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Abstract

Multi-agent system is crucial for many practical applications. Recent years have witnessed
numerous research on multi-agent task with reinforcement learning (RL) algorithms. Tra-
ditional reinforcement learning algorithms often fail to learn the cooperation between dif-
ferent agents, which is vital for multi-agent problems. A promising solution is to establish
a communication protocol among agents. However, existing approaches often suffer from
generalization challenges especially in tasks with partial observation and dynamic varia-
tion of agent amount. In this paper, we develop a Cluster-Coordinated Network (CCNet)
to address the “Learning-to-communicate” problem in multi-agent system by utilizing the
combination of a trainable Vector of Locally Aggregated Descriptor (VLAD) algorithm and
reinforcement learning. Embedding with a VLAD based end-to-end trainable communica-
tion information processing module (called VLAD Processing Core), CCNet can learn effi-
cient communication protocols even from scratch under partially observable environments
and possesses robustness to the dynamic changes of agent number as well. Moreover, with
the help of communication, CCNet is with less non-stationarity when training the network
by common RL algorithms. We evaluated the proposed CCNet on two multi-agent partially
observable tasks, i.e., Traffic Junction and Combat Task. The experimental results have
demonstrated that CCNet is effective and improves the performance by a large margin over
the state-of-the-art methods.

Keywords: multi-agent reinforcement learning, communication protocol, clustering, neu-
ral network

1. Introduction

Artificial Intelligence (AI) has witnessed great progresses in the past few decades, especially
after the development of deep learning. However, there are still many road stones standing
in the way of reaching the great goal of Artificial General Intelligence (AGI) (Goertzel and
Pennachin, 2007), and how to learn an optimal policy in multi-agent environments is one
of those stones. Many social works involve interactions between multiple agents, such as
rubbish removal (Makar et al., 2001), urban traffic control (Kuyer et al., 2008; Van der
Pol and Oliehoek, 2016), public resource appropriation (Perolat et al., 2017) and network
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packet delivery (Ye et al., 2015). Moreover, multi-agent self-play has been proved to be
crucial when combined with other methods like tree search (Silver et al., 2017b,a).

On the other hand, Reinforcement learning (RL) has recently shown effectiveness when
coping with many challenging tasks, such as game playing (Mnih et al., 2015; Silver et al.,
2017b), robots controlling (Levine et al., 2016) and data center cooling (DeepMind, 2016).
RL has also been applied to multi-agent tasks, known as multi-agent reinforcement learning
(MARL) (Busoniu et al., 2008).

One straightforward way of scaling traditional RL algorithms into multi-agent environ-
ments is Independent Q-learning (IQL) (Tan, 1993), in which each agent learns its own pol-
icy independently, regarding other agents as part of the environment. In MARL, the reward
can be seen as a function of the global state and the joint action of all agents: (S, A1, ..., Ax).
IQL chooses actions according to its own observations only, regarding the reward function
as: 17Qr(S, A;). The approximate errors between these two reward functions are often too
large and result in the non-stationary problem. From the perspective of any individual
agent, the received rewards may be different even though its policy stays the same. Fur-
thermore, non-stationarity leads to stability challenges of training when we combine IQL
with the use of past experience replay (Mnih et al., 2015): the non-stationarity brought
by IQL indicates that the environment is also changing as the training goes on. Data gen-
erated by different versions of the environment is mixed together in the experience replay
and then sampled uniformly, this further causes the stability problem of training. Although
there are some RL algorithms that do not rely on experience replay and these methods can
sometimes learn well in multi-agent environments so long as each agent can get access to
the other agents’ policies (Foerster et al., 2017b), how to track and represent the policies
of other agents remains a challenging problem.

