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Abstract

The Spherical k-means algorithm proposed by (Dhillon and Modha, 2001) is a popular
algorithm for clustering high dimensional datasets. Although their algorithm is simple and
easy to implement, a drawback of the same is that it doesn’t provide any provable guarantee
on the clustering result. (Endo and Miyamoto, 2015) suggest an adaptive sampling based
algorithm (Spherical k-means++) which gives near optimal results, with high probability.
However, their algorithm requires k sequential passes over the entire dataset, which may
not be feasible when the dataset and/or the values of k are large. In this work, we propose
a Markov chain based sampling algorithm that takes only one pass over the data, and
gives close to optimal clustering similar to Spherical k-means++, i.e., a faster algorithm
while maintaining almost the same approximation. We present a theoretical analysis of
the algorithm, and complement it with rigorous experiments on real-world datasets. Our
proposed algorithm is simple and easy to implement, and can be easily adopted in practice.

Keywords: Spherical k-means; Unsupervised learning; Collaborative filtering; Document
clustering; Markov chain.

1. Introduction

The Spherical k-means is an important problem in unsupervised learning. It is similar to
the k-means clustering problem and uses cosine similarity as a similarity/distance measure
instead of euclidean distance. (Kleinberg et al., 1998) showed that the Spherical k-means
problem is NP-hard. (Dhillon and Modha, 2001) proposed an algorithm (SPKM) for the
problem which consist of two steps. In the first step, k data points are sampled uniformly
at random from the given set of data points, and it is called as the seeding step. In the
second step, the solution is refined iteratively based on the cosine similarity between cluster
centers and the points belonging to that cluster. The second step is repeated until there
is little or no improvement from the previous iteration. Other than the similarity measure,
the second step is similar to Llyods-iterations (Lloyd, 2006) for the k-means problem .
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1.1. Initial seeding for Spherical k-mean problem

The task of locating k initial cluster centers is important in obtaining high quality clustering.
Although the SPKM (Dhillon and Modha, 2001) algorithm is simple and efficient, it depends
on the initial values of the k cluster centers. As mentioned above, the initial k data points are
selected uniformly at random from the dataset. This may lead to arbitrarily poor clustering
performance when the distribution of points across the underlying optimal clusters is non-
uniform.

The Spherical k-means++ (SPKM++) algorithm, motivated by k-means++(Arthur
and Vassilvitskii, 2007), suggests an adaptive sampling strategy to sample k initial points.
Considering them as cluster centers, they give a solution that is O(log k)-competitive with
the optimal solution, without making any assumptions on the data. However, this approach
requires k sequential passes over the data making it impractical even for moderate values
of k, and/or when the dataset is large.

1.2. Our contribution

Contributions of the paper are two-fold and we summarize them as follows:

• We conducted thorough experimental evaluations of SPKM++ (Endo and Miyamoto,
2015) on publicly available datasets to demonstrate its applicability, which was not
addressed in their paper.We obtain improved clustering quality in addition to better
running time with respect to vanilla SPKM (Dhillon and Modha, 2001).

• We propose a Markov chain based algorithm (SPKM-MCMC) for initial seeding of k
points. As opposed to k passes required by SPKM++, our algorithm requires only one
pass over the data for the initial seeding. The theoretical guarantee on the clustering
cost of SPKM-MCMC algorithm is close to SPKM++ while simultaneously achieving
a significant speed-up in the seeding time 1. We complement the theoretical analysis
of our result by rigorous experiments on publicly available datasets.

Our results are presented below:

Theorem 1 Let X be a set of n vectors in d-dimensional unit sphere, ε ∈ (0, 1), k be a
positive integer, and C be an output of Algorithm 1 consisting of initially sampled k seeding
points, and m = 1 + 4

ε log 4k
ε . Then,

E[ΦC(X )] ≤ 4(log k + 2)ΦOPT(X ) + εAV(X ),

where ΦC(X ) denotes the clustering cost of the algorithm; ΦOPT(X ) denotes the cost of
underlying optimal clustering; AV(X ) = |X | −

∑
x∈X 〈x,FM(X )〉; and FM(X ) denotes the

Fisher-Mean of the set of vectors X . The seeding time of the algorithm is O(nd+ 1
εk

2d log k
ε ).

Remark 1 There are two terms in the upper bound on the expected clustering cost – the first
term is 4(log k+ 2)ΦOPT(X ) which is same as the clustering cost of SPKM++. The second
term εAV(X ) is an additive error due to the Markov chain approximation. The term AV(X )
is the expected cost of the SPKM when k = 1, and the cluster center is sampled uniformly
from X .

