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Abstract

Label embedding is an effective and efficient method which can jointly extract the informa-
tion of all labels for better performance of multi-label classification. However, most existing
embedding methods ignore information of feature space or intrinsic structure of previous
label space, such that their learned latent space will not have strong predictability and
discriminant ability. We propose a novel deep neural network (DNN) based model, namely
Deep Correlation Structure Preserved Label Space Embedding (DCSPE). Specifically, DC-
SPE derives a deep latent space by performing feature-aware label space embedding with
deep canonical correlation analysis (DCCA) and preserving the intrinsic structure of the
previous label space with proposed deep multidimensional scaling (DMDS). Our DCSPE
is achieved by integrating the DNN architectures of the two DNN based models and can
learn a feature-aware structure preserved deep latent space. Furthermore, extensive exper-
imental results on datasets with many labels demonstrate that our proposed approach is
significantly better than the existing label embedding algorithms.

Keywords: multi-label classification, label embedding, deep multidimensional scaling,
deep canonical-correlation analysis

1. Introduction

Multi-label learning is one of the hot topics in the field of machine learning and pattern
recognition. In the multi-label learning framework, each sample is represented by a feature
vector, meanwhile it may belong to multiple category labels. The goal is to induce a function
which is able to assign multiple proper labels (from a given label set) to unseen instances
[Zhou and Zhang (2017), Zhang and Zhou (2014)]. With the introduction of the concept of
multi-label learning, many scholars have carried out research on this basis. At present, in
terms of multi-label learning, there are two main directions for research: one is to convert
the multi-label problem into multiple single-label problems firstly, and then to solve each
single-label problem, which is called problem transformation. Another method is to solve the
multi-label problem by proposing or improving an existing single-label problem algorithm
to adapt to the multi-label problem itself, Such a solution is called algorithm adaptation.
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However, with the increase of the number of labels, these standard multi-label classi-
fication methods that work in the original label space can easily become computationally
impractical in training multi-label classifiers. For example, when the number of labels is
large, Binary Relevance (BR) will produce many kinds of sub-problems in the second cat-
egory, which requires a lot of training and testing time, and thus it is difficult to build
an efficient classification system Bi and Kwok (2013). However, there is usually some re-
dundant information in the label space and the labels are universally correlated with each
other. For this reason, some researchers began to study the method of dimensionality re-
duction in label space by using the label relationship. The expectation was to improve the
classification accuracy and reduce the training and forecasting time of the whole model.

As an important family of multi-label classification algorithm, a number of label space
reduction methods (LSDR) have been developed in the literature to address multi-label
classification with many labels. LSDR algorithms [Tai and Lin (2012), Lin et al. (2014),
Zhou et al. (2017), Yeh et al. (2017), Huang and Lin (2017), Shen et al. (2018)] consider
a low dimensional embedded label space for digesting the information between labels and
conducting more effective learning. Most label space reduction methods(LSDR) rely on
the assumption that the correlation of the labels can be captured via dimension reduction,
making the learning part more effective (physically more meaningful) and efficient Huang
and Lin (2017). However, some existing approaches [Tai and Lin (2012), Bhatia et al.
(2015), Huang and Lin (2017)] perform label space embedding without considering the
feature information, simultaneously few approaches can effectively maintain the intrinsic
structure of previous label space, such that their learned latent space will not have strong
predictability and discriminant ability. Such latent space will increase the error of space
transformation and the training error of the classifiers in the latent space. The increase of
these two errors will seriously affect the effectiveness of the multi-label classification.

We proposed a novel DNN based framework, Deep Correlation Structure Preserved La-
bel Space Embedding (DCSPE) to deal with the above challenges. Our proposed DCSPE is
motivated by C2AE Yeh et al. (2017) initially, both C2AE and our proposed DCSPE design
the network to measure the correlations between feature and label space, as well as label
correlations. Different from C2AE, our method takes the preservation of the intrinsic struc-
tural information of label space into consideration. The structural information enhances
the latent space with discriminability which plays an important role in classification. C2AE
performed label-correlation aware prediction by the introduced loss functions for the decod-
ing outputs. However, our propose embedding method DCSPE has already exploited the
global label correlations implicitly by learning the latent space Zhu et al. (2018).

