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Abstract

Clustering is a fundamental machine learning task and can be used in many applications.
With the development of deep neural networks (DNNs), combining techniques from DNNs
with clustering has become a new research direction and achieved some success. How-
ever, few studies have focused on the imbalanced-data problem which commonly occurs
in real-world applications. In this paper, we propose a clustering method, regularized
deep embedding clustering (RDEC), that integrates virtual adversarial training (VAT), a
network regularization technique, with a clustering method called deep embedding clus-
tering (DEC). DEC optimizes cluster assignments by pushing data more densely around
centroids in latent space, but it is sometimes sensitive to the initial location of centroids,
especially in the case of imbalanced data, where the minor class has less chance to be as-
signed a good centroid. RDEC introduces regularization using VAT to ensure the model’s
robustness to local perturbations of data. VAT pushes data that are similar in the orig-
inal space closer together in the latent space, bunching together data from minor classes
and thereby facilitating cluster identification by RDEC. Combining the advantages of DEC
and VAT, RDEC attains state-of-the-art performance on both balanced and imbalanced
benchmark/real-world datasets. For example, accuracies are as high as 98.41% on MNIST
dataset and 85.45% on a highly imbalanced dataset derived from the MNIST, which is
nearly 8% higher than the current best result.
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1. Introduction

Clustering is a fundamental machine learning method that groups data into clusters ac-
cording to some measure of similarity or distance. It is commonly used to understand or
summarize data about which we have no prior knowledge. Clustering can be widely utilized
in practical applications, such as customer segmentation [Ngai et al. (2009)], text catego-
rization [Steinbach et al. (2000)], genome analysis [Sturn et al. (2002)], intrusion prevention,
and outlier detection [Hodge and Austin (2004)]. There are thus great needs to study the
clustering problem.

Improving the performance of clustering has been approached in many ways [Estivill-
Castro (2002)][Berkhin (2006)], such as by creating or refining algorithms that directly
perform the clustering task and by processing the data to make it more clustering-friendly.
Traditional clustering algorithms, such as K-means, DBSCAN, Spectral Clustering, have
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been widely used for clustering analysis [Estivill-Castro (2002)]. Dimensionality reduction
and representation-learning techniques, such as principal component analysis (PCA) and
non-negative matrix factorization (NMF) [Lee and Seung (2001)], have also been used ex-
tensively alongside clustering. In real-world applications, due to the diversity of datasets,
careful selection of clustering algorithms and data processing techniques is required [Liu
and Yu (2005)].

With the development of deep learning techniques, the concept of deep clustering, which
integrates deep neural networks (DNNs) with conventional clustering methods, has attracted
considerable attention among researchers. For example, deep embedded clustering (DEC)
[Xie et al. (2016)] defines an effective objective function as the KL divergence loss between
the predicted distribution and an auxiliary target distribution of labels. Variational deep
embedding (VaDE) [Jiang et al. (2016)] models a data generation procedure and picks
clusters from Gaussian mixture models (GMM). Information maximizing self-augmented
training (IMSAT) [Hu et al. (2017)] learns the distribution of labels by maximizing the
information-theoretic dependency between data and their representations. Deep clustering
using these and other methods has become increasingly widespread.

However, few studies have focused on the imbalanced-data problem, which arises nat-
urally in real-world applications. A dataset is said to be imbalanced when the numbers of
data points belonging to different classes are significantly different, a common occurrence.
Examples include the existence of rare diseases in medical diagnostics datasets, and the
existence of rare defective products in production inspection datasets. Imbalance typically
appears as a significant reduction in the performance attainable by most methods, which
assume a relatively even label distribution [Sun et al. (2007)]. This problem also exists in
supervised and semi-supervised learning, where some studies have been performed. How-
ever, traditional approaches, such as re-sampling [Chawla et al. (2004)] and class-weighted
cross-entropy [Ronneberger et al. (2015)], cannot be used in clustering because they re-
quire prior knowledge of the labels. There remains a need for an effective method that can
improve performance for both balanced and imbalanced datasets.

From a theoretical analysis and preliminary experiments on the latest deep clustering
methods, we find DEC to be a promising method that is relatively robust to imbalanced
data. DEC optimizes clustering assignments by pushing data more densely around centroids
in latent space. When each centroid is initialized at a location surrounded by similar data,
DEC is expected to perform well regardless of whether the dataset is balanced or imbalanced.

