Supplemental Material to Dynamic Weights in Multi-Objective Deep
Reinforcement Learning

1. Algorithms

In this section of the appendix, we first present some of the
recent advances in Deep RL we extended to multi-objective
Deep RL and then include the pseudo-code for Conditioned
Network (CN), Multi-Network (MN) and Diverse Experi-
ence Replay (DER) algorithms.

1.1. Prioritized Sampling

For both replay buffer types, we used proportional priori-
tized sampling (also referred to as Prioritized Experience
Replay (Schaul et al., 2015)). This technique replaces the
uniform sampling of experiences for use in training by pri-
oritized sampling, favouring experiences with a high TD-
error (i.e., the error between their actual Q-value and their
target Q-value). To update each sample’s priority in the dy-
namic weights setting, we observe that TD-errors will typ-
ically be weight-dependent. It follows that a priority can
be overestimated if the TD-error is large for the weight
on which the sample was trained but otherwise low, or it
can be underestimated if the TD-error is low for the trained
weight but otherwise high. In the first case, the sample is
likely to be resampled quickly and its TD-error will be re-
evaluated. Hence we consider the overestimation to be rea-
sonably harmless'. In contrast, underestimating a sample’s
TD-error can have a more significant impact because it is
unlikely to be resampled (and thus re-evaluated) soon. To
alleviate this problem, we used Prioritized experience re-
play’s € parameter which offsets each error by a positive
constant €; p(d) = (6 + €)®. This increases the frequency
at which low-error experiences are sampled allowing for
possibly underestimated experiences to be re-evaluated rea-
sonably often. As a result, on average, experiences that get
sampled less often are samples that consistently have low
TD-errors for all weight vectors used in training.

The question then remains which TD-error should be used
for a given sample. For both the MO baseline and MN we
update the priority w.r.t. the TD-error on the active weight
vector.

"We further note that a given sample can only be overesti-
mated often if it repeatedly has a large TD-error for the weights it
is being trained on, in which case it should not be considered as
overestimated.

We find this to be insufficient for CN as it trains both on
the active weight vector and on randomly sampled past
weight vectors. Ideally we would compute a TD-error rela-
tive not only to the active weight-vector but also all the past
weight vectors. However, it would be too computationally
expensive to perform a forward pass of each training sam-
ple on all encountered weights, so we only consider the
two weight vectors (i.e., w; and w;) it was last trained on.
Only using the active weight vector’s TD-error to deter-
mine the priority would prevent past policies from being
maintained, as their TD-error would have no influence on
how often experiences are trained on. Conversely, only tak-
ing the randomly sampled weight vector in consideration
could hurt convergence on the active weight vector’s pol-
icy. Hence we balance current and past policies by com-
puting the average of both TD-errors and use that value to
determine the experience’s priority.

1.2. Double DQN

Double DQN (Van Hasselt, Guez, and Silver, 2016) re-
duces Q-value overestimation by using the online net-
work for action selection in the training phase. Le., y; =
r; + YQ~ (argmazy Q(d, sj41), S;41) instead of y; =
rj +ymaze Q~(a’,sj11). As a result, an action needs to
be overestimated by both the target and the online network
to cause the feedback loop that would occur in standard
DQN. The same technique can be used in multi-objective
DQNs. It is especially useful for the Multi-Network algo-
rithm, as overestimated Q-values can have a significant im-
pact on policy selection.

1.3. Conditioned Network Algorithm

The Conditioned Network (CN) algorithm (Algorithm 1)
for multi-objective deep reinforcement learning under dy-
namic weights, handles changes in weights (i.e., the rela-
tive importance of each objective) by conditioning a single
network on the current weight vector, w. As such, the Q-
values outputted by the network depend on which w is in-
putted, alongside the state. For an architectural overview of
the networks we employed, please refer to Appendix 2.1.