To reduce the non-stationarity, a much better approximation of the reward function can
be written as: 7pige (S, b1, ..., hx), in which agents share their hide states to help estimating
other agents’ actions. Following this intuition, many researchers tried to solve the MARL
problem by pre-defining a communication protocol between agents (Busoniu et al., 2008;
Sutton and Barto, 1998), so that the hide states of agents can be shared in a relatively
practical way. The more effective the communication method is, the more helpful it will be to
reduce non-stationarity. However, these methods cannot be directly generalized to different
environments or tasks with large collection of agents, which hinders their applications in
practical tasks. Recently, a few of preliminary works have been proposed to enable agents
to learn communication protocols all by themselves (Sukhbaatar et al., 2016; Foerster et al.,
2016; Mao et al., 2017), demonstrating that although with some limits (e.g., the protocol is
still too simple, the number of agents must be settled), this way of solutions is promising.

In this paper, we propose a Cluster-Coordinated Net (CCNet) framework, which coor-
dinates agents to learn how to communicate with each other in a more effective way. Each
agent is modeled by a feed-forward neural network, and all agents’ models are connected
together by a communication channel in which the communication messages as well as gra-
dients flows. Inspired by Arandjelovic et al. (2016) and the Vector of Locally Aggregated
Descriptors (VLAD) representation (Jégou et al., 2010), we propose a VLAD Processing
Core which is amenable to training via backpropagation to process communication messages
(each agent generates one message), and thus enables agents to learn their own communi-
cation protocols with common RL algorithms or supervised learning. Our framework has
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three advantages: (a) in VLAD Processing Core, the dimension of the clustered results
is independent of the number of input communication messages. In other words, VLAD
Processing Core can be seen as a pooling method which turns the input communication
messages with dynamic dimension into a vector with deterministic dimension. This enables
the framework to deal with tasks in which the number of agents changes frequently. (b)
the clustered vectors are expected to learn an effective representation of all agents’ status
according to communication messages. Different cluster centers represent different typical
status agents may be in, and the intensity of each clustered vector represents the number of
agents which are in this status. (¢) the clustered communication information is an effective
representation of all agents’ hide states, so that our framework suffers less non-stationarity
when combined with classical RL algorithms. These advantages allow the proposed frame-
work to be more suitable to tackle a wide range of more complicated tasks involving partial
visibilities of the environment and dynamic changes in the number of agents.

We consider the setting in which the agents are fully cooperative, which means that
agents receive the same reward r from the environment independent of their contribution.
All agents are cooperating to maximize the reward r. With parameter sharing, agents of
the same type can be seen and trained as a same deep feed-forward network with different
inputs. From the perspective of a single agent, the network maps its observation of the
environment as well as the clustered communication information to its action.

We explore the proposed CCNet on two tasks which have different settings, most of
them are under partially observable environments. Since the policy of each agent is learned
totally from scratch, RL algorithms must be used to provide a training signal for the model
to update its parameters, but note that our framework can also be directly trained via
supervised learning. Our framework outperforms the state-of-the-art results by a large
margin in nearly every setting, which indicates the CCNet to be effective to solve multi-
agent tasks.

2. Related Work

Researchers have been studying the collaborations and interactions in multi-agent environ-
ments for decades and reinforcement learning has been used to learn optimal collaboration
policies from the very beginning (Littman, 1994; Schmidhuber, 1996; Tan, 1993). As a
result of that, there is a rich literature on the MARL problem, especially in the domains
like robotics (Fox et al., 2000). Building a communication protocol among agents has al-
ways been a key component in solving the MARL problem, but most of the traditional
approaches use a pre-defined protocol (Tan, 1993; Maravall et al., 2013). Recently, many
solutions which enable agents to learn communication protocols via backpropagation have
been proposed, such as differentiable inter-agent learning (DIAL) (Foerster et al., 2016),
CommNet (Sukhbaatar et al., 2016), Bidirectionally- Coordinated Network (BiCNet) (Peng
et al., 2017) and VAIN (Hoshen, 2017).

DIAL (Foerster et al., 2016) is one of the pioneers in this domain, in which the com-
munication information is able to be broadcast between agents in order to solve partially
observable tasks like riddles. In DIAL, each agent is modeled by a recurrent neural network
which outputs the Q-value of an individual agent together with a communication message at
each timestep. The generated message is then broadcast to another agent and used as part
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of the inputs of that agent at the next timestep. DIAL builds a channel in which messages
as well as gradients can be propagated between different agents. From the perspective of
each agent, the global information is represented by its current observation, last action, and
the received message. However, DIAL broadcasts the message in a discrete manner with the
lag of one timestep and only two agents are involved, while our approach allows continuous
message to be shared among arbitrary number of agents at the current timestep.