However, DEC still has room for improvement with regard to class imbalance. In this
work, we focus on two properties of DEC. First, DEC is sensitive to the initial location of
centroids, which are randomly determined with K-means. With imbalanced data, in par-
ticular, minor classes are less likely to be assigned to good centroids, degrading DEC per-
formance. We call this the initial centroid problem. Second, DEC tends to assign marginal
data points (those far from all cluster centroids) to smaller clusters. Because it is unrea-
sonable to set higher priorities to smaller clusters without knowing the class distributions,
this rule may significantly degrade performance when applied to imbalanced data. We call
this the marginal data problem.

In this work, we apply virtual adversarial training (VAT) [Miyato et al. (2017)] to
mitigate these problems. VAT is a data augmentation technique originally proposed for
supervised and semi-supervised learning. It aims to minimize difference in label distribu-
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tions of input data and augmented data, the latter of which is generated by adding a small
perturbation to the input data. The essential task of clustering is to gather similar data
together, so VAT is in good agreement with clustering on this point since the augmented
data can be interpreted as similar data. Our method thus uses VAT to augment the DEC
loss function as a regularization term. We call our method regularized deep embedded
clustering (RDEC). By integrating VAT, data points located near each other in the original
space tend to be located together in the latent space, and data assembly considers not only
centroids but also nearby data points. The contributions of this work are summarized as
follows.

• We propose RDEC as a deep clustering method that improves conventional DEC
in two ways: 1) by improving accuracy for the whole dataset despite centroids not
being placed in particularly good locations during initialization, a common occurrence
with imbalanced datasets, and 2) by improving accuracy for data near the margins of
clusters.

• We conduct extensive experimental evaluation of deep clustering for comparison with
current methods and analyse why RDEC works well. Our experimental results show
that RDEC outperforms conventional methods on most benchmark datasets, partic-
ularly on imbalanced datasets.

• We apply RDEC to a real-world application, namely clustering in wafer defect maps to
find typical defective patterns in semiconductor manufacturing. Good performance on
this dataset demonstrates RDEC’s promising effectiveness for real-world applications.

2. Related works

Most early deep clustering methods, such as [Vincent et al. (2010)] and [Tian et al. (2014)],
are two-stage methods that apply clustering after learning low-dimensional representations
of the data in nonlinear latent space. The autoencoder method proposed in [Hinton and
Salakhutdinov (2006)] is one of the most competitive methods used to learn feature rep-
resentations. However, since no cluster-promoting objective is explicitly incorporated into
the learning process, the learned representations are not necessarily clustering-friendly.

In view of this problem, representation learning and clustering are performed simulta-
neously in recent works such as [Song et al. (2013)], [Xie et al. (2016)], and [Yang et al.
(2016)]. However, these works do not sufficiently address the imbalanced-data problem.
DEC [Xie et al. (2016)] exhibits some degrees of robustness to imbalanced datasets, but
work is needed to further improve its robustness.

Several methods based on generative models have also been proposed [Jiang et al.
(2016)], [Dilokthanakul et al. (2016)]. VaDE [Jiang et al. (2016)] models a data genera-
tion procedure based on the variational autoencoder, where the data distribution in the
latent space is modeled by GMM, the representations are sampled and then mapped into
the space via the DNN. This approach is novel and can work well in some cases. However,
because the class distribution is unknown in imbalanced dataset, it is difficult to learn a
good generative model, which may lead to low versatility and robustness.

Regularization is an important research direction in deep learning. It is often used
to avoid overfitting and to improve accuracy in supervised and semi-supervised learning
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[Goodfellow et al. (2016)]. VAT was also used as a regularization term in IMSAT [Hu et al.
(2017)], where the clustering term aims to maximize the information-theoretic dependency
between data and predicted representations in an attempt to make representations in the
latent space consistent with the original data. However, the maximum tends to be obtained
when all clusters are uniform, meaning it does not perform well on imbalanced datasets.

3. Regularized deep embedded clustering

3.1. Notation

Consider a dataset X consisting of n data vectors with dimensionality d. Let xi ∈ Rd denote
item i in X (index i can be omitted for simplicity when there is no need for specificity),
and let K denote the number of clusters, which is assumed to come from prior knowledge.
Clusters are indexed from 0 to K − 1, and each cluster is represented by a centroid uj(j =
0, 1, ...,K−1). Our task is to assign items x into K clusters. Instead of clustering directly in
the data space X, data points are represented in a latent space Z via a nonlinear mapping
fθ : X → Z, where θ is a set of learnable parameters. DNN is used to parametrize fθ.

Figure 1: RDEC Model.