After initializing the network, the agent starts interacting
with the environment. At every timestep, first a weight
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Algorithm 1 Dynamic Weight-Conditioned Reinforcement
Learning

1: Define ay, s as shorthand for argmaz.caQcn(a, s; w) - w
2: initialize (diverse) replay buffer D and unique weight history
w
3: Qen, Qo « initializeConditionedM odel()
4: for steps t € {0...7} do
5:  wy < getWeightVector(t)
6: add w;to W
7:  With probability € select a random action a¢
8:  Otherwise a; = ay, s,
9 Execute action a+ and observe r; and s;4+1
10:  Store transition (s, at, rt, S¢41) in D
11:  Sample minibatch of transitions from D
12:  for each sampled transition (s;, a;,r;, s;+1) do

13: w; randomly sampled from &/ (W)
14: if transition is terminal then
15: Yi =Y; =1,
16 else
17: Yj =Trj+ anN(a’v‘vt,sm,sm; W)
18: Y; =15 +7Qon (% 5,015 55413 W5)
19: end if
20:  end for
21:  perform gradient descent step on
1 ’
5 lvs = Qen(ag, s55wi)l + |yj — Qon(ag, 855 w;)]
22:  Every N~ steps; Qony = Qcn {Synchronize target net-
work }
23:  anneal(e)
24: end for

vector wy is perceived, and added to the set of observed
weights W if it is different from w;_;. WV is used to sam-
ple historical weights from, so that the network keeps train-
ing with regards to both current and previously observed
weights. This is necessary in order to make the network
generalize over the relevant part of weight simplex. Specif-
ically, for each gradient descent step, the target consists
of two equally weighted components; one for the current
weight w, and one randomly sampled weight from W, w ;.

While not explicitly visible in the algorithm, CN makes use
of prioritized experience replay. Please refer to (Schaul et
al., 2015) for details. Each timestep, an experience tuple is
perceived and added to the replay buffer D. Then, a mini-
batch of transitions is sampled from D, on which the net-
work is trained. Each experience’s priority is updated based
on the average TD-error of the two weight vectors it was
trained on.

As described in the main paper, CN can have a sec-
ondary experience replay buffer for diverse experience re-
play (DER). For a description of when and which samples
are added to the secondary replay buffer, please refer to the
main paper.

In this paper, we make use of e-greedy exploration, with

€, the probability of performing a random action, annealed
over time. For Minecart we anneal it from 1 to 0.05 over
the first 100k steps, for the easier DST problem we anneal
it to 0.01 over 10k steps. However, CN is compatible with
any sort of exploration strategy.

1.4. Multi-Network algorithm

The Multi-Network (MN) algorithm (Algorithm 2) for
multi-objective deep reinforcement learning under dy-
namic weights handles changes in weights by gradually
building an approximate partial CCS, i.e., a set of policies
such that each policy performs near optimality for at least
one encountered weight vector.

The algorithm starts with an empty set of policies II. Then,
for each encountered weight vector wy, it trains a neural
network through scalarized deep Q-learning (Mossalam et
al., 2016). The differences with standard deep Q-learning
are that the DQN’s outputs are vector valued and that action
selection is done by scalarizing these Q-vector-values w.r.t.
the current weight vector w; (Lines 2 and 2 of Algorithm
2).

As is the case for CN, experiences are sampled from the
replay buffer through prioritized sampling, with priorities
being computed on the TD-error for the active weight vec-
tor.

When the active weight vector changes at time ¢ + 1, the
policy trained (before the change) for w; is stored if it is
optimal for at least one past weight vector. To account for
approximation errors, a constant « is subtracted from any
past policy’s scalarized value. Hence, when two scalarized
values are within an error x of each other, the more recent
policy is favoured. Any policy in II that is made redun-
dant by the inclusion of the new policy trained on w; is
discarded.

Then, the policy with the maximal scalarized value for the
new weight vector w;; is used as a starting point for its
Q-network Qu,_, - As in (Mossalam et al., 2016), we con-
sidered full re-use, where all parameters of the model Q-
network are copied into the new Q-network and partial re-
use, in which all but the last dense layer were copied to the
new Q-network. We found that the latter performed poorly
and therefore only considered full re-use in this paper.

1.5. Diverse Experience Replay

‘We now present our implementation of Diverse Experience
Replay (DER, Algorithm 3).