CommNet (Sukhbaatar et al., 2016) is designed for agents to learn their joint action
policies and is the closest approach to ours. Unlike DIAL, CommNet can be viewed as a
large model which consists of many small controllers. Each controller represents an individ-
ual agent and all agents are connected together by a communication channel. CommNet
employed a mean-pooling method to make sure the model can be able to deal with the envi-
ronments in which the number of agents changes dynamically. However, the mean-pooling
method is sometimes too simple to process and carry enough communication information
and thus has limits when handling sophisticated tasks, especially when involving large
amount of agents or lacking observations. This is the reason why our CCNet outperforms
CommNet in most settings.

BiCNet (Peng et al., 2017) chooses bi-directional recurrent neural network to deliver
communication information. In contrast to DIAL and CommNet, BiCNet is based on Actor-
Critic framework and the output actions are represented in continuous space. The RNN
architecture enables a single agent to share its information with other teammates one by one
with the expanding of the network. However, the communication information of a certain
agent will vanish gradually due to the RNN’s sequential connected structure, because the
information generated earlier may be covered when passing through the subsequent agents.
In our method, the order of agents does not matter since all the communication messages
are processed together and there is no such vanishing problem.

Recently, the idea of centralized learning and decentralized execution has been pro-
posed. Lowe et al. (2017) introduced MADDPG framework and evaluated it in mixed
cooperative-competitive environments. The COMA model tries to solve the problem of
credit assignment in multi-agent environments through counterfactual rewards (Foerster
et al., 2017a). ACCNet (Mao et al., 2017) followed these ideas and proposed a decentral-
ized learning and centralized execution framework. But these methods may not work well
in the environments where the number of agents changes dynamically and cannot scale to
environments with huge amount of agents, since the number of input units of the network
is settled. Foerster et al. (2017b); Usunier et al. (2016) and Shao et al. (2018) attempt to
tackle the multi-agent tasks from the perspective of IQL by improving the training pro-
cedure, reply buffer and the method of reward assignment, but they do not focus on the
partially observable environments.

3. Background
3.1. Problem Formulation

In this paper, CCNet needs to control a group of agents to achieve their goals together.
We formulate the environment as a Markov game (Littman, 1994), which is a partially
observable Markov decision process (POMDP) with an extension to multi-agent system.
In a Markov game with N agents, a set of S is used to describe the properties of the
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environment as well as the status of all agents, and a set of observations O1, ..., Oy together
with a set of actions Ay, ..., Ay for agents. Each agent ¢ chooses its own action according
to a stochastic or learned policy mp,: O; x A; — [0, 1]. Then the successive state S’ is
generated based on the state transition function 7: S x Ay X ... x Ay — S’. Each agent i
receives a private observation of the state o; : S — O; and a reward r; as a function of the
environment state and the joint action of all agents r; : S x A1 x ... x Ay — R. Since our
work considers the setting where the agents are fully cooperative, rewards of all agents are
identical and equal to r, which means r; = ... = ry = r. The goal of the learned policies
is to maximize the total expected reward R = Z?Zl Lyt
at timestep t, v € [0, 1] denotes a discount factor and T is the length of a game episode.
Figure.1 shows the diagram of a Markov game and demonstrates how agents interact with
the environment in multi-agent system.

, where r! is the reward received

reward: r! ‘
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Figure 1: Demonstration of how RL agents interact with the environment in multi-agent
System.