Figure 1 shows the RDEC network model, which comprises three sub-models. That con-
nected by solid lines is the main clustering model, where data x are mapped into embedded
representations z, and then transformed into their predicted distributions via a clustering
layer. The clustering layer is the same as that of DEC. The other two sub-models connected
by dotted lines are the autoencoder and VAT models. The autoencoder model is used for
initialization and the VAT model for regularization. Both promote the clustering model.
The learning process is divided into two phases: pretraining with autoencoder model and
fine-tuning with the clustering and VAT models. Because the decoder is not used after
pretraining and the VAT output is not needed in our final results, they are grayed out in
Figure 1. We describe the clustering model and VAT model separately below. Their details
can be found in [Xie et al. (2016)] and [Miyato et al. (2017)], respectively.

3.2. Clustering model

Clustering is performed in the latent space Z. First, embedded data zi is assigned to cluster
uj with probability qij(qij ∈ Q). Each qij is the similarity between zi and uj measured by
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Student’s t-distribution [Maaten and Hinton (2008)] as

qij =
(1 + ||zi − uj ||2/α)−

α+1
2∑

j′(1 + ||zi − uj′ ||2/α)−
α+1
2

, (1)

where α is the degree of freedom, set to 1 in this model. Centroids uj(j = 0, 1, ...,K − 1)
are initialized with K-means on the embedded data z. Elements qij of Q are also called soft
assignments, and Q is called predicted distribution of labels. An auxiliary target distribution
P corresponding to Q is defined, with each pij ∈ P computed as

pij =
qsij/fj∑
j′ q

s
ij′/fj′

, (2)

where fj =
∑

i qij are the soft cluster frequencies and s is a constant. The original DEC
fixed s = 2, but we found that it works well in a larger range, e.g. s ≥ 1. In this definition,
qij is raised to the power of s. Compared with the predicted distribution Q, the bell-shaped
curve of target distribution P has a higher peak and lower tails. The numerator qsij aims
to attract data toward centroids. When the initial centroids are placed unfavourably, the
initial centroid problem described in Section 1 occurs. The denominator fj has a large effect
on marginal data points that are far from all centroids. When qij is nearly equal over j,
pij corresponding to the lower frequency fj will become higher and marginal data will be
assigned to smaller clusters. This dependency on fj is ill-suited to imbalanced datasets and
will lead to the marginal data problem described in Section 1.

The clustering model is trained by matching soft assignments to the target distribution.
The objective function is defined as a KL divergence loss between Q and P as

LD = KL[P ‖ Q] =
∑
i

∑
j

pijlog
pij
qij
. (3)

3.3. VAT model

VAT uses data augmentation to impose the intended invariance on the label distribution. It
enables similar data in the original space to follow similar distributions in the latent space.
The objective function is defined as a KL divergence loss between predicted distributions
of x and augmented data x+ radv as

LV = KL[Q ‖ Q(x+ radv)], (4)

where radv is adversarial perturbation computed in an adversarial way as

radv = arg max
r;||r||≤ε

KL[Q||Q(x+ r)], (5)

where r is a perturbation that does not alter the meaning of the data point and ε is the
perturbation size, which is a hyper-parameter. The impact of ε is discussed in Section 4.7.
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3.4. Objective of RDEC

From the above, the objective function of RDEC can be written as

L = LD + γLV (6)

= KL[P ‖ Q] + γKL[Q ‖ Q(x+ radv)], (7)

where γ ≥ 0 is a weight that controls the balance of LD and LV in the loss function. Reg-
ularization with VAT reduces DEC’s dependency on centroids and soft cluster frequencies
by considering local similar data. The effects of VAT and γ are discussed in Sections 4.5
and 4.6, respectively.

The objective function in Eq. (7) is optimized using mini-batch stochastic gradient
decent (SGD) and backpropagation. Latent representations zi, cluster centroids uj , and soft
assignments qij are updated at each iteration, while the target distribution P is updated at
an interval of τ iterations. The learning procedure is stopped when the rate of changes in
assignments between two consecutive iterations falls below a threshold σ or the maximum
number of iterations Itrmax is reached. Because LV is learned in an adversarial way, RDEC
would take triple the computation to update network parameters as compared with DEC.
However, updating target distribution P accounts for the main computation in both RDEC
and DEC, so the gap in computation times is not large. The time complexities of DEC and
RDEC in each iteration can be respectively written as O( 1τ n) + O(b) and O( 1τ n) + O(b′),
where n is the number of samples, b is the mini-batch size, and b′ = 3b.