We maintain both a first-in first-out replay buffer and a
diverse replay buffer. Experiences are added to the FIFO
buffer as they are observed. When the FIFO buffer is full,
the oldest trace 7 is removed from it and considered for
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Algorithm 2 Dynamic Multi-Network Reinforcement
Learning

1: initialize (diverse) replay buffer D and unique weight history
w

: Kk < Improvement constant

: II < empty set of (Qw, W, V) tuples {With w a weight
vector, Qw a policy for that weight vector (i.e., a multi-
objective Q-network), Vy, the stateless value vector of the
policy}

4: wo + getWeightVector(0)

5: add wo to W

6: Qwy, Qu,  initializeFirstModel()

7

8

9

[SS I )

: for steps ¢ € {0...7'} do
: With probability ¢ select a random action a¢
Otherwise a; = argmazac A Qw, (a, s) - Wy
10:  Execute action a; and observe r; and s¢+1
11:  Store transition (s¢, at, r't, S¢+1) in D
12:  Sample minibatch of transitions from D
13:  for each sampled transition (s;, aj,r;, s;j+1) do

14: if transition is terminal then

15: Yj =T

16: else

17: a; = argmax, Quw,(a’, sj41) - Wi
18: yj =1 +7Quw, (@}, 55+1)

19: end if

20:  end for

21:  perform gradient descent step on
[ly; — Qw. (a5, 55)]]

22:  Every N~ steps; Qu, = Quw, {Synchronize target net-
work }

23:  anneal(e)

24:  wyy1 < getWeightVector(t)

25: if W 7& Wil then

26: if IweW:V,-w>maxyen V' - w — & then

27: add (Qw,, w¢, Vi) to I1

28: remove policies made redundant by Q.

29: end if

30: QW/ ) Wl7 Vw' <~ argmax(Qw, ,w’,Vw/)EHW . Vw’
{pick a policy to continue learning from}

31: Qw15 Quw,,, — copyModel(Qy) {Partial or full
re-use}

32: add w41 to W

33:  else

34: Qw1 Qe ¢ Qwes Qu,y {continue training same
policy}

35:  endif

36: end for

memorization into the secondary diverse replay buffer.

The trace 7 is only added to the secondary buffer if it in-
creases the replay buffer diversity. To determine this, we
first compute a signature for each trace up for consideration
(i.e., 7 and all traces already present in the diverse replay
buffer D’). Note that this signature can typically be com-
puted in advance. Next, a diversity function d computes
the relative diversity of each signature w.r.t. all other con-
sidered signatures (Algorithm 3 Line 3). If 7’s relative di-

versity is lower than the minimal relative diversity already
present in the secondary buffer D', it is discarded. Other-
wise, the trace that contributes least to the buffer’s diversity
is removed from D’ to make place for 7.

This process is repeated until there is enough space for 7 in
the diverse buffer or 7 has a lower diversity than the low-
est diversity trace in D’, in which case 7 is discarded and
the traces that were removed during the current selection
process are re-added.

For our experiments, we used a trace’s return vector
I;‘O ~tr; as its signature and the crowding distance (Deb

et al., 2002) as the diversity function.

When using DER, half of the buffer size is used by the di-
verse replay buffer. When sampling from DER, no distinc-
tion is made between diverse and main replay buffers.

Algorithm 3 Diverse Replay Buffer

1: {With s a signature function, d a diversity function, D
the main memory, D’ the secondary memory and e an
experience to memorize}

2: if main memory D is full then
3:  extract oldest trace T from D
4: addetoD
5:  while D’ does not have enough space for 7 do
6: F «—d({s(m)|m e D'U{r}})
7: select trace 7; with lowest diversity f; € F
8: if 7; # 7 then
9: remove 7; from D’
10: else
11: Discard 7
12: undo deletions
13: return
14: end if

15:  end while
16:  add 7 to D’
17: end if

2. Implementation details

We now present our implementation details. More specif-
ically, we give a table of hyperparameters (Table 1) and a
full description of the network architecture.

2.1. Network Architecture

Figure 1 gives a schematic representation of the architec-
ture we used in our experiments.

Our network contains more dense layers than single-
objective Dueling DQN, we justify this by the need to out-
put multi-objective Q-values and to either (1) output pre-
cise Q-values (in the case of MN knowing one action is
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Table 1: Hyperparameters

General parameters (Minecart)
Exploration rate 1 — 0.05 over 100k steps

Buffer size 100.000
Frame skip 4
Discount factor 0.98

General parameters (DST)
Exploration rate 0.1 — 0.01 over 10k steps

Buffer size 10.000
Frame skip 1
Discount factor 0.95

Optimization parameters

Batch size 64 (Minecart), 16 (DST)

Optimizer SGD
Learning rate 0.02
Momentum 0.90
Nesterov Momentum true
N~ 150

Prioritized sampling parameters
€ 0.01
« 2.0

better than another is not sufficient), or (2) learn multiple
weight-conditioned policies (in the case of CN).