3.2. Reinforcement Learning

Deep Q-Network(DQN). Q-learning (Watkins, 1989) has always been one of the most
popular methods in reinforcement learning. In Q-learning, an action-value function called
Q-function is defined to measure the effect of actions. The Q-function of a policy 7 is
Q" (s,a) = E[R|s! = s,a’ = a]. The optimal Q-function Q*(s,a) = max,Q"(s,a) follows
the Bellman optimality equation and can be recursively written as Q*(s,a) = Ey[r(s,a) +
ymax,Q*(s',a’)|s,a]. DQN trains a neural network to approximate the optimal Q-function
with parameters 0, written as Q(s,a;60) (Mnih et al., 2015). DQN learns @* by minimizing
the loss:

E(Q) = Es,a,r,s/[(y'LDQN - Q(S, a; 9))2] (1)

where yZD = r + maxyQ(s,a’;67), and 6~ denotes the parameters of a target network
copied periodically from 6 and is not updated by gradients. During training, the action
is chosen from Q(s,a;#) based on an £ — greedy policy which chooses the action randomly
with a probability of e and selects the action according to Q*(s,a;#) with a probability of
1—e. Another important component of DQN is the use of an experience replay buffer which
stores the < s,a,r, s’ > tuple to stabilize the training procedure, but experience replay has
many limits when applied to multi-agent tasks.

QN
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Policy Gradient (PG) Algorithms. Methods based on Policy gradient (Sutton et al.,
2000) are another popular choice when solving RL tasks. In contrast to value-based
methods, policy gradient methods directly model the agents’ policies my(a|s) with pa-
rameters 6. The parameters are updated by applying gradient ascent on the objective
J(0) = Egpr aomy | R], where p™ is the state distribution and actions are selected according
to the modeled policy. Basic PG algorithm updates 6 in the direction:

Vo J(0) = Esnpr anrmy[Vologme(als)Q7 (s, a)] (2)

Estimating Q™ in different ways gives rise to a variety of practical algorithms. For instance,
one could learn a model of Q™ by Q-learning, which leads to the actor-critic algorithms (Sut-
ton and Barto, 1998). Standard REINFORCE algorithm (Williams, 1992) simply uses the
total expect reward during a period of time R’ = Z;“F:t vty to estimate Q™, which is an
unbiased estimate of the objective. However, policy gradient methods often suffer the high
variance gradient estimates, and we can reduce this variance and keep it unbiased at the
same time by subtracting a baseline b(s') (Williams, 1992), which is a learned estimation

of the state basing on the reward. So the gradient becomes:

Vo J (0) = Egupr anmy [Vologma(als) (R — b(s"))] (3)

4. Methods

In this section, we demonstrate the detailed structure of our Cluster-Coordinated Net and
how the communication information is clustered in VLAD Processing Core. In general, our
framework outputs the distribution over actions p(al|s!; 6) of all agents at any timestep ¢,
and t will be omitted for brevity.

4.1. Cluster-Coordinated Net Framework

In CCNet, each agent is modeled by a multilayer feed-forward neural network called agent-
model (shown in Figure.2) and all the agent-models are connected together by a communi-
cation channel. The agent-model of agent ¢ can be written as a function f; which takes its
observation of the environment o; and the clustered communication information it receives
¢; as inputs, then map them to a distribution over actions. From the perspective of network
structure, o; and ¢; are fed into different layers of the agent-model.

Each agent-model consists of an encoder and a decoder. Firstly, for agent i, there
is an encoder function e(-) which maps its observation o; into a hidden state h;, written
as h; = e(0;). We choose a two-layer perceptron as the encoder, and the form of en-
coder can be replaced by other models like Look-Up-Table depending on the specific task.
Secondly, h; is delivered to VLAD Processing Core through communication channel. In
VLAD Processing Core, hidden states of all agents are stacked together and become a
dataset D = {hy,...,hn}, then a clustering procedure is processed and outputs K vectors,
where K is the number of cluster centers, so VLAD Processing Core can be written as a
function:

c= fvrap(hi,...,hn) (4)
where c is the concatenated result of these K vectors. ¢ can be seen as a concise representa-
tion of all agents’ status and is then broadcast to all agents, which meansc; = ... =cy =c.
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Lastly, for agent 4, a decoder d(-) which takes h; and ¢; as inputs is used to generate the
distribution over actions. The decoder is also a two-layer perceptron and followed by a
softmax function, so the results are computed by:

p(ails) = p(ailo;) = d(hi, c;) (5)
d(hi7 Ci) = fsoftma:r:(U(Hhi + CCZ)) (6)