Our proposed DCSPE utilizes the proposed deep multidimensional scaling (DMDS) to
preserve the intrinsic structure of the label space while enables the embedding feature-aware
with the deep canonical correlation analysis (DCCA). DMDS based on classical multidimen-
sional scaling (MDS) maintains the similarity between samples in the label space. Similar
samples in previous label space will still be very close in the latent space, which effectively
enhances the discriminant ability of the latent space. DCCA maximizes the nonlinear
correlations in the latent space between the feature vectors of the samples and their cor-
responding label vectors. The label space transformation directed by feature information
will make the learned latent space more predictable. The main contributions of this paper
are highlighted as follows: (1) DCSPE preserves the intrinsic structure of the previous label
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space during the embedding process which effectively reduces the loss of discriminatory
information. (2) DCSPE is able to perform feature-aware label embedding by exploiting
the nonlinear relationship between feature space and label space. (3) By utilizing and inte-
grating the architectures of deep canonical correlation analysis and deep multidimensional
scaling, DCSPE can mine a deep latent space with the architecture of DNNs.

The rest of this paper is organized as follows. Section 2 gives a brief review of related
work. Then we formulate the problem and present the proposed approach in section 3. We
discuss the experimental results in Section 4 and conclude in Section 5.

2. Related Work

The proposed multi-label learning algorithms [Zhang and Zhou (2014), Zhou and Zhang
(2017)] can be divided into two broad categories: problem transformation methods (PTMs)
and algorithm adaptation methods (AAMs). For both PTMs and AAMs, a common chal-
lenging issue exists in the multi-label learning tasks, i.e., the dimension of the output label
space will increase exponentially as the number of labels increases. It is not difficult to
find that some of the relevant information between labels may provide additional useful
information for multi-label learning, which is beneficial to generalize the performance of
multi-label learning system.

Multi-label embedding learning aims to transform the original label space into a latent
space by a series of means, which effectively reduces the size of output space and greatly
reduces the computational complexity. It also can effectively exploit the hidden structure
of the original space and make full use of the correlation between labels. Hsu et al. (2009)
proposed a label embedding method based on compressed sensing. Firstly, the label space
is projected into a low dimensional space by a compression sensing method. Secondly, a
regression model is trained for each dimension in the low-dimensional label space. Tai and
Lin (2012) proposed a label space embedding algorithm PLST which is based on classical
dimensionality reduction algorithm PCA. PLST preserved the reservation of label space in-
formation by minimizing the square loss between original label space and latent space. Chen
and Lin (2012) proposed a CPLST method based on canonical correlation analysis theory,
which takes both label space embedding loss and regression loss in latent space into account,
and achieves the effect of reducing the dimensionality of label space by using the feature
space information. Lin et al. (2014) proposed an end-to-end label space embedding method,
which can directly learn a better hidden space by maximizing the recovery of latent space
and the prediction performance of latent space. The end-to-end mode breaks the limitation
of latent space. Bhatia et al. (2015) proposed a SLEEC algorithm by using local correlations
among instances. The tail labels attached only to a small number of instances which make
the label matrix sparse but not low-rank. SLEEC can solve the problem effectively in prac-
tical problems. Yeh et al. (2017) proposed a multi-label embedding method based on deep
learning and canonical correlation analysis. It can deal with the multi-label classification
problem of large-scale data well by using the deep neural network for spatial transformation.
Huang and Lin (2017) proposed a cost-sensitive multi-label embedding method CLEMS. In
view of the problem that the multi-label evaluation criteria differ greatly in the same result,
CLEMS takes evaluation criteria into consideration in multi-label learning for the first time.
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Preserving intrinsic structure during embedding learning has already been explored,
some existing methods are devoted to maintaining the between-view similarity structure
Wang et al. (2016), or maintaining the structure of both views simultaneously [Pan et al.
(2014), Quadrianto and Lampert (2011)]. However, in multi-label embedding methods, we
would prefer to only preserve the original supervised information (label space) to enhance
the discriminability of latent space. The information of the feature space is used as auxiliary
information to improve the predictability of the latent space. In order to achieve both of the
above goals at the same time, we proposed our Deep Correlation Structure Preserved Label
Space Embedding (DCSPE) to maintain the structure of original label space and make the
latent space feature-aware, which will be detailed in the following section.