The input to the network consists of two 48x48 frames
(scaled down from the original 480x480 dimensions). The
first convolution layer consists of 32 6x6 filters with stride
2. The second convolution layer consists of 48 5x5 filters
with stride 2. Each convolution is followed by a maxpool-
ing layer. A dense layer of 512 units is then connected to
each temporal dimension of the convolution.

Following a multi-objective generalization of the Dueling
DOQON architecture (Wang, de Freitas, and Lanctot, 2015),
this layer’s outputs are then fed into the advantage and
value streams, consisting of dense layers of size 512. The
advantage stream is then fed into a layer of |A| x N dense
units, while the value stream is fed into a dense layer of
N units. These |A| + 1 x N outputs are then combined
into |A| X N outputs by a multi-objective generalization of
Dueling DQN’s module.

(A(s,a;@,a) - ﬁ ;A(s,a’;&a)) (1)

« and 3 denote the parameters of the advantage stream and
of the value stream and 6 denotes the parameters of all pre-
ceding layers. For the Conditioned Network, an additional
parameter w is added to each function (corresponding to

(d)Multi-

(b) Feature 4 Objective .-~
(a) State Extraction ‘ Dueling‘Heac’l' ] JA+1xN
|Al x N
© Weighf”"'""'"""'"" ;
Input Py D
A LA Quvalues

Fully Conv. (777" Conditioned
Connected oy ! Network
Layer(s) i '
Layer(s) D only

Figure 1: Features are extracted from the raw input by
convolutional layers followed by a fully connected layer.
The extracted features (output of (b)) are fed into a Multi-
Objective Dueling DQN head (d). The conditioned archi-
tecture feeds a weight input (c) into the Q-value head (link

(e)).

the weight input, link (e) in Figure 1);
Q(Sa a, w; 97 «, B) = V(S, W 97 6)+
1
(A(s,a,w;@,a) “ A ZA(s,a’,w;@,a)) (2)

The hyperparameters used for optimization are given in Ta-
ble 1.

3. Test Problems

In this section, we present the test problems used in our
experimental evaluation in greater detail.

3.1. Minecart Problem

The Minecart problem models the challenges of resource
collection, has a continuous state space, stochastic transi-
tions and delayed rewards.

The Minecart environment consists of a rectangular image,
depicting a base, mines and the minecart controlled by the
agent. A typical frame of the Minecart environment is given
in Figure 2 (left). Each episode starts with the agent on top
of the base. Through the accelerate, brake, turn left, turn
right, mine, or do nothing (useful to preserve momentum)
actions, the agent should reach a mine, collect resources
from it and return to the base to sell the collected resources.

The reward vectors are N-dimensional: r = (r1,...,7n).
The first N — 1 elements correspond to the amount of each
of the N — 1 resources the agent gathered, the last element
is the consumed fuel. Particular challenges of this environ-
ment are the sparsity of the first V — 1 components of the
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Figure 2: (left) Instance of the Minecart environment with 5
mines ((c) to (g)) containing varying amounts of 2 ores. The
2 bars on the minecart (b) indicate how much of each ore
is present in the cart. Ores are sold on the base (a). (right)
Weight vectors in the same region share the same optimal
policy. Axes are the relative importance in % of each objec-
tive. We distinguish (1) collecting no resources if the fuel
cost is too high, (6,7) privileging ore 2, (4,5) privileging
ore 1, and (2,3) privileging the quick collection of either
ore. Differences between each pair lies in the higher fuel
cost, in which case it is optimal to accelerate less.

reward vector, as well as the delay between actions (e.g.,
mining) and resulting reward. The resources an agent col-
lects by mining are generated from the mine’s random dis-
tribution, resulting in a stochastic transition function. All
other actions result in deterministic transitions. The weight
vector w expresses the relative importance of each objec-
tive, i.e., the price per resource.

The underlying state consists of the minecart’s position,
its velocity and its content, the position of the mines and
their respective ore distribution. While the implementation
makes these available for non-deep MORL research, these
properties were not used in our experiments. In the deep
setting the agent should learn to extract them from the vi-
sual representation of the state.

