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Abstract

Training Deep Boltzmann Machines (DBMs) is a challenging task in deep generative model
studies. The careless training usually leads to a divergence or a useless model. We discover
that this phenomenon is due to the change of DBM layers’ input signals during model pa-
rameter updates, similar to other deterministic deep networks such as Convolutional Neural
Networks (CNNs) or Recurrent Neural Networks (RNNs). The change of layers’ input dis-
tributions not only complicates the learning process but also causes redundant neurons that
simply imitate the others’ behaviors. Although this phenomenon can be coped using batch
normalization in deep learning, integrating this technique into the probabilistic network of
DBMs is a challenging problem since it has to satisfy two conditions of energy function and
conditional probabilities. In this paper, we introduce Batch Normalized Deep Boltzmann
Machines (BNDBMs) that meet both aforementioned conditions and successfully combine
batch normalization and DBMs into the same framework. However, unlike CNNs, due to
the probabilistic nature of DBMs, training DBMs with batch normalization has some differ-
ences: i) fixing shift parameters β but learning scale parameters γ; ii) avoiding normalizing
the first hidden layer and iii) maintaining multiple pairs of population means and vari-
ances per neuron rather than one pair in CNNs. We observe that our proposed BNDBMs
can stabilize the input signals of network layers and facilitate the training process as well
as improve the model quality. More interestingly, BNDBMs can be trained successfully
without pretraining, which is usually a mandatory step in most existing DBMs. The ex-
perimental results in MNIST, Fashion-MNIST and Caltech 101 Silhouette datasets show
that our BNDBMs outperform DBMs and centered DBMs in terms of feature represen-
tation and classification accuracy (3.98% and 5.84% average improvement for pretraining
and no pretraining respectively).

1. Introduction

Deep Boltzmann Machines (DBMs) Salakhutdinov and Hinton (2009) are powerful hierar-
chical generative models that are widely-used in machine learning community as probabilis-
tic modeling methods Salakhutdinov and Hinton (2009) and feature extractors Montavon
et al. (2012). However, training DBM is notoriously non-trivial Melchior et al. (2016); Cho
et al. (2013b). DBM’s training algorithms, e.g., Persistent Contrastive Divergence (PCD)
Tieleman (2008) or Parallel Tempering Melchior et al. (2016); Cho et al. (2013a), require
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additional tricks such as layer-wise pretraining Salakhutdinov and Hinton (2009); Cho et al.
(2013b,a), centering trick Melchior et al. (2016), careful parameter initialization and low
learning rates. Otherwise, the training tends to diverge or converge to a bad solution with
meaningless neurons that are always being active or inactive or independent of data.
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Figure 1: The graph of sigmoid function. The
input value x outside [−4, 4] has y
close to 0 or 1.

To understand why training multilayer
DBMs is challenging, let us consider the
case of binary DBMs where all units are
Bernoulli random variables. In this net-
work, the state of i-th hidden unit h

(l)
i in

l-th hidden layer h(l) is sampled from a

Bernoulli distribution h
(l)
i ∼ Bernoulli(µ

(l)
i )

with the mean µ
(l)
i = σ(b

(l)
i +h(l−1)>w

(l)
·i +

w
(l+1)
i· h(l+1)) where σ (·) is the sigmoid

function of the signals from two adjacent
layers. The sigmoid function produces the
extreme output that is close to the bound-
ary 0 or 1 whenever its input is outside
[−4, 4] (Fig. 1). Since this interval is fairly small, it is highly possible that the input

b
(l)
i +h(l−1)>w

(l)
·i +w

(l+1)
i· h(l+1) jumps out if biases or weight matrices consist of large mag-

nitude numbers. This results in µ
(l)
i ≈ 1 or 0 and h

(l)
i = 1 or 0, rendering an “always-on” or

“always-off” neuron. According to Salakhutdinov and Hinton (2012), the parameter gradi-
ents are proportional to the difference between two expectations with respect to these terms
µ and h, and therefore the gradients are close to 0 when these terms always reach one of
the boundary values 1 or 0. As a result, no learning happens and the neuron has no chance
to escape from the dead state. To avoid the explosion in the sigmoid input, zero-biases,
small weight initialization and a small learning rate are always recommended for DBMs.
Layer-wise pretraining is another solution to initialize DBM parameters into a good region
in the parameter space. Overall, the stability of layer’s input has a great impact on the
success of DBM learning.

Ioffe and Szegedy (2015) introduced batch normalization to cope with the change of
the distributions of neurons during CNN training, also known as the internal covariate
shift phenomenon. This motivates us to adopt this idea to handle the instability of layer’s
input in DBM training. However, improving the probabilistic network of DBM with deep
learning techniques is a non-trivial problem. In common deep networks such as CNNs,
advanced techniques or transformations, e.g., convolutional layer, pooling, drop-out, batch
normalization, can be inserted into each layer easily. This is because deep networks can
be considered as a deterministic composite function of elementary mappings, each of which
is specified by the transformations between layers, and adding a new transformation is
equivalent to inserting a mapping between layers. By contrast, all layers in DBMs define a
joint distribution by admitting an energy function and the transformations between layers
are defined by conditional distributions derived from the joint distribution. As a result,
when applying a new transformation to a layer in DBMs, we need to guarantee that: (i)
there exists an energy function that can adapt to this transformation; and (ii) this energy
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function (if exists) must result in a tractable form for the conditional distributions, which
are important for propagating the information between layers.