3. Proposed Approach

For multi-label classification, let D = {(z;,3:)}; = {X, Y} denotes a set of d dimensional
training instances X € R*? and the associated labels Y € {0,1}V*X where N and
K are the number of instances and label attributes, respectively. The goal of multi-label
classification algorithms is to train a predictor f : X — Y from D in the training stage, so
that the label g of a test instance & can be predicted accordingly.

feature mapping encoding $

encoding

/ ere

feature space latent space label space latent space label space

a). deep feature-aware label space embedding b). structure preserved label space embedding

feature space latent space label space

¢). Deep Correlation Structure Preserved Label Space Embedding

Figure 1: a) Deep feature-aware label space embedding proposed by C2AE Yeh et al. (2017)
b) Structure preserved label space embedding conduct by proposed DMDS
¢) The proposed Deep Correlation Structure Preserved Label Space Embedding,
which learns a deep latent space Z. We use the black lines to represent the
DNNs (F, and F.). The blue and red dotted lines correspond to the error back
propagation of DCCA and DMDS, respectively.
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3.1. Deep Correlation Structure Preserved Label Space Embedding

As mentioned previously, we propose Deep Correlation Structure Preserved Label Space
Embedding (DCSPE) which learns a deep feature-aware latent space that can preserve the
intrinsic structure of the original label space. Specifically, the main steps of label embedding
can be divided into two parts: encoding and decoding. Motivated by the developments of
deep learning, we proposed a DMDS model based on the traditional MDS model to perform
encoding. We denote the low-dimension label space in latent space as Z, for a test instance
Z, we get the corresponding predicted embedded vector as z = g(2) € Z. Our decoding
function is to compute the nearest neighbor z, € Z of 2 and return the corresponding y, € ¥’
as g. DMDS maintains the similarity between samples in the label space. Similar samples
in previous label space are still very close in the latent space, which effectively enhances the
discriminant ability of the latent space. To improve the predictability of the latent space,
we take the DCCA to correlate the feature space and label space. The DCCA can learn
complex nonlinear transformations of feature space and label space such that the two view
of multi-label data can be highly correlated in the common latent space. With the help of
DCCA, we can effectively utilize the information of feature space to assist the label space
embedding process, which makes the latent space we learned more predictive.

The training error of LSDR is mainly divided into two parts: one is the error of space
transformation, and the other is the training error of the classifiers in the latent space. Our
Deep Correlation Structure Preserved Label Space Embedding (DCSPE) can reduce the
training error and space transformation error simultaneously and effectively. Firstly, the
two transform functions (encoding and decoding) must be well matched and are able to
carry out the space transformation and recovery succinctly and efficiently. In this paper,
we effectively maintain the geometry of the original space by deep multidimensional scaling
(DMDS) when we perform encoding and use the simple and effective nearest neighbor
method to decode. Secondly, the learned latent space should have great predictability,
hence we take deep canonical correlation analysis (DCCA) to make the encoding feature-
aware, then the learned latent space can be closely correlated to the feature space. Through
the above theoretical analysis of the training error, we can see that our model will effectively
reduce the error and improve the prediction accuracy.

As shown in Figure 1, DCSPE contains two effective DNN models (i.e., DMDS and
DCCA) with two mapping functions to be determined: feature mapping F},, encoding func-
tion F,. The blue and red dotted lines correspond to the error back propagation of DCCA
and DMDS respectively. We use DMDS which associates with Y to preserve the structure
of the original label space and DCCA which associates with X and Y to make the latent
space feature-aware. Thus, the objective function of DCSPE can be formulated as follows:

min  D(F(Y)) + XU(F(X), F.(V) )
o, Fe

where ®(F.(Y')) and W(F,(X), Fe(Y)) denote the losses of structure preserved and feature-

aware. And, we have the parameter \ balances between the above two types of loss functions.
Once the training process of our DCSPE is complete, we should apply the two DNNs to

predict the labels of test inputs. For a test input Z, firstly we transform it into the derived

latent space by F,, £ = F),(&); secondly we select the nearest neighbor of Z from Z which

donates as zq; thirdly we attach the y, to 2 as its label vector.
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3.2. Deep Multidimensional Scaling Analysis

Multidimensional scaling (MDS) describes a method of analyzing a dataset to reveal its
intrinsic structure Kruskal (1964). It is a traditional dimensionality reduction approach
that seeks to preserve the variability between instances, then similar points in the original
dataset still lie together while the dissimilar points are still far away from each other. The
basic idea of MDS is to keep the distance between any two points in a low dimensional space
the same as their distance in the original space after dimensionality reduction. Traditional
MDS is a classical linear dimension reduction method that only can reflect the linear re-
lationship between sample points, but the relationship between sample points is nonlinear
in many cases. With the introduction of deep neural networks, the proposed DMDS can
conduct the non-linear dimension reduction while maintaining the original distance in low-
dimensional latent space. To determine the ®(F.(Y)) in Eq.(1), the objective function of
deep multidimensional scaling (DMDS) method can be written as follows:

N
min Z Wii (d(Fe(yi), Fe(y;)) — Aij)? (2)

where A;; denotes the dissimilarity between y; and y;.

