPLVM on a small subset of Y and use the learned GPLVM
initialize Z, m, S, θ;

2 Initialize {Wd, b(d)}Dd=1, Z̄ randomly;

3 repeat

4 Draw B samples (Y (B)) from Y randomly;

5 Maximize LBr(Y (B)) to learn the corresponding local variables with fixed global vari-
ables;

6 Compute the gradients of LBr(Y (B)) with respect to all the global variables;
7 for d = 1, · · · , D do

8
(
W(d), b(d)

)
+ = α1

(
∂LBr(Y (B))

∂W(d)
, ∂LBr(Y (B))

∂b(d)

)
9 Update the variational parameters and auxiliary points:

m+ = α2
∂LBr(Y (B))

∂m , S+ = α2
∂LBr(Y (B))

∂S , Z+ = α2
∂LBr(Y (B))

∂Z , Z̄+ = α2
∂LBr(Y (B))

∂Z̄

10 Update the the hyper-parameter θ:

θ+ = α3
∂LBr(Y (B))

∂θ

11 until the lower bound in (15) converges;

3.3. Supervised Feature-correlation-aware GPLVM

Both fcaGPLVM and stochastic fcaGPLVM are unsupervised, i.e., they ignore the label
(class) information of data (Urtasun and Darrell, 2007; Gao et al., 2011; Jiang et al., 2012).
As a consequence, it is essential to improve the performance of fcaGPLVM by developing
a supervised fcaGPLVM (S-fcaGPLVM). In this case, we assume that the classes of N
training samples are denoted by l = [l1, ..., lN ]T ∈ RN , where ln ∈ {1, · · · , L} indicates
the class of yn and L denotes the number of classes. We also define the class centers of L
classes as {c1, · · · , cL} and then propose the following joint objective function for supervised
dimension reduction:

LBs(Y ) =LBr(Y )− λ2

N∑
n=1

L∑
l=1

1(ln = l)‖xn − cl‖22 + λ3

L−1∑
a=1

L∑
b=a+1

‖ca − cb‖22 (18)

where 1(ln = l) = 1 if ln = l and 0 otherwise. Obviously, in this S-fcaGPLVM, we try to
learn the fcaGPLVM and maximize the between-class scatter (as well as minimize within-
class scatter) synchronously. λ2 and λ3 denote the positive regularization hyper-parameters
that control the tradeoff between the ability of discrimination and generalization as in
Urtasun and Darrell (2007). The optimization process of S-fcaGPLVM is the same as in
Algorithm 1, except that we should also update the class centers in each iteration. In fact,
we can also use the stochastic gradient method to update the lth class center by utilizing
the gradient of LBs(Y (B)) with respect to the class center:

∂LBs(Y (B))

∂cl
= 2λ2

B∑
n=1

1(ln = l)(cl − xn) + 2

L∑
a=1

1(a 6= l)(cl − ca)
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where 1(ln 6= l) = 1 if ln 6= l and 0 otherwise.

3.4. Prediction of new samples

In the prediction step, given a new sample y∗, our goal is to predict the corresponding
feature-description variables {x̄∗d}Dd=1 and the low dimensional latent variable x∗. Since we
have learned the projection functions {h(d)}Dd=1 in the learning step, the feature-description
variable x̄∗d can be computed directly as

x̄∗d = h(d)(y∗), for d = 1, · · · , D (19)

At last, we can maximize the following objective function to learn the corresponding low
dimensional latent variable x∗:

LB(y∗) =
D∑
d=1

(
lnN

(
ynd|k̂∗dK̂−1

ZZm, σ2
)
− 1

2σ2
k̃∗d,d −

1

2
tr (SΛ∗d)

)
(20)

where k̂∗d ∈ R1×M and its mth element (k̂∗dm) denotes the kernel k̄(x̄∗d, z̄m)k(x∗, zm); Λ∗d =
1
σ2 K̂

−1
ZZ k̂

∗T
d k̂

∗
dK̂
−1
ZZ ; k̃∗d,d = k̄(x̄∗d, x̄

∗
d)k(x∗,x∗)− k̂∗dK̂

−1
ZZ k̂

∗T
d .