It is challenging to use new transformation in DBMs without violating these conditions.
An example is Deep Energy-based Model (DEMs) Ngiam et al. (2011), which is a RBM with
two random variable layers of visible and hidden units and many deterministic intermediate
layers between them. This structure allows to represent the posterior p (h|v) through a
powerful deterministic function g (v). However, this network sacrifices the opposite direc-
tion of p (v|h), which cannot be computed explicitly as in the vanilla RBMs. A seminal
work, which preserves all properties of energy-based models, is Convolutional Restricted
Boltzmann Machines (CRBM) Norouzi et al. (2018), where the connections between visible
and hidden units are reorganized to bring the convolutional structure into RBMs. Max-
pooling is also introduced in RBMs Lee et al. (2009) but it needs to be modified to accept
the probabilistic property of RBMs. Although both convolutional and max-pooling trans-
formations are available in RBMs, combining them into a probabilistic generative model is
not straightforward. For example, Lee et al. (2009) proposed to stack pairs of convolutional
RBMs and probabilistic max-pooling RBMs together to form a network with hierarchical
feature representation. However, this architecture is a Deep Belief Net (DBN) Hinton et al.
(2006), a hybrid network of both directed and undirected connections, and it is not an
energy-based model as DBMs. By adding both convolutional and pooling parameters to
the same energy function, CssCDBMs Xiaojun and Haibo (2018) introduce an effective way
to include both techniques in DBMs. However, this results in a highly complicated model.

These limited studies not only reveal the challenges to combine deep learning techniques
with energy-based models, but also point out that energy-based model studies have fallen
behind the development of deep learning. As an effort to fill this gap, we introduce a
novel model, named Batch Normalized DBM, that combines one of the best deep learning
tricks - batch normalization and the probabilistic framework of DBMs. To that end, we
design a novel energy function with normalization scale and shift parameters, which not
only satisfies two aforementioned conditions, but also mathematically introduces the batch
normalization formula to the conditional probabilities and therefore completely tackles the
problem of internal covariate shift. More importantly, our proposed BNDBMs require
no step of pretraining and therefore they have more advantages in training than many
existing DBMs. Our research also finds that, compared with deterministic networks, e.g.,
CNNs, applying batch normalization to the probabilistic model of DBMs needs more careful
investigation including: i) fixing shift parameters β but learning scale parameters γ and ii)
avoiding normalizing the first hidden layer and iii) maintaining multiple pairs of population
mean and variance per neuron rather than one pair in most deterministic networks. We
refer to Sec. 4.3 for more discussion. Experiments on MNIST, Fashion-MNIST and Caltech
101 Silhouette datasets indicate that our BNDBM has a significant improvement in training
efficiency (less dependent on pretraining steps) and classification accuracy (3.98% and 5.84%
on average for training with/without pretraining).
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2. Deep Boltzmann Machines

2.1. Model representation

Deep Boltzmann Machines (DBM) Salakhutdinov and Hinton (2009) are simplified variants
of Boltzmann Machines where neurons are arranged in a multilayer architecture and there
is no intra-layer connection. Let consider a network of one visible layer v with the bias
vector a and two hidden layers h = {h(1),h(2)} with biases b(1) and b(2). The number
of visible units is represented by M and the numbers of hidden units are K1 and K2

respectively. The interactions between each layer and its upper and lower layers are encoded
in a visible-to-hidden matrix W (1) and a hidden-to-hidden matrix W (2). We use Ψ =
{a, b(1), b(2),W (1),W (2)} to denote the set of all parameters. As an energy-based model,
each state (v,h(1),h(2)) ∈ {0, 1}M+K1+K2 is associated with an energy value:

E (v,h; Ψ) = −a>v − b(1)>h(1) − b(2)>h(2) − v>W (1)h(1) − h(1)>W (2)h(2)

A probability is assigned to each state as p (v,h; Ψ) = e−E(v,h;Ψ)/Z (Ψ), wherein Z (Ψ)
is a normalizing constant, also known as partition function, and it is dependent on the
model parameters. The restrictions on no connections between two neurons at the same
layer provide a nice property of their conditional independence given the adjacent upper
and lower layers. In the case of DBM with Bernoulli units, the conditional probability of a
neuron to be 1 is represented via a logistic sigmoid function σ (·):

p
(
vm = 1|h(1); Ψ

)
= σ

(
am +w

(1)
m·h

(1)
)

p
(
h(2)n = 1|h(1); Ψ

)
= σ

(
b(2)
n + h(1)>w

(2)
·n

)
p
(
h(1)n = 1|v,h(2); Ψ

)
= σ

(
b(1)
n + v>w

(1)
·n +w

(2)
n· h

(2)
)

2.2. Parameter training

The DBM parameters Ψ can be learned by maximizing the likelihood function L (v; Ψ) =∑
h(1),h(2) p

(
v,h(1),h(2); Ψ

)
from data D =

{
v[i]
}N
i=1

, where N is the number of training

data points. The gradient of the log-likelihood is estimated as the partial derivatives of
logL with respect to each parameter:

∇Ψ logL = Edata

[
− ∂E
∂Ψ

]
− Emodel

[
− ∂E
∂Ψ

]
(1)

wherein Edata and Emodel are expectations over the data distribution and the model dis-
tribution respectively. Since estimating two expectations in DBMs is computationally de-
manding, approximation approach was proposed to work around. The first term is usually
approximated via a factorial distribution:

q
(
h(1),h(2); Ψ̃

)
=

2∏
l=1

Kl∏
i=1

(
µ̃
(l)
i

)h(l)
i
(

1− µ̃(l)
i

)1−h(l)
i

(2)

The variational parameters µ̃ are trained by updating the corresponding fixed-point
equations until convergence:

µ̃(1)
n = σ

(
b(1)
n + v>w

(1)
·n +w

(2)
n· µ̃

(2)
)

µ̃(2)
n = σ

(
b(2)
n + µ̃(1)>w

(2)
·n

)
Meanwhile, the second expectation can be estimated using Gibbs sampling. This

method, however, requires to run Gibbs chains until convergence (hundreds or thousands
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of iterations) in every epoch. To shorten the training time, we can maintain persistent
chains over training as Persistent Contrastive Divergence (PCD) approach does in Tiele-
man (2008). The combination of variational approximation and PCD results in a success
of DBM training with a pretraining step Salakhutdinov and Hinton (2009).