Then we should construct A and W for solving DMDS. Considering that every label
vector may have different importance, we set the importance weight W;; to be the product
of f; and f;, f; is the frequency of y; in D, and the symmetric W is constructed by the
following equation:

Wi = fi- f; (3)

We define a sparse symmetric n X n matrix A, indicating the dissimilarity among neigh-
boring instances:
2 .
P — Y 7 € N;

m if otherwise

where N; is the instance set of i-th instance’s k nearest neighbors.

3.3. Deep Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a standard statistical technique for finding linear
projections of two random vectors that are maximally correlated. Deep canonical corre-
lation analysis (DCCA) is an extension of CCA in which maximally correlated nonlinear
projections. DCCA computes representations of the two views by passing them through
multiple stacked layers of nonlinear transformation. As two linear projections replaced by
DNNs, DCCA solves the same objective function with the DNN model by a gradient de-
scent technique Andrew et al. (2013). To determine V(F,(X), Fe(Y)) in Eq.(1), we adopt
the idea of Kettenring (1971) and rewrite the correlation-based objective function as the
following deep version: Yeh et al. (2017):

min || F,(X) — Fe(Y) |7

fole (5)
st. F,(X)TF(X)=F.W)E.(Y)=1



DCSPE

where F,(X) and F.(Y') denote the transformed feature and label data in the derived
latent space L.

As explained in Kettenring (1971), the above formulation is equivalent to the traditional
CCA objection function of correlation maximization, but using the above formulation is
more conducive for us to calculate the corresponding neural network loss and gradient of
the two functions F), and F, efficiently.

3.4. Optimization

To learn the model of DCSPE, we need to solve the optimization problem of Eq.(1). Similar
to the derivation of existing DNN models, we apply the technique of random gradient descent
for each loss term to update the corresponding network parameters. The gradient of ®(F%)
updates the encoding function F, while that of W(F),, Fr) updates both feature mapping
function F}, and encoding function Ft.

There are several algorithms available in the literature for solving MDS. A representative
algorithm is Scaling by MAjorizing a COmplicated Function (SMACOF) Kruskal (1964).

The objection of ®(F,) can be transformed to:

min *(Z) = 2p(Z) + 1A (6)
with the following definitions:
Z =F.(Y)
N N al (7)
772(2) = ZWijd(zi,Zj)z, p(Z) :ZWiinjd(ziazj>; 772A = ZWijAgj
1, .3 1,J

Let us denote the matrix A;; = (e; — €;)(e; — e;) whose elements equal 1 at a; = aj; =
1,—1 at a;; = aj;, and 0 otherwise. Furthermore, we define:

N N
V = Z Z’wiinj (8)

i=1 i=1

as the weighted sum of row and column centered matrices A;;. Hence, we can rewrite
n*(Z) = trZ'VZ. For a similar representation of p(Z), we define the matrix:

N N
B(Z) = Z Z w;8i5(Z) Aij 9)

i=1 i=1
where:

Sij(Z):{Aij/dij(Z) if dij(Z)>0 )

0 if dij(2)=0

By using B(Z), we can rewrite p(Z) as p(Z) = trZ'B(Z)Z, consequently, the stress
decomposition becomes:

O(Z)=nA +trZ'V(Z) - 2trZ'B(2)Z (11)
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Algorithm 1 Training process of DCSPE

Input: Feature matrix X, label matrix Y, parameter A\, and dimension M of the latent

space

Output: F),, F,

Randomly initialize F,, F,

Calculate W and A by Eqs.(3) (4)

Calculate V and B by Eqgs.(8) (9)

repeat
Randomly select a batch of data S[X] and S[Y]
Perform gradient descent on F), by Eq.(15)
Perform gradient descent on F, by Eqs.(12) (16)

until Converge

Algorithm 2 Predicting process of DCSPE
Input: Label matrix Y, F},, F¢, testing example &
Output: Prediction g
Computing the embedding of Y, Z = F,(Y)
Obtain the predicted vector zZ = F,(Z)
Find z, € Z such that d(z,, 2) is the smallest
Attach the y, to 2 as its label vector

The gradient of ®(F,) with respect to F, can be derived as:

9D (F.)