4. Experiments on benchmark datasets

We quantitatively compared the performance of RDEC with the performance of several base-
line methods on a set of benchmark datasets. The baseline methods were K-means, AE+K-
means, AE+DBSCAN, DEC, IMSAT, VaDE, and DCN. AE+K-means and AE+DBSCAN
are two-stage methods that execute K-means and DBSCAN after pretraining on latent
features. Adjusted rand index (ARI) [Yeung and Ruzzo (2001)] and unsupervised clus-
tering accuracy(ACC) are used as performance metrics. Following [Xie et al. (2016)],

ACC = maxm
∑n
i=1 1{li=m(ci)}

n , where li is the ground-truth label, ci is the cluster assign-
ment, and m ranges over all possible one-to-one mappings between clusters and labels.

4.1. Datasets

Three benchmark datasets, MNIST, STL, and Reuters, are used in our experiments. Each
has a relatively balanced label distribution. Because we focus on the performance of im-
balanced datasets, we generated imbalanced versions of these datasets for comparison. To
describe the degree of imbalance, we used a metric named minimum retention rate rmin,
defined as the ratio of disproportion between the numbers of samples from the minority and
majority classes in the dataset.

• MNIST: A dataset consisting of 70, 000 handwritten digits 0 to 9. All classes contain
nearly equal numbers of samples [LeCun (1998)]. Each digit is size-normalized as a
28× 28-px image, represented as a 784-dimensional vector.
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• MNIST-Imb-0: A variant of MNIST generated by reducing the number of 0-labeled
samples to 1/10 its original value. The rmin of MNIST-Imb-0 is thus 0.1.

• MNIST-Imb-all: Another variant of MNIST where the numbers of samples in the ten
classes differ significantly. The respective numbers of samples from class 0 to 9 were
10, 30, 50, 1, 000, 200, 500, 300, 6, 000, 4, 000, and 800, so the rmin is 1/600.

• STL: A set of 96 × 96-px color images [Coates et al. (2011)]. There are ten classes
labeled as airplane, bird, car, and so on. Each class contains 1, 300 images and each
image is represented as a 27, 648-dimensional vector.

• STL-VGG: 2, 048-dimensional feature vectors of STL, extracted using the VGG-16
model with weights pretrained on ImageNet [Simonyan and Zisserman (2014)].

• STL-VGG-Imb: A STL-VGG variant where the number of samples in one class is
reduced to 1/10, so the rmin of this dataset is 0.1.

• Reuters: A document dataset consisting of news stories labeled with a category tree
[Lewis (2004)]. Following [Xie et al. (2016)], four root categories are used as labels
and uniquely labeled documents are extracted. Each article is represented as a feature
vector using the tf-idf method on the 2, 000 most frequent words. The number of
articles from the four classes are 40, 635, 25, 457, 22, 356, and 8, 502, respectively.

• Reuters-Imb: A variant of Reuters, generated by reducing the number of samples of
the minority class to meet rmin = 0.1.

• Reuters-10K: A random subset of 10, 000 documents sampled from Reuters. The
number of articles from the four classes are 4, 022, 2, 703, 2, 380, and 895, respectively.

4.2. Parameter settings

Following [Xie et al. (2016)], we used fully connected networks with dimensions d − 500 −
500 − 2000 − 10 for the encoder and 10 − 2000 − 500 − 500 − d for the decoder, where
d is the input data dimension. Except for the input, output, and embedding layers, all
internal layers are activated using the ReLU nonlinearity function. All datasets used the
same network settings.

Rather than greedy layer-wise training as in DEC, in the pretraining phase, we directly
trained the autoencoder. Our preliminary experiments showed that direct training works
well at a lower cost. The optimizer SGD with learning rate lr = 1 and momentum β = 0.9
was used for MNIST and Reuters, and the optimizer Adam [Kingma and Ba (2014)] with
learning rate λ = 0.001, β1 = 0.9, β2 = 0.999 was used for STL. Pretraining epochs for
MNIST, Reuters, and STL were set to 300, 50, and 10, respectively.

In the fine-tuning phase, the clustering network was initialized with the trained encoder.
For all datasets, the optimizer SGD with learning rate lr = 0.01 and momentum β = 0.9
was used, the maximum number of iterations Itrmax was set to 20, 000, and the convergence
threshold σ was set to 0.01. The update intervals τ for MNIST, Reuters, and STL were
respectively set to 140, 30, and 30. Unless specifically stated otherwise, in these experiments
parameters γ = 5 and s = 2. For VAT-related parameters, perturbation size ε = 1, mesh
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size ξ = 10, and power iterations ip = 1. In both the pretraining and finetuning phases,
the mini-batch size was 256. All parameter settings of variant datasets were the same as
in their original datasets. All experiments were repeated five times and the means of ARI
and ACC were used for comparison, and the standard deviations were also recorded for
reference. Note that because two parameters of DBSCAN must be tuned depending on
datasets, we used a grid search method to choose appropriate values for each dataset.