2.3. Layer-wise pretraining

Training DBMs directly from randomly initialized weights generally does not work Salakhut-
dinov and Hinton (2009); Cho et al. (2013a,b). The existing DBMs Salakhutdinov and
Hinton (2012); Cho et al. (2013a,b); Xiaojun and Haibo (2018) require good initialization
of parameters via a pretraining step. The pretraining procedure for DBMs was originally
introduced by Salakhutdinov and Hinton (2009). This method views two consecutive layers
as a RBM and then stacks trained RBMs to initialize DBM’s parameters before triggering
the main training procedure.

3. Batch Normalized Deep Boltzmann Machines

Training deep networks is challenging since the distribution of signals passing between
layers changes dramatically and continuously during training. This phenomenon is known
as “internal covariate shift” and can be eliminated by the batch normalization Ioffe and
Szegedy (2015) in CNNs. Interestingly, we observe the same phenomenon of unstable input
distributions during DBM training and this motivates us to apply this technique to DBM.

3.1. Batch normalization

A batch normalization operator, described in Ioffe and Szegedy (2015), normalizes every
dimension i of an input vector x independently to make a normalized vector x̄ with the
mean of 0 and standard deviation of 1 across its dimensions.

x̄i =
xi − E [xi]√
Var (xi) + ε

where ε is a small positive constant to prevent a division-by-zero issue. To preserve the
capacity of deep networks, a scale parameter γi and a shift parameter βi were introduced
to obtain an output signal yi = γix̄i + βi. As a result, the batch normalization can be
expressed as an affine transform Bγi,βi (xi) = γ̄xi + β̄, wherein γ̄i = γi/

√
Var (xi) + ε and

β̄i = βi − γiE[xi]/
√

Var(xi)+ε.

3.2. DBM with batch normalization

For the sake of simplicity, we build our Batch Normalized Deep Boltzmann Machines
(BNDBMs) based on the DBM network mentioned in Sec. 2. By adding batch normaliza-

tion parameter pairs
(
γ(l),β(l)

)
to the lth hidden layer to normalize its input signals x(l), a

BNDBM is specified by a parameter set Γ=Ψ∪{γ(1)i , β
(1)
i }

K1

i=1 ∪ {γ
(2)
j , β

(2)
j }

K2
j=1. The energy

function over the network is redefined as:
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E (v,h; Γ) = −
M∑
i=1

aivi −
2∑

l=1

Kl∑
j=1

(
γ̄
(l)
j b

(l)
j + β̄

(l)
j

)
h
(l)
j

−
M∑
i=1

K1∑
j=1

γ̄
(1)
j viw

(1)
ij h

(1)
j −

K1∑
i=1

K2∑
j=1

γ̄
(1)
i γ̄

(2)
j h

(1)
i w

(2)
ij h

(2)
j (3)

Similar to DBMs, we can obtain the formula of the joint probability distribu-
tion, p (v,h; Γ), and the marginal distributions,

∑
v p (v,h; Γ),

∑
h(1) p (v,h; Γ) and∑

h(2) p (v,h; Γ) (we refer the supplementary material for more details), and finally the
conditional probabilities (Eqs. 4, 5 and 6) from the energy function (Eq. 3). As we ex-
pected, the conditional distributions between layers are in the sigmoid form as DBMs but
with batch normalization operators added to hidden layers:

p
(
vm = 1|h(1)

)
= σ

am +

K1∑
j=1

γ̄
(1)
j w

(1)
mjh

(1)
j

 (4)

p
(
h(2)n = 1|h(1)

)
= σ

(
B2
(
t(2)n

))
(5)

p
(
h(1)n = 1|v,h(2)

)
= σ

(
B1
(
t(1)n

))
(6)

t(1)n

(
v,h(2)

)
=b(1)

n +

M∑
j=1

vjw
(1)
jn +

K2∑
j=1

γ̄
(2)
j w

(2)
nj h

(2)
j t(2)n

(
h(1)

)
= b(2)

n +

K1∑
j=1

γ̄
(1)
j h

(1)
j w

(2)
jn (7)

wherein t
(1)
n and t

(2)
n are the non-normalized input signals of the sigmoid functions and we

write B1 and B2 instead of B
γ
(1)
n ,β

(1)
n

and B
γ
(2)
n ,β

(2)
n

to shorten notations.

In DBM models, the conditional distribution equations have an important role to ex-
plain how signals are transferred between layers. Compared with CNNs where layer-to-layer
transformations (e.g., batch normalization, max-pooling and convolutional operators) can
be freely designed and integrated between layers, the conditional distributions in DBMs are
deterministically derived using probability rules from the energy equation. Therefore, any
modification of such distributions should come from an appropriate energy equation. The
introduction of the energy function above (Eq. 3) naturally adds batch normalization trans-
form into the conditional probabilities without breaking the probabilistic characteristics of
DBMs. As a result, DBM is improved significantly with the power of batch normalization
in our proposal.