1. Seeding time is the time required to sample k initial vectors.
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Remark 2 We compare and contrast the effect of chain length on the clustering time and
the clustering cost. As m = 1 + 4

ε log 4k
ε , for a fixed value of k, a larger chain length leads

to a smaller value of ε. A smaller value of ε renders the clustering cost of our algorithm
to that of SPKM++. Further, as ε tends to zero, the seeding time tends to infinity. Thus,
the clustering cost is inversely proportional to the chain length, while the clustering time
is proportional to the chain length. However, we experimentally validate that even a small
chain length gives good clustering performance – smaller clustering time as well as cost.

Remark 3 We compare the seeding time of SPKM++ and our algorithm. The seeding time
of SPKM++ is O(ndk), while the seeding time of our algorithm is O

(
nd+ 1

εk
2d log k

ε

)
. We

obtain a higher speedup with respect to SPKM++ for a larger value of k. This also reflected
in our experimental work mentioned in Subsection 5.2.

1.3. Comparison of k-means and Spherical k-mean:

The k-means (KM) clustering algorithm minimises the distance between cluster centers and
member data points. On projecting these points onto a unit sphere, the sum of squared
distances from the cluster centers acts as a natural measure of dispersion and is the moti-
vation behind spherical k-means (SPKM) (Hill et al., 2013). Since the document vectors
are normalised and have unit L2 norm (Dhillon and Modha, 2001), the Euclidean distance
between two vectors is monotonic to their cosine similarity. This may lead to confusion that
both KM and SPKM give the same clustering results. However, we emphasize that this
is not the case. The boundary between two clusters in the SPKM is a hyperplane passing
through the origin. Such a hyperplane produces a hypercircle on intersection with a unit
sphere which is then used as the measure of closeness. Thus, the SPKM partitions the unit
sphere using a collection of great hypercircles. On the other hand, the boundary between
clusters in KM (hyperplane) does not generally intersect with the unit sphere to produce a
great hypercircle. Section 3.6 of (Dhillon and Modha, 2001) gives a detailed discussion.

Organization of the paper: In Section 2, we present the necessary background that is
required to understand the paper. In Section 3, we present our algorithm – Markov chain
based concept decomposition of text documents, and its analysis. In Section 4, we discuss
some fundamental applications of our result. In Section 5, we complement our theoretical
results with extensive experimentation on real-world datasets. Finally, in Section 6, we
conclude our discussion.

2. Background

We start with a word of notations. Let ||x|| denote L2 norm of the vector x. Inner
product between two d-dimensional vectors x and c is denoted as 〈x, c〉 and is defined as
〈x, c〉 = xT c =

∑d
i=1 xici. Angular dissimilarity between two unit vectors x and c is defined

as d(1)(x, c) = 1−〈x, c〉. Further angular dissimilarity between a vector x and a set of unit
vectors C is defined as d(1)(x,C) = minc∈C(1 − 〈x, c〉). Fisher-mean of a set of vectors
X = {x} is denoted as FM(X ):

FM(X ) =

∑
x∈X x

||
∑

x∈X x||
.
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2.1. Spherical k-means clustering

Let X = {x1,x2, . . . ,xn} denote a set of n vectors on the unit sphere in Rd, that is ||xi|| = 1
for 1 ≤ i ≤ n. Let {π1, π2, . . . , πk} denote a partition of vectors into k disjoint clusters such
that

k⋃
i=1

πi = X and πi ∩ πj = φ for i 6= j.

For each 1 ≤ i ≤ k the Fisher-mean of the vectors belong to the cluster πi is ci =

∑
x∈πi

x

||
∑

x∈πi
x|| .

The quality of any partitioning
⋃k
i=1{πi} is evaluated using the following objective function

Φ
(1)
C (X ) =

k∑
i=1

∑
x∈πi

d(1)(x, ci) = |X | −
k∑
i=1

∑
x∈πi

〈x, ci〉. (1)

Spherical k-means involves finding a partitioning of the given set X so that the above

objective function is minimized. Clearly, minimizing Φ
(1)
C (X ) is equivalent to maximization

of
∑k

i=1

∑
x∈πi〈x, ci〉. This problem has been shown to be NP-Complete (Kleinberg et al.,

1998). We denote c∗i as the optimal cluster center of i-th cluster and OPT = {c∗i }ki=1 as the
set of k optimal cluster centers.

An algorithm for this problem was proposed by (Dhillon and Modha, 2001). We call it
SPKM. There are two steps in the algorithm – the first step consist of uniformly sampling k
vectors – initial cluster centers – and is called as seeding step; in the second step (Llyods-type
iterations) each vector is assigned to a cluster center having smallest angular distance, and
then new cluster centers are computed by calculating Fisher-mean of the vectors belonging
to that cluster. The second step is repeated until a stopping criterion is satisfied – when
there is little to no improvement in the clustering cost.