OF(Y)

We find that the DMDS model can be well optimized by random gradient descent and

we perform the same method to optimize the DCCA model. The DCCA is a constrained

optimization problem, so we perform Augmented Lagrange method on it. With the method
of Lagrange multipliers, the objection of W(F),, F,) can be transformed to:

U(F,, F.) = Tr(C{ C1) + aTr(C3 Cz + C1 Cs) (13)

— QVE,(Y) - 4B(F.(Y))E.(Y) (12)

where:
C1=Fy(X) - F.(Y), Co=FE,(X)'F(X)~1, C3=FY)F(Y)~1I (14)
The gradient of W(F), F,) respecting to F,,(X) and F.(Y) can be derived as:

OV(E, )
OV(Fy, Fe)

With the above derivations, we can learn our DCSPE by gradient descent, and the
pseudo code of training is summarized in Algorithm 1. Once the learning of DCSPE is
complete, label prediction of a test input can be easily achieved by nearest neighbor algo-
rithm and the pseudo code of prediction is summarized in Algorithm 2.
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3.5. Computational Complexity Analysis

The computational cost of the proposed DCSPE is analyzed in this section. We denote
hp, he, q as the number of hidden layers in F},, F, and the hidden units in each hidden
layer. Let W be the total number of weights and biases of the network in DCSPE, i.e.
W= (d+1)xqg+hy,*x(g+1) xq+ (¢+1) x M. We apply mini-batch gradient descent
for each loss term for updating the corresponding network parameters. We denote r, k as
the number of samples in each random block and the number of iterations. For simplicity,
we assume that N >> d > r, K > M holds in the real-world applications.

The computational complexity of training DCSPE includes four main parts, the for-
ward propagation phase, the calculation of gradient, the backward propagation phase and
the weights and biases update phase. (1) In the forward propagation phase, leading to an
overall computational cost which is O(krW); (2) In the gradient calculation phase, com-
puting Eq.(11) requires O(kr?d) and computing Eq.(14), (15) requires O(krd?). Then the
overall computational cost of this phase is O(krd?). (3) In the backward phase, the overall
computational cost for one sample in the backward propagation phase is O(M?) + O(Mgq),
which is at most O(W), Then the overall computational cost of this phase is O(krW); (4)
In the weights and biases update phase, it is evident that the overall computational cost
is again O(krW) Zhang and Zhou (2006). Thus, the overall training cost of DCSPE is
O(krd?), the computational complexity is acceptable and our proposed DCSPE is able to
handle multi-label applications with many labels.

4. Experiments

4.1. Datasets and Settings

To validate the proposed Deep Correlation Structure Preserved Label Space Embedding
(DCSPE), we download eight benchmark datasets in different domains with relatively large
vocabularies for experiments, i.e., EUR-Lex (directory), mediamill, EUR-Lex (subject mat-
ters), delicious, Corel5k, iaprtc12, ESPGame, NUSWIDE.

The statistics of the eight real world datasets are summarized in Table 1. For the
datasets of text and video (EUR-Lex (directory), mediamill, EUR-Lex (subject matters),
delicious), we use traditional features from Mulan Tsoumakas et al. (2011). For datasets
of image (Corelbk, iaprtc12, ESPGame, NUSWIDE), we extract 4096-dimensional deep
features by using the 16 layers VGG network Simonyan and Zisserman (2015) pretrained
on ImageNet 2012 classification challenge dataset Deng et al. (2009) with MatConvNet, we
didn’t perform the fine-tuning for fairness and computational efficiency.

We consider four evaluation metrics, i.e., Macro-F1, Micro-F1, One-error and Ranking
loss, which are widely-used in multi-label learning to evaluate the prediction performance
of all the methods. Note that for the multi-label metrics, their values vary between [0,1].
For Macro-F1 and Micro-F1, larger the values better the performance, but for One-error
and Ranking loss, smaller the values better the performance. The definitions of the four
metrics can be found in Zhang and Zhou (2014).