4.3. Results

Table 1 shows the clustering results of the baseline methods compared with RDEC. From
these results, we can see that RDEC outperforms other methods for most datasets, according
to both metrics ACC and ARI. In particular, RDEC yielded a high accuracy of 98.41% on
MNIST with a small standard deviation of 0.01, which is comparable with supervised and
semi-supervised methods. IMSAT also performed well on MNIST, with small gaps in ACC
and ARI between it and RDEC. However, for the imbalanced MNIST, gaps exceeded 20% in
the case of MNIST-Imb-all. The results also validated our analysis of IMSAT in Section 2.
Note that because the metric ACC is in good agreement with ARI in our results, following
previous works such as DEC, in the following we reserve ACC for only comparison.

Table 1: Clustering results on various benchmark datasets (%).

PPPPPPPPPDataset

Method
K-means

AE+
K-means

AE+
DBSCAN DEC IMSAT VaDE DCN RDEC

MNIST
ACC 53.38±0.13 89.93±2.43 47.67±0.14 93.98±2.80 97.76±0.65 74.05 ±3.01(∗1) 54.15±1.25(∗5) 98.41±0.01
ARI 36.61±0.08 80.25±3.03 17.10±0.16 88.11±4.59 95.15±1.34 65.80 ±4.94 38.64±1.25 96.51±0.02

MNIST-Imb-0
ACC 50.44±0.07 86.52±1.23 47.38±0.14 89.85±1.03 86.72±7.24 N/A 50.74±0.37 94.82 ±1.48
ARI 33.49±0.02 78.78±1.52 18.32±0.54 86.30±1.60 83.65±9.59 N/A 34.06±0.83 93.51 ±0.75

MNIST-Imb-all
ACC 29.19±0.20 45.68±1.18 38.64±0.00 40.71±1.43 32.09±1.19 N/A 40.59±0.53 65.40±5.33
ARI 19.56±0.02 33.36±1.58 0.01±0.00 30.62±2.25 24.39±1.39 N/A 30.21±1.92 53.93±3.80

Reuters-10K
ACC 57.48±7.69 60.68±5.29 37.47±0.23 66.48±4.20 72.34±3.70 56.73±2.99(∗2) N/A 66.18±4.70
ARI 31.25±7.61 28.79±5.59 1.31±1.60 36.51±7.54 45.77±6.52 25.90±3.06 N/A 37.01±8.41

Reuters
ACC 53.33±0.27 74.17±2.53 34.22±0.14 73.88±3.65 67.78±5.25 43.69 ±0.01(∗3) N/A 75.45 ±3.06
ARI 25.43±2.96 56.78±6.74 1.79±0.37 57.58±3.47 41.97±5.18 N/A N/A 61.48 ±2.47

Reuters-Imb
ACC 55.58±0.03 72.89±4.18 32.52±0.01 71.85±3.45 68.12±2.91 N/A N/A 73.87±3.50
ARI 29.99±0.05 50.01±8.72 0.01±0.00 51.40±8.28 42.61±3.57 N/A N/A 55.55±9.25

STL-VGG
ACC 72.66±5.37 77.93±5.25 15.01±0.89 84.37±5.06 83.30±6.04 (∗4) 80.44±6.56 86.59±7.48
ARI 55.24±4.45 62.79±3.84 2.03±1.00 75.89±3.61 72.80±4.78 N/A 64.54±5.46 78.24 ±7.20

STL-VGG-Imb
ACC 76.70±3.13 82.08±1.86 16.93±1.00 87.21±2.46 81.30±2.29 N/A 80.74±2.12 88.63±0.14
ARI 60.37±1.75 69.06±3.06 2.42±1.11 78.84±3.55 72.87±2.01 N/A 66.56±1.59 80.56±0.26

STL
ACC 21.98±0.04 22.64±1.49 10.00±0.00 21.04±0.77 24.70±0.73 N/A N/A 21.27±0.90
ARI 6.03±0.01 6.39±0.66 0.00±0.00 5.98±0.50 8.45±0.26 N/A N/A 5.90±0.53

(∗1) : 94.46, (∗2) : 79.83, (∗3) : 79.38, (∗4) : 84.45 , (∗5) : 83.00
Note: Because we could not reproduce the accuracies of VaDE and DCN reported in the original papers using their authors’
code (obtained from github), we report our results in this table and note the authors’ results in footnotes.