2.2. Extension of dissimilarity measure in Spherical k-means

For two unit vectors x and c, the extended angular dissimilarity between them is defined
as d(α)(x, c) = α − 〈x, c〉, where α ≥ 3/2. Similarly, we define the α–Spherical k-means
clustering objective function as follows:

Φ
(α)
C (X ) =

k∑
i=1

∑
x∈πi

d(α)(x, ci) = α|X | −
k∑
i=1

∑
x∈πi

〈x, ci〉. (2)

Minimization of Φ
(α)
C (X ) is equivalent to maximization of

∑k
i=1

∑
x∈πi〈x, ci〉. Thus, both

the objective functions mentioned in Equations 1,2 describe the same clustering problem.
In a first look this extension in the dissimilarity measure looks meaningless (Endo and
Miyamoto, 2015), though it carries a nice property – dissimilarity measure satisfies the
triangle inequality – which is crucial for proving correctness of Spherical k-means++ algo-
rithm. We state it in the lemma below:

Lemma 2 (Lemma 1 of (Endo and Miyamoto, 2015)) d(α)(, ) satisfies the triangle in-
equality, when α ≥ 3/2.
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2.3. Spherical k-mean++ (SPKM++) (Endo and Miyamoto, 2015)

A drawback of the algorithm proposed by (Dhillon and Modha, 2001) is that it may converge
to a local minima. (Endo and Miyamoto, 2015) proposed an adaptive sampling algorithm
which samples one data point in each iteration, and in total samples k points (seeding
step) such that the clustering obtained by considering them as cluster centers gives an
O(log k) competitive result, with respect to the optimal clustering. Llyods-type iteration
step further improves the clustering quality. We discuss their sampling strategy as follows:
the first vector is sampled uniformly at random from the given set of vectors. The remaining
k − 1 points are sequentially added to previously sampled centers based on the following
probability distribution

p(x|C) =
d(α)(x,C)∑

x′∈X d(α)(x′,C)
=

d(α)(x,C)

Φ
(α)
C (X )

, (3)

where d(α)(x,C) = minc∈C(α− 〈x, c〉), where α ≥ 3/2. We call the above sampling ap-
proach as angular-sampling. We present a theoretical guarantee on their sampling algorithm
as follows:

Theorem 4 (Theorem 2 of (Endo and Miyamoto, 2015)) Let X be a set of n vectors
in a d-dimensional unit sphere, ε ∈ (0, 1), and C be a set consisting of initially sampled
k-points, where the first point is sampled uniformly at random and the remaining k − 1
points are sampled via angular-sampling as stated in Equation 3. Then

E[Φ
(α)
C (X )] ≤ 4(log k + 2)ΦOPT(X ).

Note 3 For simplicity in notation, we drop α from the notation of dissimilarity measure
and clustering objective, and consider the value α = 3/2 throughout.

3. Our results (SPKM-MCMC) – sampling k initial seeding points via
Markov chain

3.1. Approximating angular-sampling:

As mentioned earlier, the SPKM + + algorithm suggests that sampling initial data points
following the angular-sampling distribution (see, Equation 3) results in a clustering cost
which is within an O(log k) factor from the optimal clustering result. However, sampling
from such a distribution requires taking k passes over data, which might be sub-optimal
when the value of k, and/or n, d are large. Our goal is to reduce the complexity by
approximating angular-sampling, i.e, we wish to obtain a faster sampling algorithm whose
implied sampling probabilities p̄(x) are close to the underlying angular sampling distribution
p(x). In order to measure the closeness of the distributions, we use the total-variation
distance, which is defined below.

Definition 5 (Total Variation) Let Ω be a finite sample space on which two probability
distributions p and q are defined. The total variation distance ||p − q||TV between p and q
is defined as 1

2

∑
x∈Ω |p(x)− q(x)|.
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In what follows, using total variation distance, we give a bound on the solution quality of
our proposed algorithm. Roughly speaking, if the total variation distance between our sam-
pling distribution and underlying angular-sampling distribution is less than ε, then a similar
clustering guarantee as in (Endo and Miyamoto, 2015) is maintained, with probability of
at least 1− ε.

Algorithm 1: Markov chain based initial seeding for Spherical k-means clustering.

Input: Data set X , chain-length m, number of clusters k.
Output: A set of initial cluster centers (seeding points) C = {c1, c2, . . . , ck}.