In our experiments, we compared the following state-of-art multi-label classification
methods: Feature-aware Implicit label space Encoding (FalE) Lin et al. (2014), Sparse
Local Embeddings for Extreme Classification (SLEEC) Bhatia et al. (2015), Bayesian Non-
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Table 1: Datasets properties

Dataset Domain Instances Feature Labels Cardinality
delicious text 16105 500 983 19.0

mediamill video 43907 120 101 4.4
EUR-Lex(dc) text 19348 5000 412 1.3
EUR-Lex(sm) text 19348 5000 201 2.2
Corelbk image 5000 4096 374 3.5
iaprtcl?2 image 19627 4096 291 5.7
ESPGame image 23641 4096 268 4.7
NUSWIDE image 269648 4096 81 1.9

parametric Multi-label Classification (BNMC) Nguyen et al. (2016), Canonical-Correlated
Autoencoder (C2AE) Yeh et al. (2017), Cost-sensitive Label Embedding with Multidimen-
sional Scaling (CLEMS) Huang and Lin (2017). We also report the results of some baseline
algorithms, such as Binary Relevance (BR) Fiirnkranz et al. (2008), Classifier Chain (CC)
Read et al. (2011), Deep Canonical Correlation Analysis (DCCA) Andrew et al. (2013).

To select the parameters for these methods, we randomly hold one fifth of training data
in every datasets for validation. For the architecture of our DCSPE, we have [}, composed
of 2 layers of fully connected layer structures while the embedding function F is single fully
connected function. For each fully connected layer, a total of 512 neurons are deployed.
A leaky ReLU activation function is considered, while the batch size is fixed as 200. We
select A from {1075,107%,--- ,10°} and follow the Yeh et al. (2017) fixed a as 0.5. All the
experiments are performed on a 64-Bit Linux workstation with an Intel E5-2650 CPU, a
NVIDIA Titan X Pascal card and 256GB memory.

4.2. Experiments Results of LSDR

We perform all algorithms on the datasets with different values of M/K (from 20% to 100%)
where M and K are respectively the dimension of latent space and the original label space.

Figure 2 illustrates and compares the performances of the above methods, in which the
horizontal axis denotes the ratio of the latent space dimension (M/K). From the figure,
we can see that our DCSPE method performed favorably against most label embedding
methods in most cases, which well demonstrates its effectiveness. From the experimental
results, we can draw the following interesting observations.

The proposed DCSPE significantly outperform most of the baselines on the eight data
sets. For example, on EUR-Lex (subject matters), our method improves the best results of
the baselines by 4.5% (Micro-F1), 5.6% (Micro-F1) performance of the proposed methods,
which validates our theoretical results. (1) In order to reflect the importance of considering
the structure of label space, we set the A\ as zero, then our model degenerated into DCCA.
From the experimental results, We can clearly find that the result of our proposed DCSPE
is significantly better than DCCA, which effectively reflects the importance of preserving
intrinsic structural information of label space in multi-label embedding learning. (2) We
can find that on all datasets, as M increases, the performance of FalE varies a little, which
is due to the orthonormality constraint on latent space for enabling FalE to compactly

10
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encode the original label space with a smaller M Lin et al. (2014). But our method and
C2AE may decrease slightly sometimes when the M increases, because our orthonormality
only conducts on the DCCA model and the DCCA is just a part of our method. When the
ratio is above 40%, the result is basically stable. (3) we can use a lower-dimensional space
to preserve the information of the original space effectively by extracting the information
of all labels. It reflects that our method can effectively excavate the hidden structure of
the original label space. FalE is based on CCA, which describes the linear correlations
between the feature space and label space. We adapt the DCCA to analyze the nonlinear
correlations between feature space and label space. We found that the nonlinear method
can describe the correlation between the feature and label space better. (4) Compared to
the CLEMS method which adapts the traditional DMS model, we can clearly find that the
CLEMS method didn’t consider the feature space when conducting label embedding, which
may lead to the result that the latent space learned may not have enough predictability.
(5) In our method, the neural network F), have two roles, one is the nonlinear projection
from feature space to latent space, the other is the prediction function in testing phase. We
can clearly see that our method performs well on datasets in different fields because our
decoding function is robust and matches well with the encoding function. The experimental
results on the datasets also verify the stability and generalization of our algorithm.