RDEC clearly performed better than did DEC. For example, RDEC improved ACC on
MNIST and MNIST-Imb-all by nearly 5% and 25%, respectively. These results reflect the
effect of VAT. Table 1 also shows that all methods yielded poor performance for STL. For
this difficult dataset, other techniques need to be combined with clustering. The results
of STL-VGG demonstrated the feasibility of this idea. For example, VGG-16 significantly
increased the accuracy on STL-VGG. Since the weights in VGG-16 are trained on ImageNet,
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from which STL was acquired, it is reasonable that STL-VGG yielded good performance.
These results suggest that pretrained weights obtained from a dataset, those similar to the
provided dataset but with easier-to-obtain labels, can be used for the current dataset.

4.4. Performance on imbalanced datasets

To further examine the effect of our method on imbalanced datasets, following the exper-
imental method of DEC [Xie et al. (2016)], we sampled subsets of MNIST with various
retention rates. For minimum retention rate rmin, class-0 data points are kept at a proba-
bility of rmin and those for class 9 with a probability of 1, with the other classes retained
according to linear interpolation between. The results shown in Table 2 also demonstrate
the superiority of RDEC. Even for the most imbalanced subset with rmin = 0.1, ACC
obtained by RDEC is higher than 85%.

Table 2: Clustering accuracy on imbalanced subsample of MNIST (%).
PPPPPPPPPMethod

rmin
0.1 0.3 0.5 0.7 0.9

K-means 46.30±0.07 51.40 ±2.40 53.52±0.04 53.88±0.02 54.33±0.02

AE+K-means 76.97±2.74 86.19±3.40 88.44±02.42 90.62±0.32 86.58±4.29

DEC 77.04±2.85 89.53±4.32 92.75±3.22 95.24±0.38 89.55±5.13

RDEC 85.45±0.86 96.03±4.24 98.11±0.01 98.30±0.03 96.02±5.27

To investigate the performance on the minority class, we also calculated the recall,
precision, and F-measure values of class 0, shown in Table 3. It is evident that the results
as evaluated by recall, precision, and F-measure are in good agreement with those above as
evaluated by ACC. RDEC indeed improves clustering performance on imbalanced datasets.

Table 3: F-measures for the 0-class of imbalanced versions of MNIST (%).
PPPPPPPPPMethod

rmin
0.1 0.3 0.5 0.7 0.9

K-means
Recall 55.74±0.08 81.30±1.52 77.76±0.03 81.13±0.01 80.02±0.05

Precision 12.47±0.03 84.23±0.23 90.69±0.04 91.98±0.03 93.38±0.01
F-measure 20.39±0.05 82.73±0.68 83.73±0.00 86.21±0.00 86.18±0.03

AE+K-means
Recall 67.13±26.82 97.10±0.90 96.66±1.00 97.68±0.28 97.79±1.12

Precision 29.67±19.69 83.57±2.43 88.63±2.07 92.37±0.79 93.86±0.99
F-measure 40.58±23.83 89.81±1.43 92.46±1.33 94.95±0.46 95.79±1.04

DEC
Recall 78.90±22.69 97.86±0.23 98.10±0.16 98.40±0.11 98.58±0.10

Precision 26.77±12.97 88.99±2.52 94.18±0.92 96.71±0.55 97.30±0.69
F-measure 39.64±17.14 93.20±1.35 96.10±0.49 97.55±0.26 97.93±0.36

RDEC
Recall 98.20±0.39 98.92±0.14 99.33±0.05 99.42±0.11 99.58±0.10

Precision 60.57±28.66 96.53±0.26 98.13±0.18 98.38±0.13 98.74±0.13
F-measure 71.77±22.21 97.71±0.16 98.72±0.07 98.89±0.08 99.16±0.05
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There are two reasons why RDEC performs well on imbalanced datasets. First, DEC
inherently emphasizes cluster purity, improving robustness against imbalanced data to some
degree. In addition, VAT makes up for the weaknesses of DEC, allowing RDEC to signifi-
cantly outperform DEC.

In DEC, all assignments are performed on the basis of distances between embedded
points and centroids, which are independent of cluster size. From the definition of the
target distribution P in Eq. (2), we can see that soft assignments q are raised to the power
of s and then divided by cluster frequency f , so data close to a centroid will move more
closely toward that centroid, and data far from all cluster centroids will move to the one
with less samples in the learning process. The whole learning process makes sure that data
points assemble around the centroids. DEC performs well if the location of centroids is
proper to the dataset and soft assignments have a relatively high level of confidence.

RDEC alleviates the initial centroid and marginal data problems. By jointly optimizing
LD and LV , data points are not only drawn by their centroids but also grabbed by other
nearby points. This reduces centroid dependency and makes marginal data select centroid
following data near them. This hypothesis is confirmed in the following Section 4.5.