1 Preprocessing step:
2 c1 ← a vector sampled uniformly at random from X .
3 for x ∈ X do

4 q(x|c1) = d(x,c1)
2
∑

x′∈X d(x′,c1) + 1
2|X |

5 end
6 Main algorithm:
7 C← {c1}
8 for i = 2, 3, . . . , k do
9 x← point sampled from q(x)

10 dx ← d(x,C)
11 for j = 2, 3, . . . ,m do
12 y ← point sampled from q(y)
13 dy ← d(y,C)

14 if
dyq(x)
dxq(y) > Unif(0, 1) then

15 x← y, dx ← dy
16 end

17 end
18 C← C ∪ {x}
19 end

3.2. Approximating angular-sampling via Markov chain:

We propose an alternate way of sampling initial k concept vectors via a Markov chain,
which closely approximates the underlying angular sampling distribution, and requires only
one pass of the data. We first uniformly sample one vector c1 from the set of vectors X
and then iteratively build a Markov chain. In each iteration j ∈ [2, . . . ,m], where m is the
chain length, we uniformly sample a candidate yj ∼ q(x) with the following probability.

q(x|c1) =
d(x, c1)

2
∑

x′∈X d(x′, c1)
+

1

2|X |
=

d(x, c1)

2 Φc1(X )
+

1

2|X |
, (4)

Then, we either accept xj ← yj with probability

π(xj−1, yj) = min

(
p(yj)

p(xj−1)

q(xj−1)

q(yj)
, 1

)
,
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or reject it xj ← xj−1, where p(.|C) is the probability as mentioned in the Equation 3.
For a Markov chain of length m, we need to calculate the distance between m data points
and their respetive cluster centers. The stationary distribution of this Markov chain is the
target distribution p(x), that is, p̄m(x) of the m-th state xm converges to p(x). Corollary
1 of (Cai, 2000) quantifies it and shows that the total variation distance decreases at a
geometric rate with respect to the chain length m.

||p(.|C)− p̄m(.|C)||TV ≤
(

1− 1

γ

)m−1

where γ = maxx∈X
p(x|C)
q(x|c1) . This suggest that chain length m = O(γ log 1

ε ) achieves a total
variation of at most ε.

We summarize our algorithm in Algorithm 1 and its correctness follows from Theorem 1
2 .

Intution: In our proposed algorithm, we sample the first point c1 uniformly from X , and
based on c1, we recall our proposal distribution below:

q(x|c1) =
d(x, c1)

2
∑

x′∈X d(x′, c1)
+

1

2|X |
=

d(x, c1)

2 Φc1(X )
+

1

2|X |

The proposed distribution has two parts – the first part is based on the angular-distribution
(as stated in Equation 3) with respect to c1, which is the best possible distribution for the
second iteration. We show that this distribution also suffices for later iterations. The second
term works as a regularization term which ensures that the mixing time of the Markov chain
is always within a factor of two.

There are three key steps in our analysis – we first bound how well a single Markov
chain approximates one iteration of exact angular sampling, then show that even for later
iterations the Markov chain distribution is close to the underlying angular-sampling dis-
tribution under total variation distance (see Definition 5). Finally, a proof shows how the
approximation error accumulates across iterations, and give a bound on the expected solu-
tion quality. We start with the following lemma which shows that in any iteration ΦC(X )
is ε1 competitive with respect to Φc1(X ), or how well a Markov chain distribution ap-
proximates angular sampling distribution under total variation distance. In the following
p̄m(x|C) denotes probability of sampling a point x ∈ X via a Markov chain of length m.

Lemma 6 Let C ⊆ X , with c1 ∈ C, where c1 is the first point sampled in Algorithm 1 line
2. For ε1, ε2 ∈ (0, 1), m ≥ 1 + 2

ε1
log 1

ε2
, then at least one of the following condition holds:

1. ΦC(X ) < ε1Φc1(X ),

2. ||p(.|C)− p̄m(.|C)||TV ≤ ε2.

2. Our proposed algorithm and its analysis are similar to (Bachem et al., 2016) which proposed a Markov
chain based initial seeding for k-means. They generalize their result to other clustering problems and to
any metric space for which there exists a global isometry on Euclidean space. In this work, we show that
a similar analysis also works for Spherical k-means clustering problem, where the underlying dissimilarity
measure – “1- cosine similarity” – does not satisfy the triangle inequality, which is a key requirement
for a dissimilarity measure to be a metric space.
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Proof Consider a fixed c1 and C with c1 ∈ C. If Condition 1 holds, then we are done.
We give proof of a lemma assuming that Condition 1 doesn’t hold, i.e, ΦC(X ) ≥ ε1Φc1(X ).
By its design the stationarity distribution of the Markov chain mentioned in Algorithm 1
is p(.|C). Due to Corollary 1 of (Cai, 2000), total variation distance between the two
distributions is bounded by

||p(.|C)− p̄m(.|C)||TV ≤
(

1− 1

γ

)m−1

≤ e−
m−1
γ (5)

where γ = maxx∈X
p(x|C)
q(x|c1) . If chain length m ≥ 1 + γ log 1

ε2
, then due to Equation 5, the

total variation distance is bounded by ε2. We give a bound on γ now due to Equations 3,4:

γ = max
x∈X

p(x|C)

q(x|c1)
≤ d(x,C)

ΦC(X )
/

(
d(x, c1)

2 Φc1(X )
+

1

2|X |

)
≤ d(x,C)

ΦC(X )
/

d(x, c1)

2 Φc1(X )
= 2

d(x,C)

d(x, c1)
.
Φc1(X )

ΦC(X )
≤ 2

ε1

The final inequality follows due to our assumption ΦC(X ) ≥ ε1Φc1(X ) and the fact that
d(x,C) ≤ d(x, c1).

