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Supplementary Material:
Unsupervised Heterogeneous Domain Adaptation

with Sparse Feature Transformation

1. Minimization Over B

Given the current fixed A(k) and Λ(k), B can be updated by minimizing the augmented
Lagrangian:

B(k+1) := arg min
B

Lρ(A
(k), B,Λ(k))

:= arg min
B

`(B) +
γ

q
‖B‖qp,q (10)

where the smooth part of function is
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This minimization problem is a convex quadratic programing with a non-smooth sparsity
regularizer. We solve it using a fast proximal gradient descent method with a quadratic
convergence rate (Beck and Teboulle, 2009), which tackles Eq.(10) by solving a sequence
of intermediate problems iteratively with proximity operators. The algorithm is given in
Algorithm 1 below. The convergence of the algorithm is proved in (Beck and Teboulle,
2009).

Algorithm 1 Fast Proximal Gradient Descent Algorithm

Initialization: Q(1) = B(0)=starting point, β1 = 1, t = 0.
For iter = 1:maxiters

1. Set t = t+ 1

2. Update: B(t) = Pη(Q(t)), βt+1 =
1+
√

1+4β2
t

2 ,

Q(t+1) = B(t) +
(
βt−1
βt+1

)
(B(t) −B(t−1))

End For

For the t-th iteration, the intermediate problem at point Q(t) is in the following form:

Pη(Q(t)) = arg min
B

{
1

2
‖B − Q̂(t)‖+

γ

qη
‖B‖qp,q

}
(11)

where Q̂(t) is derived from the gradient of `(Q(t)) such that

Q̂(t) = Q(t) − 1

η
∇`(Q(t))

c© 2018 .



and η is the Lipschitz constant of the general gradient function ∇`(B). The gradient can
be computed as

∇`(B) =
(
C>s A

(k)A(k)>Cs + αX0>
s X0

s + ρI
)
B −

(
C>s A

(k)Ct + αX0>
s X0

t + Λ(k) + ρA(k)
)

A Lipschitz constant η of ∇`(B) needs to satisfy the property

‖∇`(B)−∇`(B′)‖F ≤ η‖B −B′‖F , for any feasibleB,B′.

Lemma 1 Let

η = σmax

(
C>s A

(k)A(k)>Cs + αX0>
s X0

s + ρI
)
,

where σmax(·) denotes the largest singular value of the corresponding matrix. Then η is a
Lipschitz constant of ∇`(B).

Proof Let H = C>s A
(k)A(k)>Cs + αX0>

s X0
s + ρI. We have the following derivations

‖∇`(B)−∇`(B′)‖F
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(since spectral norm is induced by the Euclidean norm)

=
∥∥H‖2‖B −B′∥∥F

=σmax(H)‖B −B′‖F

where ‖ · ‖2 denotes the spectral norm of the corresponding matrix or the Euclidean norm
of a vector; B:j denotes the j-th column of matrix B.

The nice property about the intermediate problem in Eq.(11) is that it allows us to
exploit closed-form solutions for the proximity operator Pη(Q(t)) with either the `1-norm
regularizer (p = 1 and q = 1) or the `1,2-norm regularizer (p = 1 and q = 2). According
to (Kowalski et al., 2009), we have the following closed-form solution for the proximity
operations:

If p = 1 and q = 1 (`1-norm), we have

Pη(Q(t)) = sign(Q̂(t)) ◦
(
|Q̂(t)| − γ

η

)
+

where (·)+ = max(0, ·) and ◦ denotes the entrywise Hadamard product operator.
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If p = 1 and q = 2 (`1,2-norm), we have

Pη(Q(t)) = Q̃

such that

Q̃i,j = sign(Q̂
(t)
i,j )

(
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γ
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)
+

where
−→
Q :j denotes a reordered j-th column |Q̂(t)

:j | with a descending order of the entries,
and the corresponding mj is the number such that
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