4. Special Cases of FcaGPLVM

In this section, we introduce three special cases of fcaGPLVM and show the connections
between fcaGPLVM and the previous GPLVMs. Firstly, since the fcaGPLVM is an exten-
sion of the original GPLVM, the following proposition shows that fcaGPLVM becomes the
original GPLVM by ignoring the feature correlations.

Proposition 1 Assume that matrix K̄X̄X̄ has the following form:

K̄X̄X̄ = ID ⊗EN ∈ RND×ND (21)

where EN ∈ RN×N denotes the matrix with all elements being one, then K̂ can be written
as

K̂ = ID ⊗KXX ∈ RND×ND (22)

and fcaGPLVM becomes the original GPLVM.

The work in Lawrence (2005) gives a detailed discussion of the GPLVM with the kernel
matrix in (22) and shows the equivalence between it and the original GPLVM.

Secondly, the fcaGPLVM also has a close connection to the Kronecker GP as shown in
the following proposition:

Proposition 2 Assume that matrix K̄X̄X̄ has the following form:

K̄X̄X̄ = ΣD ⊗EN ∈ RND×ND (23)

where ΣD ∈ RD×D is a positive semi-definite matrix, then K̂ can be written as

K̂ = ΣD ⊗KXX ∈ RND×ND (24)

and fcaGPLVM becomes the Kronecker GP (see Bonilla et al. (2008) for more detail).
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Table 1: Detailed information of the data sets.
Data sets # of samples # of features # of classes
FC 7466 11 \
USPS 2,000 256 10
Statlog 6,435 36 7
SDD 58,509 48 11
GFE 27,936 300 9

Obviously, in this case, we use the matrix ΣD to encode the correlations among D features.
A joint learning can be conducted to synchronously estimate ΣD and the low dimensional
latent variables.

Thirdly, by imposing some constraints on both KXX and the projection functions
{h(d)}Dd=1, Proposition 3 shows that the GPLVM with back-constraints becomes a special
case of fcaGPLVM.

Proposition 3 Assume that matrix KXX = EN , the projection functions h(1) = h(2) =
· · · = h(D) = h and K̄ = ID ⊗ K̄ẊẊ where K̄ẊẊ denotes the kernel matrix computed by

using the kernel function k̄(·, ·) on Ẋ = [h(x1), · · · , h(xN )]T , then K̂ can be written as

K̂ = K̄ = ID ⊗ K̄ẊẊ ∈ RND×ND (25)

Thus fcaGPLVM becomes the GPLVM with back-constraints (see Lawrence and Quiñonero-
Candela (2006) for more detail).

5. Experiments and Analysis

In this section, we evaluate our fcaGPLVM and S-fcaGPLVM (by using stochastic gradient
ascent algorithm) on multiple real-world data sets. The compared methods include unsu-
pervised GPLVMs, i.e., original GPLVM (Lawrence, 2005), GPLVM with back-constraints
(BC-GPLVM) (Lawrence and Quiñonero-Candela, 2006) in which we use a Multi-layer Per-
ceptron (MLP) back-constraint with one hidden-layer, Kronecker GPLVM (the extension of
Kronecker GP in Bonilla et al. (2008)); supervised GPLVMs, i.e., Discriminative GPLVM
(D-GPLVM) (Urtasun and Darrell, 2007), Supervised GPLVM (S-GPLVM) (Gao et al.,
2011). We also compare the proposed S-fcaGPLVM with the GP for classification (GPC)
model (Hensman et al., 2015) to demonstrate its performance.

5.1. Data Sets and Settings

In the experiments, we use the flow cytometry (FC), United States Post Services (USPS)
and another three UCI data sets, i.e., Landsat Satellite (Statlog), Sensorless Drive Diagnosis
(SDD), grammatical facial expression (GFE), to verify the performance of the proposed
models. Table 1 shows the detailed information of these data sets. All the experiments are
run on computer with Intel(R) Core(TM) i5-3470 @ 3.20GHz CPU and 16.0 GB RAM.