We now give a bound on the expected clustering cost by adding points through Markov
chain sampling. Let c1 be the vector sampled by the Algorithm 1, and let C be a set of
already sampled vectors with c1 ∈ C. Let us denote Ac1(C, l) as the expected clustering
cost after sequentially adding l ∈ N points to already sampled set of centers C via Markov
chain as stated in Algorithm 1 in lines 11–17. Thus, by definition we have,

Ac1(C, l) =
∑
x∈X

p̄m(x|C)Ac1(C ∪ {x}, l − 1),

where Ac1(C, 0) = ΦC(X ). Define P c1(C, l) as the probability of sampling a solution which
is ε1-competitive with respect to Φc1(X ) after adding l vectors to C via Markov chain as
stated in Algorithm 1.

P c1(C, l) = 1ΦC(X )<ε1Φc1 (X ),

P c1(C, l) =
∑
x∈X

p̄m(x|C)P c1(C ∪ {x}, l − 1).

We finally define B(C, l) as expected clustering cost of sequentially adding l vectors to an
already sampled set of vectors C via angular-sampling.

B(C, l) =
∑
x∈X

p(x|C)B(C ∪ {x}, l − 1),

where B(C, 0) = Ac1(C, 0) = ΦC(X ),∀c1 ∈ X .
The following lemma relates B(C, l) with Ac1(C, l) which helps to relates the clustering

cost of adding points via angular-sampling vs. Markov chain sampling. A proof of the
lemma below follows from induction over l and Lemma 6. Proof arguments of the lemma
below are in the similar lines as of Lemma 2 of (Bachem et al., 2016), we defer it to the full
version of the paper.
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Lemma 7 Let C ⊆ X , with c1 ∈ C, where c1 is the first point sampled in Algorithm 1 line
2. For ε1, ε2 ∈ (0, 1),m ≥ 1 + 2

ε1
log 1

ε2
, l ∈ N, the following holds:

Ac1(C, l) ≤ (ε1P
c1(C, l) + lε2)Φc1(X ) +B(C, l)

Putting it all together – Proof of Theorem 1:

Using Lemma 6 and 7 we completes a proof of Theorem 1. Let C = {c1}, and l = k − 1,
then due to Lemma 7, we have the following:

Ac1(C, l) ≤ (ε1P
c1(C, k − 1) + (k − 1)ε2)Φc1(X ) +B(C, k − 1)

≤ (ε1 + (k − 1)ε2) Φc1(X ) +B(C, k − 1) (6)

=
ε

2
Φc1(X ) +B(C, k − 1) (7)

Inequality 6 holds as P c1(C, k − 1) ≤ 1; and Equality 7 holds by choosing ε1 = ε/2 and
ε2 = ε/4k. By Lemma 4 of (Endo and Miyamoto, 2015) we have,

1

|X |
∑
c1∈X

Φc1(X ) ≤ 2AV(X ), (8)

and Theorem 1 of (Endo and Miyamoto, 2015) we have,

1

|X |
∑
c1∈X

B(C, k − 1) ≤ 4(log k + 2)ΦOPT(X ) (9)

Equation 7 along with Equations 8, 9 completes a proof of the Theorem.
Complexity of the algorithm: the pre-processing step (between line number 1 − 5) of

Algorithm 1 requires taking one pass, and has O(nd) complexity. For each iteration i =
{2, 3, ..., k}, the complexity of constructing the Markov chain isO(im), leading to complexity
of the main loop O(1

εk
2d log k

ε ).