in which ¢ is a non-linear activation function, H and C are parameters. Agent selects its
action by sampling from the output of decoder: a; ~ d(h;,c;). As shown in Figure.2, the
CCNet framework can also be treated as a larger model ®, which maps a concatenation
of all agents’ observations O = {o1,...,0n} to a concatenation of discrete actions A =
{a1,...,an}. Note that the entire CCNet framework includes VLAD Processing Core
as well as the agent-model of each agent. Parameters of the CCNet can be viewed as a
communication protocol between agents, which includes encoding, information processing
and decoding procedures. The number and order of agents do not matter in our framework
because of the connection method between agent-models and VLAD Processing Core. The
operating mechanism of VLAD Processing Core is illustrated in the following section.

{ap,.aj.,ap } aj
\ [P S
la P ay |
Dy W Decoder
Cp wee e Ci e CN? @
Decodjr i) < I : Decoder d(-) [O 000 OIO 000 O]‘g_ci

'
a ; ] hl
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| VLAD Processing | ;
| Core i | ' Encoder |

i | hv i 00000 >
(e hjoes iy 5 | 3
Encoder e(-) | | Encoder e() | | g @ ‘

A N A

o I i

[ Environment ] agent-model

Figure 2: An overview of our proposed CCNet framework. Left: the whole framework of
CCNet @, showing how the information flows inside the framework. Note that the
inputs of VLAD Processing Core are the hidden states of all agents {h1,...,hnx},
and its output c is shared with all agents. Right: inner structure of an agent-
model, each agent-model corresponds to a single agent i. Among the agents of
same type, parameters of the agent-models are shared in order to speed up the
training procedure and reduce the non-stationary at the same time.
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4.2. VLAD Processing Core

Vector of Locally Aggregated Descriptors (VLAD). VLAD (Jégou et al., 2010)
is a well-known descriptor pooling method which is often used in the areas like image
classification (Gong et al., 2014) and instance level retrieval. VLAD is represented by the
sum of the difference vectors between the descriptors and their assigned cluster centers.

Assuming each descriptor to be a D-dimensional vector (in our case, descriptors corre-
spond to the hidden states of agents, so we have N descriptors), and there are K cluster
centers (the coordinates of k-th cluster center in feature space is represented by wy), then
the output VLAD representation V is a K x D dimensional matrix. V is viewed as an
effective representation of images (in our case, a representation of the hidden states of all
agents). The (k, j) element of V is computed as follows:

N
Vi(k,5) = ar(ha) (hi(5) — ur()) (7)
=1

where h;(j) and ug(j) denote the j-th dimension of the i-th descriptor and the j-th dimen-
sion of the k-th cluster center. gx(h;) is an assignment function, and gx(h;) = 1 when the
closest cluster center to h; is k and gi(h;) = 0 otherwise. The matrix V is then converted
to a vector v and subsequently Lo-normalized by v := v/ ||v]|.
Trainable VLAD. In traditional VLAD algorithms, the cluster centers are learned in
advance by other clustering algorithms like k-means. These methods have great limits
when directly applied to multi-agent reinforcement learning tasks, because the communi-
cation messages of agents may change dramatically throughout the training procedure and
the cluster centers needs to be modified constantly to adapt to the new situations. In order
to benefit from the years of achievements in VLAD and conquer its limits, we introduce
an improved VLAD algorithm which is trainable via backpropagation. “Trainable” means
that operations inside VLAD need to be differentiable with respect to all their parameters
as well as inputs.

Traditional VLAD is non-differentiable mainly because the hard assignment function
qx(h;) outputs either 0 or 1. Inspired by Arandjelovic et al. (2016), we replace gx(h;) with
a soft assignment function which assigns descriptors to all clusters according to distance:

e—allhi—u|?