4.5. Effect of VAT

We investigated the effects of VAT on balanced and imbalanced datasets using two subsets of
MNIST, one consisting of all 0-labeled and 6-labeled samples, and another consisting of 1/10
of 0-labeled and all 6-labeled samples. To visualize the learning process, the dimension of
the embedded layer was set to 2. DEC and RDEC were compared in both experiments, with
the seed value fixed to guarantee that the two methods learned under the same conditions.

Figure 2(a) illustrates the learning processes on the balanced MNIST subset. The
first column displays the initial state where data points are embedded by autoencoder and
centroids are initialized by K-means. Centroids and 0-labeled and 6-labeled data points
are respectively colored red, blue, and green. To improve visibility, only a small number of
points (about 280 0-labeled and 220 6-labeled points around one centroid) were selected to
be tracked in the following learning processes. The leftmost panel in the first row displays
the whole data, and the panel subfigure in the second row displays the tracked data. From
the second column, the first row displays the DEC learning process and the second row
displays that of RDEC, thereby visualizing processes at intervals of 140 iterations.

Both the DEC and RDEC learning processes show clear trends in which data points
assemble around the centroids. This reflects the fact that both methods optimize the LD
in Eq. (3) in the same way. More importantly, data movements in RDEC are significantly
clustering-friendly, with similar data joined and attracted toward the centroid as a whole.
This phenomenon validates the hypothesis in Section 4.4. This property of VAT is very use-
ful, especially for data near margins, where centroid selection has a low level of confidence.
The accuracies of DEC and RDEC in this case are 84.82% and 98.29%, respectively.

Figure 2(b) illustrates learning processes on the imbalanced MNIST subset. The effect of
VAT is more significant in the imbalanced scenario. The performance of DEC was not very
good in this case. Although the data points assemble around centroids just as well as in the
example shown in Figure 2(a), the less-favourable centroid location divided data points from
the same class by a perpendicular bisector line between two centroids, resulting in impure
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(a)

(b)

Figure 2: Visualized learning processes for two MNIST subsets: a) a balanced dataset con-
sisting of all 0-labeled and 6-labeled data; b) an imbalanced dataset consisting of
1/10 of 0-labeled and all 6-labeled data.

clusters. The RDEC learning process, in contrast, demonstrated strong robustness to this
centroid location. Data movements by VAT are more significant than those by centroids.
The accuracies of DEC and RDEC in this case are 61.57% and 99.37%, respectively.

4.6. Effect of parameter γ

Parameter γ has an adjusting leverage function in balancing two terms of the objective
function Eq. (7). When γ is small (resp., large), the effect of LV is small (resp., large) and
the effect of LD is large (resp., small). This effect was investigated by executing RDEC on
MNIST and imbalanced MNIST with rmin = 0.1 under different settings. All experiments
were executed five times, the mean and standard deviation of accuracies were shown in
Figure 3. Overall, RDEC yields stable performance with high accuracies and low deviations
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on MNIST when 2 ≤ γ ≤ 14. Accuracies on imbalanced MNIST, by contrast, increase with
γ when 2 ≤ γ ≤ 16, though the performance becomes unstable when γ ≥ 7. Performance
on both datasets suffered obvious degradations at extreme γ settings, showing that both
the LD and LV terms are important for RDEC. We recommend setting γ between 2 and 6.

Figure 3: Effect of parameter γ. Figure 4: Impact of parameter ε. Figure 5: Convergence of RDEC.

.

4.7. Impact of perturbation size ε

Perturbation size ε specifies the range of nearby points requiring consideration during learn-
ing. It plays an important role and has been investigated in [Miyato et al. (2017)]. For
simplicity, we fixed ε = 1 based on our experiments on MNIST (Figure 4). In other specific
cases, alternatives such as relative distance from each data to its ith-nearest neighbor could
be worthy to be considered [Hu et al. (2017)].

4.8. Convergence of RDEC

According to the objective function in Eq. (7), RDEC will converge when both its terms are
minimized. To intuitively demonstrate this convergence, we examined loss and ACC values
during the RDEC clustering processes. Figure 5 illustrates an example MNIST experiment.
In this experiment, σ was set to as low as 0.0001, and as a result clustering stopped after
about 56, 000 iterations. From this figure we can see a gradual decline in loss throughout the
learning process and high, steady performance in ACC after a sharp increase over the first
10, 000 iterations. The loss decline indicates the effectiveness of our optimizing process, and
the steady performance of ACC illustrated the reasonability of that clustering procedure
stops when the rate of changes in assignments becomes sufficiently small.