3.3. Model training

BNDBM training by optimizing data log-likelihood function also requires the approxima-
tion of the intractable posterior using variational distribution and the model distribution
estimation using efficient sampling. The variational distribution keeps the same form as
Eq. 2 but the fixed-point update equations become:

µ̃(1)
n = σ

B1
b(1)

n +

M∑
j=1

vjw
(1)
jn +

K2∑
j=1

γ̄
(2)
j w

(2)
nj µ̃

(2)
j

 µ̃(2)
n = σ

B2
b(2)

n +

K1∑
j=1

γ̄
(1)
j µ̃

(1)
j w

(2)
jn
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Suppose that the model distribution is estimated by Nc persistent MCMC chains and
the model is trained with stochastic batch gradient ascent of batch size Ns, BNDBM uses
the following equations to update its biases and weights

∆am = η

(
Ns∑
i=1

v
[i]
m

Ns
−

Nc∑
i=1

v̂
〈i〉
m

Nc

)
(8) ∆b(l)n = ηγ̄(l)n

(
Ns∑
i=1

µ̃
(l)[i]
n

Ns
−

Nc∑
i=1

ĥ
(l)〈i〉
n

Nc

)
(9)

∆w(1)
mn = ηγ̄(1)n

(
Ns∑
i=1

v
[i]
mµ̃

(1)[i]
n

Ns
−

Nc∑
i=1

v̂
〈i〉
m ĥ

(1)〈i〉
n

Nc

)
(10)

∆w(2)
mn = ηγ̄(1)m γ̄(2)n

(∑Ns

i=1 µ̃
(1)[i]
m µ̃

(2)[i]
n

Ns
−
∑Nc

i=1 ĥ
(1)〈i〉
m ĥ

(2)〈i〉
n

Nc

)
(11)

and its normalization parameters:

∆γ(1)n = η

 Ns∑
i=1

µ̃(1)[i]
n

t
(1)
n

(
v[i], µ̃(2)[i]

)
− Eb[t

(1)
n ]

Ns

√
Var

[
t
(1)
n

]
+ ε

−
Nc∑
i=1

ĥ(1)〈i〉n

t
(1)
n

(
v̂〈i〉, ĥ

(2)〈i〉)
− Eb[t

(1)
n ]

Nc

√
Var

[
t
(1)
n

]
+ ε

 (12)

∆γ(2)n = η

 Ns∑
i=1

µ̃(2)[i]
n

t
(2)
n

(
µ̃(1)[i]

)
− Eb[t

(2)
n ]

Ns

√
Var

[
t
(2)
n

]
+ ε

−
Nc∑
i=1

ĥ(2)〈i〉n

t
(2)
n

(
ĥ
(1)〈i〉)

− Eb[t
(2)
n ]

Nc

√
Var

[
t
(2)
n

]
+ ε

 (13)

∆β(l)
n = η

(
Ns∑
i=1

µ̃
(l)[i]
n

Ns
−

Nc∑
i=1

ĥ
(l)〈i〉
n

Nc

)
(14)

wherein v[i] and µ̃(l)[i] are the ith data vector and its corresponding mean-field vector,

v̂〈i〉and ĥ
(l)〈i〉

are layer states on the ith Gibbs chain and Eb[·] is batch mean.
We follow Ioffe and Szegedy (2015) to use separate statistics for batch normalization in

training and inference modes. The normalization should only depend on batch statistics for
efficient training, which are batch mean Eb and batch variance Varb as described in Alg. 1.
By contrast, the inference process demands fixed population statistical vectors, Ep and
Varp, which are evaluated over the training set as soon as the training ends. An unbiased
estimate is also introduced to compute the population variance. It is noteworthy that,
unlike batch normalization in CNNs where we only need one pair of population mean and
variance per neuron, BNDBM requires max (Nmf, Ngs) pairs because the input distribution
of each neuron develops over Nmf mean-field steps and Ngs Gibbs sampling steps. The
distribution of a layer usually varies much at the first steps but less at the last steps when
the mean-field or Gibbs sampling converges. For this reason, separate population mean and
variance are preferable for each step to handle this change.

Although the gradient update in BNDBMs is well specified by Eqs. 8-14, model learning
in practice is difficult to converge because of the change of parameters with respect to
normalization scale parameters γ (Eqs 9-10 and 14). After each batch update, the new

scale values affect both other parameters and layers’ input signals (t
(1)
i and t

(2)
i ) and make

the model evolve in an unstable and fluctuating way.
To facilitate the learning process, we propose some strategies to lessen the effects of this

dependence.
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• Simplified update equations: We observe that the scale parameters have the same
roles as learning rate η. This motivates to integrate theminto η. In other words, we
can simply discard all scale parameters in gradient update equations (Eqs. 9-11).

• Modified sigmoid inputs: It can be seen that the sigmoid inputs (i.e., t
(1)
i and t

(2)
i

in Eqs. 5 and 6) are functions of parameters γ, biases and weights. However, values
of γ, e.g., 1, 1.2, 2, are many times larger than the unit biases and the connection
weights, which are encouraged to be small numbers around zeros, e.g., 0.01, 0.002.

When γ varies over training batches, it changes the layer’s input distributions t
(1)
i

and t
(2)
i dramatically and causes the training to fluctuate. Again, we include γ into

weights and therefore freely remove it from the signal input formula (Eq. 7).