In the experiments, we randomly draw 10% samples as test set and use the remaining
samples for 5-fold cross-validation to obtain the best hyper-parameters. To validate the
performance of the compared methods, we use the nearest neighborhood (NN) classifier
(with nearest neighborhood number K = 3) on the learned latent variables to obtain the
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classification accuracy. We run the experiments on randomly split data set 10 times and
obtain the average classification accuracy. It is worth to note that, for the fcaGPLVM
and S-fcaGPLVM, we only use the low dimensional latent variables (excluding the feature-
description variables) for classification, thus providing a fair comparison. Since the GPC is
a classification method, we directly use it on the split data sets and then report its averaged
accuracies. The fcaGPLVM, S-fcaGPLVM and GPC are all trained in the mini-batch mode
with B = 20. For all the models, we use the RBF kernel function and the number of
auxiliary points is set to 100. The dimension of auxiliary points is the same as that of
low dimensional latent variables. The dimension of feature-description variables in both
fcaGPLVM and S-fcaGPLVM is set to P = 10.

5.2. Unsupervised Dimension Reduction

In this section, we compare fcaGPLVM with other models in unsupervised dimension re-
duction. The classification accuracies with different dimensions (from 2 to 7) of latent
variables are shown in Figures 2(a)-2(d). As we can see, BC-GPLVM outperforms GPLVM
by preserving the local distance among samples. Both Kronecker GPLVM and fcaGPLVM
also outperform GPLVM, demonstrating that we can improve the performance of GPLVM
by considering the feature correlations. In the experiments, to the best of our knowledge,
it is the first attempt to use the Kronecker GP in GPLVM. Furthermore, in Section 4, we
have demonstrated that it becomes the special case of our fcaGPLVM with certain settings.
In most cases, fcaGPLVM has the highest classification accuracy, indicating its significant
improvements in performance. For the FC data, we report the feature correlation matrices
learned by fcaGPLVM. Specifically, after obtaining feature-description variables for each
sample, we compute the feature kernel matrix of each sample using the kernel function
k̄(·, ·). At last, we show the inversions2 of these matrices for which we only show those ele-
ments with large absolute values (≥ 0.15 in Figure 3(b) and ≥ 0.2 in Figure 3(c)). Figure
3(a) shows the directed acyclic graph (DAG) learned by Sachs et al. (2005). As we can
see, Figures 3(b) and 3(c) almost coincide with the DAG in Figure 3(a), indicating that
fcaGPLVM takes good effect on the learning of feature correlations.

5.3. Supervised Dimension Reduction

In this subsection, we compare S-fcaGPLVM with supervised learning models to verify
its performance in classification. The dimension of latent variables is also set from 2 to
7. The results are shown in Figures 4(a)-4(d). As we can see, with the growth of the
number of latent variable dimensions, the performance of all the GPLVM-based models
including S-fcaGPLVM, S-GPLVM and D-GPLVM increases and becomes stable at last. In
most cases, S-fcaGPLVM outperforms all other models, demonstrating that S-fcaGPLVM
can indeed improve its performance by modeling feature-correlations. Furthermore, all the
latent variable models outperform the GPC model, indicating that these latent variable
models can learn more representative features to improve the performance of supervised
tasks. We also calculate the p-values of the non-parametric Wilcoxon rank-sum test to

2. In fact, it is the inversion matrices (of feature-description kernel matrices) that imply the feature correla-
tions among the observed variables as in Hsieh et al. (2011). We therefore show these inversion matrices
to illustrate the learned feature-correlations.
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Figure 2: Performance of classification in unsupervised dimension reduction.
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Figure 3: The feature correlations learned by Sachs et al. (2005) and our fcaGPLVM.

check the statistical significance. Although the p-values on different data sets are not
provided in this paper, in most cases they are all less than 0.05, indicating the statistical
significance between fcaGPLVM with other compared methods. We can also see that the
performance of fcaGPLVM on USPS and SDD data sets is not significantly improved with
the increase of dimension of latent variables, indicating that fcaGPLVM can also obtain
better classification accuracy with lower latent variable dimension.