_ h _
qk( ’L) Zk/ e_a”hi_uk’”2

(8)

This equation assigns descriptor h; to cluster center k£ with a weight which is proportional
to the square of distance between them. With normalization, g (h;) ranges from 0 to 1, and
the closest cluster center has the highest weight. « is a positive constant which controls
the weight distribution between the distances with different magnitudes. Note that g (h;)
is equivalent to the original hard assignment function when o — 400, since g (h;) = 1 for
the closest cluster center and 0 otherwise.
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Expanding the squares in (8) can lead to a simpler equation:

e—a(llhill>=2ughi+|lug|?)

— h — 9
Qk( ’L) Ek, efa(||hi||272uk/hi+‘luk/“2) ( )
ewkThi+bk
k!

where 20, and —a |jug|? is renamed as wy, and by. After combining equation (10) with
(7), the final form of our trainable VLAD is:

N ewghi'f'bk

Vi(k,j)=>

Ty .
el SR A

(hi(5) — ur(5)) (11)

Note that {wy}, {bx} and {u} are all trainable parameters correspond to cluster center .
Different from the original VLAD which has only one set of parameters {uy}, this trainable
VLAD method has three independent sets of parameters and can be updated by gradients
in an end-to-end manner, which enables a more effective and flexible representation of the
environment.

Implement of VLAD Processing Core. Basing on the derivations mentioned above,
we designed VLAD Processing Core. The key is how to implement equation (11) with basic
calculation modules like linear network or CNN kernel. The detailed structure of VLAD
Processing Core is illustrated in the Figure.3.

VLAD Processing Core

Il/ \\'

i h(1<D) | 5

h; | Multiplier Adder 1

hN : ]
l concatenation

(0000000000] |
ll><KD
E— -

hi (1xD)

Figure 3: Inner architecutre of VLAD Processing Core. VLAD Processing Core can be eas-
ily implemented by basic calculation modules (perceptron, adder, multiplier and
Lo-normalization). With hidden states of all agents as inputs, VLAD Processing
Core can generate a clustered communication message to be broadcast among the
agents.

First, all the input descriptors are stacked together to form a dataset D = {h1,...,hn},
and pick descriptor one at a time. Second, the soft assignment function gx(h;) can be
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viewed as linear mappings of the descriptor followed by a softmax function. These linear
mapping operations can be achieved by a two-layer perceptron which has D input units
(correspond to the dimension of hidden states) and K output units with no non-linear ac-
tivation function. Alternatively, if we stack all the descriptors together (to form a N x D
matrix) and regard them as an image, then the linear mapping operation can be imple-
mented by K convolution filters whose size is 1 x D, the vertical stride of these filters is
1 and O for horizontal stride. The outputs are then passed through a softmax function
fsoftmaz to get the final result of gi(h;). Third, multiply soft assignment weights with the
difference vectors and aggregate them together for every cluster center k. This operation
can be realised by simple multipliers and adders. Finally, these K aggregated vectors are
concatenated together and a normalizing operation is applied. The output vector is then
directly used as a clustered communication message and is broadcast among all agents.

Since the input and output sizes of the calculation modules are independent of the
number of descriptors N, VLAD Processing Core is more suitable to deal with the tasks in
which N changes dynamically. Additionally, VLAD Processing Core can be represented by
a directed acyclic graph and is ready to be inserted into other models as an “end-to-end
trainable clustering module” for some specific tasks.

5. Experiments

We tested our framework on two multi-agent tasks (named Traffic Junction and Combat
Task) which are based on the MazeBase environment (Sukhbaatar et al., 2015). A modi-
fied baseline subtracting REINFORCE algorithm (described in the background section) is
adapted to train our framework. Additionally, an on-policy episodic training method is uti-

lized instead of experience replay. Assuming the state sequence in an episode is s, ..., sT

and the corresponding actions are a',...,a’, in which T denotes the length of this game
episode. Similar to Wang et al. (2015), an extra head is designed to generate a scalar value
b(s') to represent how “good” this state is and is used as baseline during training. The

model parameters 6 can be optimized by adding:

)

T T T

ESS W(Zw ~b(s,8)) ~ Bp (377 b, 0))? (12)

t=1 i=t i=t

where 7? is the reward received from the environment at timestep 7, the hyperparameter /3
is set to 0.03 in all experiments.