Figure 2 shows the visual cues the agent should ex-
ploit to extract appropriate features of the state. First and
most obviously, the position of the mines (black) and the
home position (area top left). Second, indicators about the
minecart’s content are represented by vertical bars on the
cart, one for each ore type. Each bar is the size of the cart’s
capacity. When the cart has reached its maximal capacity
C, and mining will have no effect on the cart’s content but
still incur the normal mining penalty p,, in terms of fuel
consumption. At that point the agent should return back
to its home position. Additionally, the minecart’s orienta-
tion is given by the cone’s direction. Accelerating incurs a
penalty of p, in terms of fuel consumption. In addition, ev-
ery time-step the agent receives a penalty in the fuel objec-
tive p; representing the cost of keeping the engine running.

The default configuration of the minecart environment we
used in our experiments is given in Table 2. The setting
contains 5 mines, with distribution means for ores 1 and 2

Table 2: Minecart configuration

General Minecart Configuration

Cart capacity 1.5
Acceleration 0.0075
Ores 2

Rotation angle 10 degrees
Fuel component rewards

Idle cost p; -0.005
Mining cost py, -0.05
Acceleration cost p, -0.025

Table 3: Ore distribution per mine, if either ore is more
valuable, mining from (d) to (f) results in wasted capacity
on the less valuable ore. Hence, while the average content
collected from these mines is higher, they are not always
optimal because of the limited cart capacity.

Mine | © | @) [ @© | O | (@
tore; | 0.2 1 0.15 ] 0.2 | 0.1 0.
fore, | 0. | 0.1 [0.2]0.15 |02

given in Table 3, and a standard deviation fixed at o = 0.05.

Optimal Policies For v = 0.98 used in our experiments,
this configuration divides the weight-space into 7 regions
according to their optimal policies as shown in Figure 2.
The 7 policies are;

1. do not collect any resources

2. go to mine (e) quickly and mine until full,
3. go to mine (e) slowly and mine until full,

4. go to mine (c) rapidly and mine until full,
5. go to mine (c) slowly and mine until full,

6. go to mine (g) quickly and mine until full,

7. go to mine (g) slowly and mine until full,

3.2. Deep Sea Treasure

In the Deep Sea Treasure (DST) problem (Vamplew et al.,
2011), a submarine must dive to collect a treasure. The fur-
ther the treasure is, the higher its value. The agent can move
left, right, up, and down which will move him to the corre-
sponding neighboring cell unless that cell is outside of the
map or a sea bottom cell (black cells). The reward signal an
agent perceives consists of a treasure component and a time
component. The submarine collects a penalty of —1 for its
second objective at every step. When it reaches a treasure,
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the treasure’s value is collected as a reward for the first ob-
jective, and the episode ends. As the original DST problem
has only two policies in its convex coverage set, we used a
modified version of the DST map — given in Figure 3 — in
our experiments.

Figure 3: DST map, yellow squares indicate treasures and
their value, the agent is marked by a white circle. Black
areas are the ocean floor, blue areas are the ocean.

This map was designed such that, for a discount factor
of 0.95, each treasure is the goal of an optimal policy in
the CCS (Figure 4). And in addition, each policy in the
CCS has approximately the same proportion of weights for
which it is optimal (~10% of weight vectors for each pol-
icy, Figure 5). The full results obtained for the image ver-
sion DST are given in Table 4.

DST CC5
21 e
—4 b
. —64 .
4 .
5
o
E -84 )
E
104
.
12 4
20 25 30 35

Treasure Value

Figure 4: Convex Coverage Set for the given DST map and
a discount factor of v = 0.95.

i B H e E—

0o 0z 0.4 06 0.8 10
Treasure Weight

Figure 5: Optimal policy colormap, each color corresponds
to one of the optimal policies in Figure 4. Time cost weight
is 1— treasure weight.

4. Additional Results

In this section we give the complete results table for DST
(Table 4), and we experimentally compare selective expe-
rience replay (Isele and Cosgun, 2018) and Exploration-
based selection (De Bruin et al., 2018) to DER on the
Minecart problem. We also provide results for a naive base-
line (NAIVE) suggest by (Liu, Xu, and Hu, 2015).

4.1. Naive algorithm

The naive algorithm suggested by (Liu, Xu, and Hu, 2015)
learns optimal Q-values for each objective then selects
actions by scalarizing these multiple single-objective Q-
values can learn to perform well for edge weight vectors
(i.e., weight vectors for which one objective is much more
important than the others). However, when a trade-off is
required between objectives it would be unable to perform
optimally.