4. Applications of the results

4.1. Text clustering

Document clustering has become ubiquitous and is a fundamental problem in identifying
latent factors, automatic topic extraction, filtering, fast information retrieval etc. Clus-
tering is an unsupervised learning problem where the goal is to determine the intrinsic
grouping in a set of unlabeled data. As cosine similarity is a widely accepted choice for
computing similarity between two text documents (represented in vectors using any possible
representations such as BoW (Bag-of-words), tf-idf etc.), the Spherical k-means clustering
algorithm proposed by Dhillon and Modha is a more appropriate formulation for clustering
text documents (Dhillon and Modha, 2001). Cosine similarity can be efficiently computed
for sparse vectors, the SPKM algorithm exploits the sparsity of text data and quickly con-
verges to a local minima. As our proposed clustering algorithm gives a faster and closer to
optimal clustering for Spherical k-means clustering problem, it naturally becomes a better
choice than SPKM for clustering text documents.
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4.2. Scaling-up Recommendation systems

Collaborative filtering algorithms are widely used among existing approaches to recom-
mender systems. Traditional approaches include assigning a user to the cluster containing
the most similar users, and then using the purchases and ratings of users in this cluster to
generate recommendations. Model based techniques like clustering are very often used to
represent users and items by means of a d-dimensional latent factor space (Su and Khosh-
goftaar, 2009). Here, the similarity is measured by “Pearson Correlation Coefficient” or by
“Cosine Similarity” (Vozalis and Margaritis, 2003). Since clustering forms an important
part in the collaborative filtering algorithm, there has been sufficient work attempting to
achieve this in a spherical setting. Previous work shows that spherical k-means clustering
on the Netflix dataset resulted in a more meaningful clustering of movies into genres (Am-
pazis, 2008). This method has also shown better performance in terms of both accuracy and
computational costs. Other recommender systems with better performance also make use
of SPKM for generation of clustering ensembles (Castro-Herrera et al., 2009). Work aimed
at identifying tags in recommender systems has made extensive use of the SPKM algorithm
(Hayes and Avesani, 2007). Recommender systems in changing environments like evolving
online forums also make use of SPKM for clustering (Castro-Herrera et al., 2009). As our
proposed clustering algorithm gives a faster and closer to optimal clustering for Spherical
k-means, in conjunction with the approaches mentioned above, it will lead to an efficient,
accurate, and scalable algorithm for recommendation systems.

4.3. Nearest neighbour search

Our proposed algorithm can be used to efficiently solve an approximate nearest neighbor
search for inner product. Given a set of data points (vectors) and a query vector, in the
K-MIPS problem, the goal is to pick the top K vectors that maximises their dot product
with the query vector. (Auvolat et al., 2015) proposed an approach to solve the K-MIPS
problem via Spherical k-means clustering. It consist of first reducing the problem to K-
MCSS (maximum cosine similarity search) by padding both input and query vectors using
the asymmetric LSH algorithm of (Shrivastava and Li, 2014) and then perform Spherical
k-means clustering on top of them. To find the top K vectors that have maximum cosine
similarity with the query point, they first find the cluster whose centroid has the highest
cosine similarity with the query vector, then they consider all the points belonging to that
cluster as a candidate set. If there are n points, then clustering them into

√
n clusters leads

each cluster to contain approximately
√
n points. Thus, the search time drops roughly from

O(n) to O(
√
n). As our proposed clustering algorithm gives a faster and closer to optimal

clustering for Spherical k-means, in conjunction with the approach of (Auvolat et al., 2015),
will lead to an efficient and accurate algorithm for the K-MIPS problem.

Along with the above mentioned applications, spherical k-means clustering is a central
subroutine in many other fundamental machine learning applications such as dimension re-
duction (Dhillon and Modha, 2001), learning feature representation (Coates and Ng, 2012),
hypertext clustering and web searching (Modha and Spangler, 2000), spam filtering (Delany
et al., 2012), document summarization (Dunlavy et al., 2007), non-negative matrix factor-
ization (Wild, 2002). Our proposed algorithm can potentially lead to faster and accurate
algorithms in such applications.
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Table 1: Real-world dataset description.

Data Set
No. of

documents
No. of words in the
vocab (dimension)

Max no. of words in a
document(sparsity)

NIPS full papers 1500 12419 914
KOS blog entries 3430 6906 457
BBC 9635 2225 128
20 Newsgroups 1700 56916 734

5. Experiments

Hardware description: All experiments were run on a standard Intel - Xeon 3.5GHz
Quad-Core Processor and Corsair - Vengeance 2 x 16GB Memory. 3

Datasets: The experiments were performed on publicly available datasets - NIPS full pa-
pers (Lichman, 2013), KOS blog entries (Lichman, 2013), BBC (Greene and Cunningham,
2006) and 20Newsgroups (Lang). After tokenization and removal of stopwords, the vocab-
ulary of unique words was truncated by only keeping words that occurred more than ten
times. These datasets are “BoW”(Bag-of-words) representations of the corresponding text
corpora. For those words that do not occur in the document, their frequency were taken to
be zero. Their cardinality, dimension, and sparsity is in Table 1.