As for network structure, the output size of encoder is set to 50 for Traffic Junction
and 25 for Combat Task, the number of cluster centers is 4, so the input size of decoder is
250/125 respectively. Framework is trained for 600 epochs on each task, each epoch includes
100 weight updates with RMSProp, the mini-batch of each update is 288 game episodes.
Since the variance of the learned policy is also an important part of the evaluations of RL
algorithms, we repeated CCNet’s experiments for 3 times with different initializations, and
the results are reported together with their mean values and standard deviations.

Like CommNet, we also compared our results with the following baseline models. Note
that all the baseline models as well as our model are trained under the identical RL algorithm
and with the same hyperparameters (like the number of epochs and learning rate). In other
words, the only difference is network architecture.
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Independent controller. The communication between agents is disabled and each
agent chooses its action only based on its observation. The parameters are still shared
among the agents of same type, but agents often act differently since they have different
observations.

Fully-connected. All agents are modeled together by a four-layer fully-connected
neural network with the size of hidden layers is set to 50. Model’s input is the concatenation
of the observations of all agents and directly outputs the distributions over actions of all
agents. This model allows agents to communicate, but agents may get drown in massive
communication information and the model itself is not flexible.

5.1. Traffic Junction

As shown in Figure. 4, a 4-way crossroad is simulated in a 14 x 14 grid. At each timestep,
new cars enter the grid from one of the four directions with a certain probability parrive,
and will exit the grid as soon as they reach one of the edges of the grid. The maximum
number of cars running on the roads at any timestep is set to 10 in our experiments. Each
car’s destination is randomly chosen from three possible edges the moment it enters the
grid, and cars should keep driving on the right-side of the roads. Each car has two optional
actions: gassing to move forward by one cell on its route or breaking to stay at its current
location.

/’ 100% ®-® CCNet
H *— Independent q
! Pl Attack actions Enemy bot
New car 1 (e.g. attack_4)
arrivals
v Car exiting . .
o
’ £
------ i g 10% A [T =
—————————— s ———r - i N\ [ T ! Firi .
i E i . \— Firing range
i « ¢ i 1
. ~ I
3 possible i <\ o =
routes ‘ N\ | | ¢
4= S —t— Visual range / ’_’-’
N 1% — +
Visual range Ixd 3x3 5x5 7%7 @ 4 movement actions
Visual range

Figure 4: Left: Traffic Junction task in which each colored circle corresponds to a running
car (agent). Agents have to pass the crossroad safely as soon as possible to get
higher rewards. Middle: The failure rates of different models with different visual
ranges after 300 episodes’ training. Results show that CCNet outperforms other
models especially when visual range is small. Right: Combat task, in which the
trained model needs to control a group of bots (red circles) to defeat the enemy
(blue circles), bots of two sides are equal in number and strength. Agents in both
tasks have a visual range (orange region) which leads to a partially observable
environment.

Two cars are considered as a collision if they stand on the same cell and this game episode
is classified as a failure, but the simulation will continue until it reaches the termination
timestep (40 in our experiments). The reward which agents received at timestep ¢ is defined
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as:
Nt
rt = Clregy + ) (—0.01)7; (13)
=1
here C' denotes the number of collisions occurred at time ¢, 7., = —10 is the reward when a

collision happened, N is the number of cars currently on roads and 7; is the total timesteps
passed since the car 7 arrived (this term is used to discourage traffic jam).

We consider each car to be an individual agent which is denoted by its ID number n,
current location [/, route number r and coded by an one-hot binary vector. Each car has
a vision range (a m x m neighborhood) and can only observe the cars within this range.
Then the observation of each car o; is a m? x |n| x |I| x |r| dimensional vector.

We mainly evaluated the performances of different models under zero visibility situa-
tions (the visual range is 1 x 1, agent can see nothing but itself) and utilized the failure
rate of one epoch (approximately 30000 episodes) as evaluation standard. The results are
shown in Table. 1 (The results of Discrete comm, CommNet and A-CCNet-sha are cited
from Sukhbaatar et al. (2016); Mao et al. (2017) directly).