Algorithm 1 BNDBM training mode

Input: Training data D =
{
v[i]
}N

i=1
, Nb batches, Nmf mean-field steps and Ngs Gibbs steps

Output: BNDBM parameters Γ, population means Ep and population variances Varp
begin

// Training parameters with instantaneous batch mean Eb and batch variance Varb
for k ← 1, . . . , Nb do

Dk ← get batch kth

Run mean-field with batch normalization
Run Gibbs sampling with batch normalization
Update Γ (Eqs. 8-14)

end
// Updating the population mean and variance (Ep and Varp) with all training data
for k ← 1, . . . , Nb do

Dk ← get batch kth

Compute t
(1)
n and t

(2)
n from Dk

Evaluate batch mean Ek
b and variance Varkb

end
for i← 1, . . . ,max(Nmf, Ngs) do

Ei
p

[
t
(l)
n

]
←

∑Nb
k=1

Ek
b

[
t
(l)〈i〉
n

]
Nb

; Varip

[
t
(l)
n

]
←

∑Nb
k=1

Varkb

[
t
(l)〈i〉
n

]
Nb−1

end

Ep ←
[
Ei
p

]max(Nmf,Ngs)

i=1
; Varp ←

[
Varip

]max(Nmf,Ngs)

i=1

end

3.4. Pre-normalization vs post-normalization

In this section, we provide a principal comparison between BNDBM and its closely related
work of centered DBM (cDBM) Montavon and Muller (2012), one of the state-of-the-art
DBMs. This not only helps to understand the difference between these methods but also
explains how our BNDBM can achieve better results in the experiment section. cDBMs were
proposed to improve original DBMs by centering visible and hidden states. More specifically,
given a cDBM with 2 hidden layers, its energy function is shown in Eq. 15 whilst Eqs. 16
and 18 are two examples of conditional distributions corresponding to hidden layers :

E (v,h) = −
M∑
i=1

ai¯̄vi −
2∑

l=1

Kl∑
j=1

b
(l)
j

¯̄h
(l)
j −

M∑
i=1

K1∑
j=1

¯̄viw
(1)
ij

¯̄h
(1)
j −

K1∑
i=1

K2∑
j=1

¯̄h
(1)
i w

(2)
ij

¯̄h
(2)
j (15)
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p
(
h(1)n = 1|v,h(2)

)
= σ

b(1)
n +

M∑
j=1

¯̄vjw
(1)
jn +

K2∑
j=1

w
(2)
nj

¯̄h
(2)
j

 (16)

¯̄h(1)n = h(1)n − d(1)n , where h(1)n ∼ Bernoulli
(
p
(
h(1)n = 1|v,h(2)

))
(17)

p
(
h(2)n = 1|h(1)

)
= σ

b(2)
n +

K1∑
j=1

¯̄h
(1)
j w

(2)
jn

 (18)

wherein ci and d
(l)
j are the offsets of units and are set to the activation mean of the corre-

sponding neuron state. The terms ¯̄vi = vi − ci and ¯̄h
(l)
j = h

(l)
j − d

(l)
j are centered states and

they are computed after the sigmoid transformation is applied to the layer’s input signals.

For example, the centered state ¯̄h
(1)
j (Eq. 17) is computed using the conditional probability

in Eq. 16. Therefore, cDBM can be viewed as a post-normalization of layer signals. This
post-normalization does not immediately correct the layer distribution of the current layer,
e.g., h(1), but it holds the states of the adjacent layers, e.g., v and h(2), in a proper range
and then stabilizes the current layer’s inputs in the next propagation. By contrast, BNDBM
does a pre-normalization of layer’s inputs, before the sigmoid transformation. It can be seen
that the post-normalization strategy of cDBM does not guarantee that the sigmoid inputs of
network layers do not vary during training while the pre-normalization allows us to control
the input distributions at a desired mean and variance. As a result, cDBM cannot solve
the internal covariate shift problem as effectively as BNDBM.

4. Experiments and Analysis

In this section, we conduct our experiments on three datasets of MNIST LeCun et al.
(1998), Fashion-MNIST Xiao et al. (2017) and Caltech 101 Silhouette Marlin et al. (2010)
which are widely-used in DBM’s literature Cho et al. (2013b); Salakhutdinov and Hinton
(2012); Xiaojun and Haibo (2018); Sankaran et al. (2017). It is noteworthy that, due to the
high complexity of the models, most unsupervised DBMs including BNDBMs only work
efficiently on binary or grey-scale datasets. Several studies Sankaran et al. (2017) propose
to train DBMs on Cifar, but these are supervised DBMs with labels added to the models.

We compare BNDBM with original DBM Salakhutdinov and Hinton (2009), and cen-
tered DBM (cDBM) Melchior et al. (2016). With the purpose of comparison with the post-
normalization approach of cDBM, we follow its network structures Montavon and Muller
(2012); Melchior et al. (2016) and use the networks of 784− 500− 100 and 784− 500− 500
in all experiments. All DBMs are also trained with PCD algorithm Tieleman (2008) using
Ns = Nc = 100 and learning rate of 10−2 over 500 epochs. The numbers of mean-field and
Gibbs sampling iterations are set to 10. The weights of all methods are randomly initialized
from normal distribution with zero-mean and 0.1-standard deviation whilst the biases are
set to 0. Although both scale parameters γ and shift parameters β are learnable in theory,
we fix β = 0 to ensure that the input signals of neurons are not moved too far outside
the range of [−4, 4]. We train the models in two settings with or without pretraining.
For DBM and BNDBM, we follow the pretraining process proposed in Salakhutdinov and
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Classification ↑ PCD (500-100) PCD (500-500) CDprob(500-100)