5.1. Experimental comparison between SPKM and SPKM++

Experimental setup: We first pre-process the datasets and normalise each document
vector such that it has a unit norm. In order to evaluate the clustering cost, we use the
cost function mentioned in Equation 2. Let us recall the equation below:

ΦC(X ) =

k∑
i=1

∑
x∈πi

d(x, ci) = α|X | −
k∑
i=1

∑
x∈πi

〈x, ci〉,

where X is the set of documents, and α = 3/2. In this setting a lower clustering cost implies
better clustering quality and hence is better. SPKM and SPKM++ were run for different
values of k ∈ {3, 5, 7, 10}. For SPKM, k initial seeding points were randomly sampled, and
iterated over using Lloyd’s algorithm. The iterations are terminated when there is less than
0.001 improvement in cost from the previous iteration. For SPKM++ we only perform
the seeding step – sample k points sequentially via the angular sampling distribution (see
Equation 2). Clustering cost is calculated immediately after the seeding step – assuming
those k-sampled vectors as concept vectors and assigning all the points to the one that has
the highest cosine similarity. In order to reduce the effect of randomness, we repeat each
experiment 5 times and consider the average.

Insight: The experiments were performed on all datasets and results for KOS and BBC
datasets are in Tables 2, 3 respectively. Similar results were obtained on the other two
datasets but we do not include them due to space constraints. As visible from Tables 2, 3, it
is clear that SPKM++ gives better/comparable clustering results right after seeding when
compared to SPKM obtained at the end of Lloyd’s iterations. For example: on KOS dataset,

3. Implementations of SPKM, SPKM++, and SPKM-MCMC are available at the following repository:
https://github.com/Prat-123/SPKM.
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Table 2: Comparison of clustering quality between SPKM and SPKM++ for different values
of k on KOS dataset.

k SPKM SPKM++ SPKM SPKM++ )
(Clustering cost) (Seeding cost) (Total running time(s)) (Seeding time(s))

3 3974.64 3958.73 159.17 9.64
5 3832.52 3832.57 369.67 31.65
7 3788.65 3781.33 531.34 64.66
10 3747.02 3736.83 616.64 139.93

Table 3: Comparison of clustering quality between SPKM and SPKM++ for different values
of k on BBC dataset.

k SPKM SPKM++ SPKM SPKM++ )
(Clustering cost) (Seeding cost) (Total running time(s)) (Seeding time(s))

3 13344.63 13350.20 286.95 8.63
5 13209.44 13184.78 526.33 28.38
7 13068.64 13080.07 1056.70 59.17
10 12925.35 12941.94 1350.85 125.89

when k = 3, SPKM++ obtained 16 times speed-up in the running time with respect to
SPKM, while simultaneously achieving improvement in the clustering quality. Of course,
clustering results of SPKM++ will further improve if Lloyd’s iterations are applied after
the results of seeding step.

5.2. Experimental comparison between SPKM++ and SPKM-MCMC

Experimental setup: We empirically validate our theoretical results and compare our
proposed algorithm Spherical k-Means MCMC (SPKM-MCMC) with that of SPKM++.
For the SPKM-MCMC algorithm, different chain lengths m ∈ {5, 30, 100, 500} were con-
sidered. Both the algorithms, SPKM++ and SPKM-MCMC, were run on all datasets and
clustering quality and seeding time were recorded.

Insight: Tables 4 and 5 provide a comparison of seeding time and clustering quality by
considering the speed-up and clustering quality improvement offered by SPKM-MCMC
relative to SPKM++. On all datasets, the seeding time for SPKM-MCMC is significantly
lower than that of SPKM++, for all values of m. The seeding time increases with m, but

Table 4: Comparison of seeding time between SPKM++ and SPKM-MCMC for different
values of m. Entries of the table describe the relative speed-up in the seeding time
with respect to the seeding time of SPKM++.

k = 10 KOS BBC NIPS 20News

SPKM++ 1 1 1 1
SPKM-MCMC (m=5) ×8.0 ×7.5 ×5.4 ×4.8
SPKM-MCMC (m=30) ×7.6 ×7.0 ×5.0 ×3.3
SPKM-MCMC (m=100) ×6.6 ×5.7 ×4.2 ×1.8
SPKM-MCMC (m=500) ×4.0 ×2.7 ×2.2 ×0.5
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Table 5: Comparison of clustering cost between SPKM++ and SPKM-MCMC for different
values of m. Entries of the table describe the relative improvement the clustering
cost with respect to the cost of SPKM++.

k = 10 KOS BBC NIPS 20News

SPKM++ 0.00% 0.00% 0.00% 0.00%
SPKM-MCMC (m=5) -0.03% 0.07% 0.08% 0.48%
SPKM-MCMC (m=30) -0.07% -0.03% 0.08% 0.03%
SPKM-MCMC (m=100) -0.06% -0.03% 0.09% -0.14%
SPKM-MCMC (m=500) -0.43% 0.06% -0.13% -0.08%