Table 2: Visualization of embedded labels for IAPRTC-12.

Label Nearest Neighbors

sea beach, coast, wave, bay, island, boat

table room, chair, wood, bed, curtain

grandstand stadium, seat, uniform, team, player, spectator
cliff waterfall, canyon, face, rope, shrub

grave mummy, skull, bone, corridor, couple

church cathedral, ornament, bell, pinnacle, clock

To further verify the effectiveness of our derived deep latent space, we consider several
example labels from IAPRTC-12 and list their corresponding neighboring ones in Table 2.
From this table, we see that the neighboring labels observed in the latent space exhibit
highly correlated semantic information. This confirms our DCSPE in sufficiently exploiting
label dependency during the learning process.

4.3. Case Study of Multi-label Image Annotation

We present a case study in which the proposed method is applied to a multi-label image
annotation application. DCSPE is applied on the famous NUS-WIDE data sets. The
annotation results of several randomly selected images are illustrated in Figure 3. The
proposed DCSPE correctly predicts most labels for these images and our method can even
find the labels missing in the ground truth annotations. For example, our method tags
the image in row 2, column 2 with the label ’sunset’ missed in the ground truth. The
performance on multi-label image annotation applications suggests that our methods can
work well in the real-world image annotation applications.
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NUSWIDE
. clouds lake ocean beach clouds lake clouds ocean person
Groundtruth reflection sun tree water
sky water ocean sky water sky water
clouds lake ocean sky boats clouds lake

DCSPE Annotation | plants  reflection tree water clouds person sky water

sun sunset water ocean sky water

NUSWIDE
Groundtruth boats clouds sky vehicle | clouds lake ocean water clouds road sky tree clouds military plane sky
. beach boats clouds sky clouds lake ocean sky .
DCSPE Annotation vehicle water sunset water clouds plants road sky | clouds military plane sky

Figure 3: Several multi-label image annotation examples on NUS-WIDE data sets. The
labels in black are those that match with ground-truth annotation. The blue
labels denote the correctly predicted ones, while the red labels are those that are
wrongly predicted. Besides, we use green labels to represent the labels that are
correctly predicted but missing in the ground-truth annotations.

4.4. Parameter Analysis

Furthermore, we conduct experiments to see the effects of the only parameter A in the
proposed DCSPE. Figure 4 gives an illustration of the variances of multi-label classification
performance as A varies in {1070, 1079 ... 10!} in a run on Corel5k with M/K = 5%.
From the illustration, we can draw the observations that the performance of DCSPE, in
terms of Macro-F1 and Micro-F1, firstly increases and then decreases as A varies from 10710
to 1010,

0.08 : : 0.22
— B — Macro-F1
©- Micro-F1
0.07 - 0.2
=
-7 /o SN N
PxN . B~
0.06 | _ - ——e-_ - O 6. ~8 40.18
j1:g o N o,
T © N I
o D = il o
5 0.05 8 ~x 016 8
\
= N =
\
0.04 - \\E 0.14
@) 0
0.03 - ©0.12
0.02 : : : : : : : : : 01
-10 -8 -6 -4 -2 0 2 4 6 8 10
logio(N)

Figure 4: Effects of A in DCSPE on the performance of multi-label classification on Corel5k
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4.5. Convergence Analysis

In this section, we empirically study the convergence of the proposed DCSPE. The conver-
gence curves of DCSPE on Corel5k dataset with M/K = 0.8 are plotted in Figure 5. As
can be seen in the figure, the objective converges quickly in a few iterations. We omit the
results of the other datasets since they are similar with the observation in Figure 5.
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Figure 5: Convergence curce of the proposed DCSPE on Corel5k

5. Conclusion

In this paper, we proposed Deep Correlation Structure Preserved Label Space Embedding
(DCSPE) for solving the problem of multi-label classification with many labels. DCSPE can
successfully learn a feature-aware deep latent space which preserves the intrinsic structure
of the original label space. The deep latent space we learned has strong predictability and
discriminant ability. DCSPE makes the prediction more precise by reducing the error of
space transformation and the training error of classifiers in the latent space. The experiment
results demonstrate that DCSPE is superior to state-of-the-art label embedding algorithms.

There are many interesting future works. For example, our current proposal does not
consider the problem of missing labels. Dealing with weak label data in the process of
learning deep semantic latent space is an interesting issue in the future.
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