Supplementary Material: Unsupervised Heterogeneous Domain Adaptation with Sparse Feature Transformation

1. Minimization Over B

Given the current fixed $A^{(k)}$ and $\Lambda^{(k)}$, B can be updated by minimizing the augmented Lagrangian:

$$B^{(k+1)} := \underset{B}{\operatorname{arg \, min}} \ L_{\rho}(A^{(k)}, B, \Lambda^{(k)})$$
$$:= \underset{B}{\operatorname{arg \, min}} \ \ell(B) + \frac{\gamma}{q} \|B\|_{p,q}^{q}$$
(10)

where the smooth part of function is

$$\ell(B) = \frac{1}{2} \left\| A^{(k)\top} C_s B - C_t \right\|_F^2 + \frac{\alpha}{2} \left\| X_s^0 B - X_t^0 \right\|_F^2 - \operatorname{tr}(\Lambda^{(k)\top} B) + \frac{\rho}{2} \left\| A^{(k)} - B \right\|_F^2$$

This minimization problem is a convex quadratic programing with a non-smooth sparsity regularizer. We solve it using a fast proximal gradient descent method with a quadratic convergence rate (Beck and Teboulle, 2009), which tackles Eq.(10) by solving a sequence of intermediate problems iteratively with proximity operators. The algorithm is given in Algorithm 1 below. The convergence of the algorithm is proved in (Beck and Teboulle, 2009).

Algorithm 1 Fast Proximal Gradient Descent Algorithm

Initialization: $Q^{(1)} = B^{(0)} = \text{starting point}, \ \beta_1 = 1, \ t = 0.$

For iter = 1:maxiters

1. Set t = t + 1

2. Update:
$$B^{(t)} = \mathcal{P}_{\eta}(Q^{(t)}), \quad \beta_{t+1} = \frac{1+\sqrt{1+4\beta_t^2}}{2},$$

$$Q^{(t+1)} = B^{(t)} + \left(\frac{\beta_t - 1}{\beta_{t+1}}\right) \left(B^{(t)} - B^{(t-1)}\right)$$

End For

For the t-th iteration, the intermediate problem at point $Q^{(t)}$ is in the following form:

$$\mathcal{P}_{\eta}(Q^{(t)}) = \arg\min_{B} \left\{ \frac{1}{2} \|B - \widehat{Q}^{(t)}\| + \frac{\gamma}{q\eta} \|B\|_{p,q}^{q} \right\}$$
 (11)

where $\widehat{Q}^{(t)}$ is derived from the gradient of $\ell(Q^{(t)})$ such that

$$\hat{Q}^{(t)} = Q^{(t)} - \frac{1}{\eta} \nabla \ell(Q^{(t)})$$

and η is the Lipschitz constant of the general gradient function $\nabla \ell(B)$. The gradient can be computed as

$$\nabla \ell(B) = \left(C_s^{\top} A^{(k)} A^{(k) \top} C_s + \alpha X_s^{0 \top} X_s^0 + \rho I \right) B - \left(C_s^{\top} A^{(k)} C_t + \alpha X_s^{0 \top} X_t^0 + \Lambda^{(k)} + \rho A^{(k)} \right)$$

A Lipschitz constant η of $\nabla \ell(B)$ needs to satisfy the property

$$\|\nabla \ell(B) - \nabla \ell(B')\|_F \leq \eta \|B - B'\|_F$$
, for any feasible B, B' .

Lemma 1 Let

$$\eta = \sigma_{\max} \left(C_s^{\top} A^{(k)} A^{(k)} {}^{\top} C_s + \alpha X_s^{0} {}^{\top} X_s^0 + \rho I \right),$$

where $\sigma_{\max}(\cdot)$ denotes the largest singular value of the corresponding matrix. Then η is a Lipschitz constant of $\nabla \ell(B)$.

Proof Let $H = C_s^{\top} A^{(k)} A^{(k) \top} C_s + \alpha X_s^{0 \top} X_s^0 + \rho I$. We have the following derivations

$$\begin{split} &\|\nabla \ell(B) - \nabla \ell(B')\|_F \\ &= \left\| (C_s^\top A^{(k)} A^{(k)\top} C_s + \alpha X_s^{0\top} X_s^0 + \rho I) (B - B') \right\|_F \\ &= \left\| H(B - B') \right\|_F \\ &= \left(\sum_j \|H(B_{:j} - B'_{:j})\|_2^2 \right)^{1/2} \\ &\leq \left(\|H\|_2^2 \sum_j \|B_{:j} - B'_{:j}\|_2^2 \right)^{1/2} \quad \text{(since spectral norm is induced by the Euclidean norm)} \\ &= \|H\|_2 \|B - B'\|_F \\ &= \sigma_{\max}(H) \|B - B'\|_F \end{split}$$

where $\|\cdot\|_2$ denotes the spectral norm of the corresponding matrix or the Euclidean norm of a vector; $B_{:j}$ denotes the j-th column of matrix B.

The nice property about the intermediate problem in Eq.(11) is that it allows us to exploit closed-form solutions for the proximity operator $\mathcal{P}_{\eta}(Q^{(t)})$ with either the ℓ_1 -norm regularizer (p=1 and q=1) or the $\ell_{1,2}$ -norm regularizer (p=1 and q=2). According to (Kowalski et al., 2009), we have the following closed-form solution for the proximity operations:

If p = 1 and q = 1 (ℓ_1 -norm), we have

$$\mathcal{P}_{\eta}(Q^{(t)}) = sign(\widehat{Q}^{(t)}) \circ \left(|\widehat{Q}^{(t)}| - \frac{\gamma}{\eta}\right)_{+}$$

where $(\cdot)_{+} = \max(0, \cdot)$ and \circ denotes the entrywise Hadamard product operator.

If p = 1 and q = 2 ($\ell_{1,2}$ -norm), we have

$$\mathcal{P}_{\eta}(Q^{(t)}) = \tilde{Q}$$

such that

$$\tilde{Q}_{i,j} = sign(\hat{Q}_{i,j}^{(t)}) \left(|\hat{Q}_{i,j}^{(t)}| - \frac{\gamma \sum_{r=1}^{m_j} \overrightarrow{Q}_{r,j}}{(\eta + \gamma m_j) ||\hat{Q}_{i,j}^{(t)}||_2} \right)_{+}$$

where $\overrightarrow{Q}_{:j}$ denotes a reordered j-th column $|\widehat{Q}_{:j}^{(t)}|$ with a descending order of the entries, and the corresponding m_j is the number such that

$$\overrightarrow{Q}_{m_j+1,j} \leq \frac{\gamma}{\eta} \sum_{r=1}^{m_j+1} \left(\overrightarrow{Q}_{r,j} - \overrightarrow{Q}_{m_j+1,j} \right)$$

$$\overrightarrow{Q}_{m_j,j} > \frac{\gamma}{\eta} \sum_{r=1}^{m_j} \left(\overrightarrow{Q}_{r,j} - \overrightarrow{Q}_{m_j,j} \right)$$

References

- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.
- M. Kowalski, M. Szafranski, and L. Ralaivola. Multiple indefinite kernel learning with mixed norm regularization. In *Proceedings of the 26th Annual International Conference on Machine Learning (ICML)*, pages 545–552. ACM, 2009.