5. Application to defective wafer map detection

We adopt RDEC to the detection of defect patterns in wafer maps produced in semiconduc-
tor manufacturing. Wafer defect maps show spatial patterns of defective chips on wafers.
Characteristic patterns in defect maps found in manufacturing test results suggest crucial
trouble occurring somewhere in the fabrication processes. Early detection of such patterns
is thus essential for yield improvement.

To reduce the time and labor costs of visually checking all wafer maps, previous works
[Liao et al. (2014)][Nakata et al. (2017)] have investigated automated classification with
clustering. However, these works do not address the imbalanced-data problem, which is
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inevitable because there are usually far fewer maps showing defect patterns than not. In
this work, real-world data collected in semiconductor fabrication are used to evaluate the
performance of RDEC.

5.1. Dataset and experimental settings

A wafer defect map is represented as a two-dimensional binarized image. Figure 6 shows
some example defect wafer maps. Each circle corresponds to one wafer, and colors indicate
whether the manufactured chip is defective (purple) or non-defective (gray). As the figure
shows, defective chips can appear in characteristic patterns, such as large central circles and
linear scratches. In this work, each wafer defect map is converted into a binary vector with
dimension equal to the number of chips manufactured on the wafer.

Figure 6: Examples of wafer defect maps.

In this experiment, defective maps are selected from 11 classes. For evaluation, we
visually checked maps and prepared 11 labels based on their defect patterns, such as CEN-
TER DOT, TOP EDGE, BOTTOM EDGE, UPPER LEFT SCRATCH, or BOTTOM MIDDLE.
We labeled about 13, 000 wafers sampled from the results of quality testing in semiconductor
fabrication. We evaluated the performance of clustering methods with ACC as in Section
4. Although the number of class is not known in advance in reality, we set the number of
clustering to the optimal value of 11 in this experiment.

As the number of similar maps varies depending on the magnitude of the trouble, label
distributions in the wafer dataset are highly imbalanced. Table 4 shows the ratio of each
label in the raw wafer dataset. The majority class covers 68.57% of whole dataset, while
five minor classes cover less than 1.0% of wafers. The rmin of 0.0006 is extremely low, but
such values are not unusual because failures are generally rare in real-world manufacturing.

Table 4: Ratio of each class from the whole wafer dataset (%).
Class 1 2 3 4 5 6 7 8 9 10 11

Ratio(%) 68.57 8.71 7.54 6.02 4.77 2.00 0.99 0.74 0.46 0.12 0.06

The network and parameter settings are the same as those for MNIST, except that the
update interval τ was set to 20, the maximum number of iterations Itrmax was set to 500,
and a convergence constraint was added so that learning stops when the lowest loss of LD has
not been updated in 50 consecutive iterations. This experiment compared RDEC with three
methods, K-means, AE+K-means, and DEC. For pretraining, we utilized a hand-selected
dataset consisting of wafer defect maps found by on-site engineers during fabrication. In
the STL experiment in Section 4, feature extraction with a network developed by VGG-16
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largely improves the performance of clustering, and this result suggests the importance of
correct feature extraction. We expect that pretraining with the hand-selected dataset also
allows networks to learn appropriate features for wafer dataset to be clustered.

5.2. Results

Table 5 shows clustering results for the wafer dataset. RDEC significantly outperformed
the other methods; compared to DEC, RDEC improves accuracy by 37.76%. While DEC,
K-means, and AE+K-means divide wafers from the largest class 1 into multiple clusters,
RDEC correctly gather most of these into a single cluster, resulting in a high accuracy. It
is also remarkable that RDEC collects maps from a small class, such as classes 10 and 11,
into one cluster. Since finding small but distinctive clusters is essential to early detection
of patterns in wafer defect maps, RDEC have a competitive advantage in this application.

Table 5: Clustering accuracy on wafer dataset (%).
Method K-means AE+K-means DEC RDEC

ACC 38.00 41.95 42.10 79.86

6. Conclusions

This paper proposed RDEC as a method for jointly performing deep clustering and network
regularization. The data argumentation technique VAT was combined with the DEC in
RDEC clustering method. The effect of this combination was evaluated through analyses
and experiments. By combining VAT with DEC, RDEC alleviated the initial centroid
and marginal data problems, and yielded higher performance than current methods on
most of datasets. For example, the RDEC accuracy on MNIST was 98.41%, which is
comparable to results of supervised and semi-supervised learning. Particularly, RDEC
significantly outperformed other methods on imbalanced datasets. For example, it yielded
a high accuracy of 85.45% on a highly imbalanced dataset sampled from MNIST, which is
nearly 40% and 8% higher than the accuracy of K-means and DEC, respectively.
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