5.4. Analyses of hyper-parameters

In this subsection, we analyze the effect of both the dimension of feature-description vari-
ables and the number of auxiliary points on the performance of fcaGPLVM. Specifically,
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Figure 4: Performance of classification in supervised dimension reduction.

we select the dimension P of feature-description variables and the number M of auxiliary
points from {0, 5, 10, 15} and {10, 20, ..., 90, 100} respectively. It is worth noting that when
P = 0, fcaGPLVM becomes the original GPLVM. We fix the dimension of latent variable,
Q = 7, and conduct experiments on USPS and Statlog data sets by using 5-fold cross-
validation. Their classification accuracies are shown in Figure 5. As we can see, since the
number of auxiliary points controls the approximate ability of the stochastic fcaGPLVM
towards the full fcaGPLVM, more auxiliary points lead to higher classification accuracy.
The dimension of feature-description variables controls the complexity of fcaGPLVM, thus
a cross-validation should be conducted to choose the appropriate value of P for specific
data, e.g., for the USPS and Statlog, their reasonable values of P are 10.
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Figure 5: Classification accuracy of fcaGPLVM with different P and M .
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Table 2: Comparison of the computation and storage complexities in each iteration.

GPLVM BC-GPLVMKronecker GPLVMS-GPLVMD-GPLVM GPC fcaGPLVM S-fcaGPLVM
CCO(M2N) O(M2N) O(M2(DB +M)) O(M2N) O(M2N) O(M2(B +M))O(M2(DB +M))O(M2(DB +M))
SC O(MN) O(MN) O(M(DB +M)) O(MN) O(MN) O(M(B +M)) O(M(DB +M)) O(M(DB +M))

Table 3: Precise comparison of the times consumed by the eight models.
Data sets GPLVM BC-GPLVM Kronecker GPLVM S-GPLVM D-GPLVM GPC fcaGPLVM S-fcaGPLVM
USPS 331.2s 923.8s 17,521.4s 1,169.6s 42,279.5s 2,700.2s 19,388.1s 22,963.4s
Statlog 1,633.9s 7,156.1s 16,668.4s 2,676.5s 96,347.3s 10,158.9s 20,391.9s 25,922.3s
SDD 14,865.4s 73,439.3s 173,172.2s 103,076.2s 523,471.3s 74,173.2s 216,016.7s 284,771.5s
GFE 8,981.7s 42,463.7s 96.399.8s 33,704.6s 382,321.7s 51,454.3s 135,152.6s 171,912.1s

5.5. Complexity Analysis

We theoretically compare the complexities of all the models and report the computation and
storage complexities in each iteration in Table 2 (CC: Computation Complexity; SC: Storage
Complexity). As we can see, both the computation and storage complexities of Kronecker
GPLVM, GPC and fcaGPLVM are much lower than other models (it is worth to note that we
use variational inference based sparse approximation (Titsias, 2009) for the optimization
of GPLVM, BC-GPLVM, S-GPLVM and D-GPLVM. Thus both their computation and
storage complexities are much lower than their original settings). However, this comparison
just makes a rough estimation since the number of iterations is ignored. We therefore also
give an accurate time comparison of these models on the four data sets (with Q = 2) in
Table 3. Although the running times of fcaGPLVM and S-fcaGPLVM are not the lowest,
they have lower storage complexities and achieve much better classification accuracies. In
fact, our model can deal with much bigger datasets than the batch learning models such
as BC-GPLVM, D-GPLVM and S-GPLVM, since its dominant computation and storage
complexities (in each iteration) only depend on the dimension of observed variables and the
size of mini-batch. However, the batch learning models such as GPLVM, BC-GPLVM, D-
GPLVM and S-GPLVM usually run out of memory when dealing with much bigger datasets,
since they need to compute and store the kernel matrix between every training samples and
every auxiliary points.

6. Conclusion

In this paper, we have presented the feature-correlation-aware GPLVM and used the s-
tochastic variational inference method to speed up the learning of latent variables and
hyper-parameters. Furthermore, we have also proposed the Supervised fcaGPLVM that
utilizes the label information to improve the performance of dimension reduction. The per-
formance of fcaGPLVM and S-fcaGPLVM has been shown from the experiments on multiple
real-world data sets. Although it is not discussed in detail, fcaGPLVM can also be used in
many other learning scenarios such as semi-supervised and multi-view learnings which are
the main contents of our future work.
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