Table 6: Comparison of seeding time between SPKM++ and SPKM-MCMC for different
values of m. Entries of the table describe the relative speed-up in the seeding time
with respect to the seeding time of SPKM++.

k = 30 KOS BBC NIPS 20News

SPKM++ 1 1 1 1
SPKM-MCMC (m=5) ×26.4 ×26.4 × 25.9 × 19.8
SPKM-MCMC (m=30) ×23.5 ×23.5 × 21.1 × 8.5
SPKM-MCMC (m=100) ×18.0 ×17.2 × 13.8 × 3.3
SPKM-MCMC (m=500) ×7.6 ×6.8 × 4.6 × 0.7

Table 7: Comparison of clustering cost between SPKM++ and SPKM-MCMC for different
values of m. Entries of the table describe the relative improvement the clustering
cost with respect to the cost of SPKM++.

k = 30 KOS BBC NIPS 20News

SPKM++ 0.00% 0.00% 0.00% 0.00%
SPKM-MCMC (m=5) 0.01% -0.01 % -0.01 % 0.97 %
SPKM-MCMC (m=30) -0.06% -0.02 % -0.11 % 1.16 %
SPKM-MCMC (m=100) 0.19% 0.08 % -0.08% 1.4 %
SPKM-MCMC (m=500) -0.32% 0.35 % -0.31 % 0.66 %

Table 8: Comparison of seeding time between SPKM++ and SPKM-MCMC for different
values of m. Entries of the table describe the relative speed-up in the seeding time
with respect to the seeding time of SPKM++.

k = 50 KOS BBC NIPS 20News

SPKM++ 1 1 1 1
SPKM-MCMC (m=5) ×45.22 ×43.93 × 43.34 × 39.6
SPKM-MCMC (m=30) ×37.82 ×37.42 × 31 × 22.7
SPKM-MCMC (m=100) ×25.91 ×25.19 × 17.34 × 13.1
SPKM-MCMC (m=500) ×9.4 ×8.97 × 4.9 × 5.2
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Table 9: Comparison of clustering cost between SPKM++ and SPKM-MCMC for different
values of m. Entries of the table describe the relative improvement the clustering
cost with respect to the cost of SPKM++.

k = 50 KOS BBC NIPS 20News

SPKM++ 0.00% 0.00% 0.00% 0.00%
SPKM-MCMC (m=5) -0.16% 2.81 % -0.5 % -0.68 %
SPKM-MCMC (m=30) -0.1% 2.34 % -0.46 % 0.34 %
SPKM-MCMC (m=100) 0.05% 2.62 % 0.16% 0.55 %
SPKM-MCMC (m=500) -0.2% 2.80 % -0.42 % 1.2 %

is compensated with the clustering quality improving and quickly converging to the the
clustering quality produced by SPKM++. Even with a small chain length, SPKM-MCMC
produces clusters that are close to that of SPKM++ at a fraction of the computational cost
of seeding. For example: on the KOS dataset, for k = 10 and m = 5, SPKM-MCMC obtains
an 8× speed-up (seeding time) with respect to that of SPKM++, while simultaneously
maintaining the clustering quality within 0.03% of SPKM++.

We run the experiments for two different values of k ∈ {10, 30, 50}, and obtain a higher
speed-up with respect to SPKM++ for higher values of k. As mentioned earlier, the reason
being that SPKM++ requires taking k passes over data, while SPKM-MCMC takes only
one pass. This observation is reflected in our experiments. For example: on the KOS
dataset, when the value of chain length m = 5, we obtained an 8× speed-up for k = 10,
a 26.4× speed-up for k = 30 and a 45.22× speed-up for k = 50. Moreover, clustering
costs produced by SPKM-MCMC are also approximately preserved in both the scenarios.
This observation makes our proposed algorithm (SPKM-MCMC) a more appropriate choice
when the values of k are large.

6. Concluding Remarks

We experimentally validate the SPKM++ (Endo and Miyamoto, 2015) on publicly available
datasets and show that it outperforms the state-of-the-art algorithm SPKM
(Dhillon and Modha, 2001) for the Spherical k-means clustering problem. We proposed a
Markov chain based sampling algorithm for initial seeding of k data points. We obtained
significant speed up in the seeding time as our sampling algorithm requires taking only
one pass over the data as compared to k passes required by SPKM++. In terms of the
clustering cost, we retained an O(log k) multiplicative approximation guarantee with respect
to the optimal clustering result, similar to SPKM++. Our algorithm only includes an extra
additive term which depends on the angular variance of the dataset. We experimentally
evaluated our algorithm on public datasets and obtained a significant speed-up with respect
to seeding time of SPKM++ while maintaining almost the same clustering quality. The
speed-up in the seeding time is more prominent as the value of k increases. Our proposed
algorithm is simple and easy to implement. Therefore it can easily be adapted in practice.
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