300 episodes | 600 episodes
Independent 100 -
Discrete comm 100 -
Fully-connectd 47.48 -
CommNet 10 -
A-CCNet-sha 7.8847 4.964-
CCNet 6.79i1‘25 5-74i1.06

Table 1: Failure rates(%) of different models under zero visibility. Note that A-CCNet-
sha does not report its results in the form of mean value and standard deviation,
which is not so convincing especially in RL domains (RL algorithms often have
high variance problem). Our best result of 600 episodes is 4.29% and is better
than the reported A-CCNet-sha result.

Due to the limits of visibility, agents need to learn a communication protocol which can
reflect the status of all agents to help avoid collisions. Not surprisingly, CCNet achieves the
best results when compared to other proposed methods and keeps the robustness of agent
number at the same time, showing the effectiveness of the communication protocols learned
by our framework. We also explored the performance with different visual ranges (shown in
Figure. 4). Our CCNet still presents comparable results with CommNet when visual range
is large and the failure rates of both models are less than 2%. These results also reveal the
fact that the larger the visual range is, the smaller the effect of communication will be.

5.2. Combat Task

Combat Task simulates a 15 x 15 grid battle field in which two teams of bots fight against
each other (shown in Figure. 4). Each side has 5 bots (agents) and these bots are generated
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uniformly in a 5 x 5 region whose center is also picked uniformly in the whole battle field.
Each bot has a couple of actions: four moving actions each corresponds to one of the four
directions; attacking an enemy bot by specifying its ID j; or staying at the current location
(there are 4 + 5+ 1 = 10 actions in total). Except for visual ranges (5 x 5 area) like Traffic
Junction, each bots has a firing range (3 x 3 area) and attacking the enemies within firing
range is considered as a valid attack. Each agent has 3 health points when game starts and
each valid attack will injure the target enemy bot by 1 health point. One timestep is needed
for cooling down after attack, during which that agent cannot attack again. Bot dies when
its health point reaches 0 and is then removed from the battle field.

Reaching the maximum length of one game episode (7T},q, = 40) is classified as a draw,
and Kkilling all the enemies is classified as a win. The RL model only controls one side
of bots, while the another team is controlled by an environment build-in controller which
follows a simple policy: attack the nearest enemy within firing range or get close to the
nearest enemy within visual range.

Like Traffic Junction, the agent’s observation o; is one-hot coded and the information
of one agent includes ID number n, team ID ¢, health point h, cool down ¢ and location I.
Then the dimension of o; is 5% x |n| x |t| x |h| x |c| x |I|. A reward is designed to encourage
agents to attack and defeat enemies: —0.1 X hepemy for all t < T', and —1 if loses or draws
at timestep 7, where hepemy is the sum of health points of the enemies.

300 episodes | 600 episodes

Independent 34.2413 -
Discrete comm 29. 1467 -
Fully-conneced 177471 -
CommNet 44.5:|:13.4 -
CCNet 52.910.36 58.91009

Table 2: Win rates(%) of different models. CCNet outperforms other methods by a large
margin with the highest win rate and the lowest standard deviation.

Table. 2 demonstrates the win rates (%) of different models. Compared to the Traffic
Junction task, Combat Task is more complicate because agents need to learn how to ex-
change the information about the spotted enemies and the communication messages need to
carry more information. The huge improvement on Combat Task shows that CCNet is use-
ful in communication protocol learning and information processing, especially in complicate
partially observable situations.

6. Conclusion

This work addressed the “Learning-to-communicate” problem among multiple agents with
reinforcement learning algorithm. We have proposed a new cluster-coordinated network
(CCNet), a VLAD based end-to-end trainable framework which can learn the communica-
tion protocols even from scratch under partially observable environments and outperforms
the state-of-the-art results on two challenging tasks. By taking advantages of the trainable
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VLAD clustering algorithm, the learned communication protocols have strong representa-
tion ability and can effectively handle the tasks with dynamic variation in the total number
of agents. The CCNet, especially VLAD Processing Core, can also be embedded into other
networks (like RNN, LSTM, CNN) to solve different multi-agent tasks (so long as the com-
munication is enabled).
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