Pretraining DBM cDBM BNDBM DBM cDBM BNDBM DBM cDBM BNDBM

MNIST 94.81

±0.58
93.89

±0.19
95.37

±0.19
96.68

±0.36
96.63

±0.15
96.80

±0.11
11.35

±0.00
85.56

±3.25
90.31

±0.002
Fashion-MNIST 81.27

±1.07
73.60

±2.7
81.66

±0.76
69.88

±8.79
83.07

±0.40
84.70

±0.38
15.92

±6.60
71.97

±2.12
72.67

±2.59
Caltech 101 Silhouette 65.27

±0.24
58.39

±0.58
65.63

±0.25
66.54

±0.65
65.96

±0.42
69.20

±0.45
28.08

±3.13
54.40

±0.99
62.94

±0.19
No pretraining DBM? cDBM? BNDBM? DBM? cDBM? BNDBM? DBM? cDBM? BNDBM?

MNIST 11.35

±0.00
84.35

±2.13
93.81

±0.58
12.22

±2.74
94.05

±0.08
96.50

±0.11
25.32

±11.84
61.84

±3.42
85.73

±0.81
Fashion-MNIST 16.14

±9.91
71.64

±1.15
76.26

±1.20
35.66

±8.39
82.27

±0.27
78.75

±0.99
12.31

±0.66
68.25

±3.19
71.92

±1.09
Caltech 101 Silhouette 19.77

±4.78
54.70

±0.78
59.45

±1.20
23.65

±1.20
64.63

±8.12
66.80

±0.69
35.34

±3.98
55.95

±0.79
60.99

±0.31
Our average improvement vs

DBM
vs

cDBM
vs

DBM
vs

cDBM
vs

DBM
vs

cDBM

Pretraining 0.44 5.60 5.86 1.67 56.95 4.76

No pretraining 60.75 6.28 56.86 0.38 48.56 10.87

Table 1: The means and standard deviations of all methods in classification accuracy (%)
over 10 runs. The methods marked with ? are trained with no pretraining. The
best number is in bold while the next best is underlined. The last two rows show
the average of improvements over datasets, where an improvement of BNDBM vs
a method A is their difference. The positive signs of improvement values show
BNDBMs outperform A whilst negative signs indicate A is better.

Hinton (2009) with 100 epochs to initialize the model parameters. For cDBM, we adopt
the implementation1 with two-stage pretraining technique Cho et al. (2013b). To examine
models quantitatively, we use the last hidden layer as feature representation and compare
their classification accuracy (using Logistic Regression classifiers) and reconstruction error.

Besides using PCD Tieleman (2008) to train the models, we employ CD method Hinton
(2002), which is well-known for its high reconstruction capacity. Furthermore, to minimize
the reconstruction error in CD training, when computing the state of a layer, we ignore
sampling steps and instead pass the conditional probability values directly as input signals to
the next layers (we name this CD version CD prob). In our experiments, we observe that the
methods trained with CD prob obtain lower reconstruction error than with PCD. However,
due to no sampling steps, models using this training scheme become deterministic networks
and they do not follow the probabilistic framework mentioned in Sec. 2. As a result, this
strategy indeed works as a feature extractor, where data information is transferred from the
visible layer to the higher layers. Two-way interactions between adjacent layers guarantee
that the next layer is the higher representation of the current layer rather than just a
meaningless mapping. Since sigmoid function tends to compress values out of [−4, 4] into
outputs around 0 or 1 (Fig. 1), we maintain the input signal distribution with the mean of
β = 0 and the standard deviation of γ = 1 to fit it into [-4, 4] and therefore preserve the
information between layers. The setting is widely-used in CNNs Ioffe and Szegedy (2015).

Since we aim to learn data representations under a completely unsupervised manner, we
do not use labels to train models in all experiments. In particular, we first train DBMs to

1. https://github.com/kyunghyuncho/deepmat
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Reconstruction PCD (500-100) PCD (500-500) CDprob(500-100)

Average improvement vs
DBM

vs
cDBM

vs
DBM

vs
cDBM

vs
DBM

vs
cDBM

Pretraining -1.13 -1.50 -0.59 -0.64 0.29 1.55

No pretraining -0.98 -1.86 1.02 -1.34 0.06 3.57

Table 2: The average reconstruction error improvement of BNDBM versus DBM and cDBM
over all datasets. The bold numbers (positive values) indicate improvement in
reconstruction error.

obtain new representations for data, i.e., the activations of last hidden layer, and then use a
simple classifier (i.e., Logistic Regression) to evaluate the quality of these representations.
These two steps are performed separately. We also do not fine-tune the networks Salakhut-
dinov and Hinton (2009) because it will update the model parameters, hence update the
representations, towards minimizing the classification error. As a result, the learned repre-
sentations are driven by the labels, hindering us from evaluating their quality accurately.
It is worthy to note that our unsupervised setting is different from supervised training for
classification in Salakhutdinov and Hinton (2009) where supervised DBMs are trained with
label variables on top and then discriminatively fine-tuned towards low classification er-
ror. Similarly, our experimental setting is also different from semi-supervised learning in
Sankaran et al. (2017) where DBMs are trained with class labels for classification tasks.

Table 1 and 2 report the classification and reconstruction results over 10 runs. Overall,
for PCD training, BNDBM is the best method for classification and has comparable quality
in reconstruction task. When trained with CD prob, high classification accuracy (at least
4.76% and 10.87% better than DBM and cDBM in average) shows that batch normalization
helps preserve the information between the layers very well. Higher layers in BNDBM try
to interpret the data exactly but at more abstract levels. As we expected, BNDBM also
achieves excellent reconstruction error, at least 0.06 and 0.29 smaller than DBM and cDBM
on average (Table 2). For computation time, since BNDBM requires extra normalization
cost in every mean-field and Gibbs sampling step, DBM with normalization is usually 3.13
times slower than DBM in training phase.

Compared with the supervised DBM Salakhutdinov and Hinton (2012), our accuracy of
95.37% (500− 100 units) and 96.80% (500− 500 units) on MNIST is lower than supervised
DBM using 100% (60,000) labeled training data. However, if 1% labeled training data is
used for fine-tuning, supervised DBM with fine-tuning only obtains 95.18% in Salakhutdinov
and Hinton (2012) that is lower than our unsupervised BNDBM without any fine-tuning
step. This interesting result shows the better capacity of BNDBM in unsupervised feature
learning over DBM. This comparison between supervised and unsupervised training also
reveals how batch normalization improves DBM’s performance in unsupervised training.
More specifically, when data labels are added, the highest hidden layer has to align with
the label layer during training and therefore it has meaningful representation. Without
the label layer, it works lazily and has many dead neurons. Batch normalization helps to
motivate it and encourage it to response actively to the data.
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Figure 2: Sigmoid input distributions of a random unit (unit 63, layer 2, network 500−100)
of three methods without pretraining over epochs. The distribution means are
drawn as a solid lines while the dash lines with the same color represents the
standard deviations. The experimental numbers were recorded in MNIST.

4.1. Training facilitation

Training DBMs is very challenging and most DBM variants depend on “easy-to-train”
models such RBMs or AEs in a pretraining step to initialize their parameters. Table 1 also
shows the performance of DBM, cDBM and BNDBM without pretraining (the methods
with ?). We are unable to train DBM successfully without pretraining and this agrees with
the observations in Cho et al. (2013b); Melchior et al. (2016). By contrast, our BNDBM
with batch normalization still obtains high classification accuracy even if the pretraining
phase is not applied. Compared with post-normalization in cDBM, BNDBM* shows 5.84%
better than cDBM* on average over all datasets and learning methods. Training without
pretraining is a very nice capacity since it proves that our BNDBM? is “easy-to-train”
enough to stand alone without the help of pretraining methods.

To understand the effect of normalization in BNDBM?, for every 50 epochs, we run a
mean-field approximation to estimate p (h|v) on the MNIST testing set and observe the
inputs of a randomly picked hidden unit. Fig. 2 demonstrates the change of the input
distributions during DBM?, cDBM? and BNDBM? training. It can be seen that these
signals change dramatically in DBM? and cDBM? but they are more stable in BNDBM?.
The more unchanged signals are, the less dependence between layers is. The movement of
input distributions in DBM? toward large positive values reveals that DBM? learning gets
stuck in a poor local optimum as described in Sec. 1. For cDBM?, its post-normalization
indirectly controls input signals via normalizing the states of adjacent layers and then
reducing the variations of sigmoid inputs. However, this unlikely guarantees to produce
stable layer signals and therefore there still exists a fluctuation (in PCD) or a slight shift
(in CD prob) of input distributions during cDBM? training (Fig. 2). By contrast, BNDBM?

allows these distributions to be consistent and controllable during training. As a result, we
can easily trained BNDBM from randomly initialized parameters and still obtain a high
quality model.

4.2. Feature representation improvement

BNDBM shows an excellent capacity of unsupervised feature learning by producing good
representation, which wins classification task in most datasets and training methods. These
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Figure 3: Sigmoid output distributions of some hidden units in DBM, cDBM and BNDBM.

features can be obtained via running a mean-field procedure, where the sigmoid outputs at
the last layer are considered as the new representation of the data.

Fig. 4 visualizes the activations (sigmoid outputs) at the 1st and 2nd hidden layers
of the network 500 − 100 in forms of 10, 000 × 500 and 10, 000 × 100 (#data points ×
#neurons) matrices respectively corresponding to all 10, 000 MNIST testing samples. For
the visualization purpose, we resize these matrices into the same image size to best fit in the
figure. Each element (i, j) in a matrix is the activation of the jth neuron with respect to the
ith data point. Vertical homogeneous strips in each matrix, which indicate the corresponding
neurons respond to all test data in a similar way, appear frequently in the non-normalized
hidden layers of DBM and cDBM, whilst the normalized layers of BNDBM produce more
random and heterogeneous patterns. The randomness and diversity in these patterns reflect
that neurons in BNDBM are trying to distinguish data samples and cooperating with the
others (rather than copying their behaviors). As a result, BNDBM, by diversifying layer
signals, can produce richer feature representation of raw data and more distinctive states
at the hidden layer than DBM and cDBM.

By taking the histogram of a matrix column in Fig. 4, we can observe the distribution
of hidden activations at a particular unit. Fig. 3 visualizes the output of the sigmoid
functions observed at four hidden neurons after training. Unlike DBM that tends to produce
output values in a narrow interval (around 0 or 1), by controlling the sigmoid input signals,
BNDBM guarantees that the distributions cover the majority of [0, 1] and thus it enhances
the distinction between class representation. Meanwhile, although the post-normalization
strategy in cDBM can also make sigmoid outputs diverse (e.g., unit 17, layer 2, PCD training
in Fig. 3), it does not solve the problem of the layer input change completely (e.g., unit 100,
layer 2, PCD training or units 17 and 100, layer 2, CD training in Fig. 3). This explains
why post-normalization in cDBM cannot obtain as high accuracy as pre-normalization in
BNDBM. The visualization in Fig. 3 also points out that the phenomenon of distribution
collapse happens more severely in higher layers than in lower layers (i.e. the first hidden
layers). This is because the first hidden layer directly connects with data and thus aligns
with the good distribution of data.
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Figure 4: Activations of 10,000 MNIST test samples over hidden layers. Each image repre-
sents a matrix of 10,000 rows and (# hidden units) columns in the corresponding
layers. These matrices are resized into square form for better visualization.

4.3. Batch normalization in DBMs vs CNNs

After our experiments, we realize the significant differences in the use of batch normalization
in deterministic networks such as CNNs, RNNs or BNDBMs trained with CD prob, where
sampling steps are removed, and probabilistic networks such as BNDBMs. Therefore, this
section highlights these differences and provides a guideline to train BNDBMs.

Non-normalized h(1): In the former, it is possible to normalize the first hidden layer.
However, for DBMs, we cannot obtain good results when h(1) is normalized. Table 3 shows
the classification accuracy of BNDBM over different settings of normalizing h(1), h(2) and
both h(1)and h(2). To clearly observe the impact of normalization, the network is trained
without the pretraining step. It is interesting that normalizing h(2) boosts the performance
whilst normalizing h(1) causes negative effect. We believe that this is because the first
hidden layer in probabilistic networks, as the only hidden layer communicating directly to
the visible layer, has more important role to model the data distribution than higher hidden
layers. An example is Restricted Boltzmann Machines that require only the first hidden
layer to learn data distribution successfully. When more constraints are added to h(1) via
batch normalization, the model becomes less flexible to learn the data distribution and shows
a decline in performance. However, further research should be conducted to understand the
role of each hidden layer comprehensively. It is noteworthy that when training BNDBM
with CD prob, where the capacity of distribution modeling is ignored, normalizing the first
hidden layer is recommended. This explains why we avoid normalizing h(1) for BNDBM
trained with PCD but normalize all layers in CD prob in all experiments (of Tables 1 and
2).

Parameters γ and β: In deterministic networks, these parameters are usually fixed
(γ = 1 and β = 0) to make the layer’s input distributions unchanged between iterations.

Meanwhile, since DBMs usually include sampling steps, i.e., h
(l)
i ∼ Bernoulli(µ

(l)
i ) where

µ
(l)
i = σ

(
Bl
(
t
(l)
i

))
, γ and β do not only control the layer’s input distributions but also

specify the parameters µ
(l)
i of Bernoulli distributions, where the states of neurons are drawn

from. If γ = 1 and β = 0, the Bernoulli parameter µ
(l)
i of a hidden unit h

(l)
i has 50% to be

< 0.5 and 50% to be > 0.5. It means that all hidden units always have equal probabilities to
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h(1),h(2) h(1)

only
h(2)

only
MNIST 82.48

±0.64
45.67
±6.91

96.50
±0.11

Fashion-MNIST 66.00
±0.88

54.64
±7.17

78.75
±0.99

Caltech 101 SH 51.54
±0.61

24.84
±3.62

66.80
±0.69

Table 3: Accuracy (%) when normalizing
all layers and each layer in the
BNDBM? network of 500−500.

Learnable γ False True
Learnable β False True False True

MNIST 86.47
±4.00

85.73
±1.12

96.50
±0.11

85.11
±0.11

Fashion-MNIST 77.16
±2.09

78.73
±1.27

78.75
±0.99

78.28
±1.43

Caltech 101 SH 64.50
±1.53

65.28
±0.92

66.80
±0.69

63.52
±1.07

Table 4: Accuracy (%) when training the
BNDBM? network (500 − 500)
with/without learnable γ and β.

be on and off. This is not a good idea because some hidden states corresponding to dominant
data points should be activated more frequently than other states. For this reason, γ should
be learned during PCD training whilst we fix β = 0 to ensure that a unit has both on and
off states and therefore, it does not become an “always-on” or “always-off” neuron. The
experimental results in Table 4 confirm the importance of choosing a right training setting
for normalization parameters in probabilistic networks, where the best accuracy is obtained
using learnable γ and fixed β = 0.

Population means and variances: Since signals are passed many times between
layers during mean-field or Gibbs sampling in BNDBMs, each step of mean-field or Gibbs
sampling requires a pair of population mean and variance to normalize layer distributions.
As a result, BNDBMs need to store max (Nmf, Ngs) pairs per neuron. This contrasts with
one pair of mean and variance per unit in most deterministic networks.

Overall, these differences suggest that we should pay attention to the probabilistic nature
of DBMs whenever applying any deep learning technique to DBMs.

5. Conclusion

In this paper, we discussed the difficulty of DBM training and the underlying reasons.
Due to bi-directional connections in DBMs, layers’ input signals change significantly and
unpredictably between training epochs. The deeper layer is, the more its input varies
and more serious this problem is. This results in more tips and tricks proposed in the
literature in order to train DBMs. To address this problem, we proposed to standardize
layers’ inputs by integrating batch normalization operators into DBMs. This is done by
introducing a novel energy function to obtain the normalization form of layers’ input signals.
Extensive experiments on MNIST, Fashion-MNIST and Caltech 101 Silhouette confirm that
our proposed BNDBM method can be trained easily without any pretraining step and has
more powerful feature representation than DBM and cDBM via controlling the layers’ input
distributions.
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