4.2. Exploration-based Selection

De Bruin et al. (2018) propose an alternative to FIFO mem-
orization based on how exploratory a transition’s action a;
is. The distance between the Q-value of the optimal action
a; in state s; and the taken action a; are used as a diver-
sity metric. Hence actions that differ strongly from the op-
timal action are more likely to be preserved in the replay
buffer. The main obstacle to this approach working in this
setting is that the exploratory nature of an action is likely
to be dependent on the weight vector. An action that would
be exploratory for a weight vector w could be optimal for
another weight vector w’. We found that while this met-
ric can be useful for a single weight vector, it proves un-
reliable when used across different weight vectors. In ad-
dition, we identified the long-term dependence there can
be between experiences. In complex problems, a reward is
typically the result of a long sequence of actions. Hence,
while exploration-based selection might permanently store
an interesting experience, it is unlikely to store all the expe-
riences leading to that experience. In contrast, our approach
handles trajectories as atomic units. Hence, if a rewarding
experience is stored, the actions leading to that reward will
be stored too.

4.3. Selective Experience Replay

Selective experience replay (Isele and Cosgun, 2018) was
recently proposed to prevent catastrophic forgetting in
single-objective multi-task lifelong learning. In this setting,
an agent must learn to perform well on a sequence of tasks
and maintain that performance while learning new tasks.
As a result the replay buffer can be biased towards the
most recent task. From there, a parallel can be drawn with
the multiple policies that need to be learned for different
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Table 4: Average episodic regret (A) and improvement over MO with Std. ER baseline (>) for both weight change scenarios
(lower is better) for DST. We distinguish between overall performance, and performance over the last 25k steps

Overall Last 25k steps
Standard ER DER Standard ER DER
Algorithm A > A > A > A >

NAIVE 0.061 | +64.86% 0.06 +62.16% 0.064 | +137.04% | 0.084 | +211.11%
MO 0.037 | -0.0% 0.031 | -16.22% 0.027 | -0.0% 0.022 | -18.52%
Sparse MN 0.031 | -16.22% 0.03 -18.92% 0.02 -25.93% 0.019 | -29.63%
Weight CN 0.024 | -35.14% 0.021 | -43.24% 0.012 | -55.56% 0.009 | -66.67%
Changes CN-UVFA 0.025 | -32.43% 0.023 | -37.84% 0.015 | -44.44% 0.009 | -66.67%
CN-ACTIVE | 0.032 | -13.51% 0.028 | -24.32% 0.021 | -22.22% 0.016 | -40.74%
UVFA 0.034 | -8.11% 0.03 -18.92% 0.023 | -14.81% 0.017 | -37.04%

NAIVE 0.093 | +97.87% 0.095 | +102.13% | 0.1 +122.22% | 0.114 | +153.33%
MO 0.047 | -0.0% 0.052 | +10.64% 0.045 | -0.0% 0.05 +11.11%

Regular MN 0.113 | +140.43% | 0.111 | +136.17% | 0.126 | +180.0% 0.104 | +131.11%
Weight CN 0.029 | -38.3% 0.025 | -46.81% 0.02 -55.56% 0.014 | -68.89%
Changes CN-UVFA 0.029 | -38.3% 0.028 | -40.43% 0.018 | -60.0% 0.017 | -62.22%
CN-ACTIVE | 0.04 -14.89% 0.042 | -10.64% 0.03 -33.33% 0.032 | -28.89%

UVFA 0.057 | +21.28% 0.051 | +8.51% 0.053 | +17.78% 0.046 | +2.22%
w, in our setting, and the resulting bias. While some of control. The Journal of Machine Learning Research

the challenges of both settings are comparable, we found
that selective experience replay performs poorly on our dy-
namic weights problem. We hypothesize that this is due to
two major differences in our approach. First, the transition-
based selection presents the same problem we observe for
Exploration-based Selection (see above). Second, their best
working variant of selective experience replay, called dis-
tribution matching does not promote diverse experiences,
instead it attempts to match the distribution of experiences
across all tasks. If this distribution is not diverse, rare in-
teresting experiences obtained through random exploration
are likely to be overridden by more common experiences.

4.4. Results

These factors contribute to the poor performance of
exploration-based selection and selective experience replay
(which we label respectively as EXP and SEL in Figure 6
and Tables 5,6,7 and 8). For all algorithms in the sparse
weight change scenario, selective experience replay per-
forms worse than DER. However, we found that SEL gen-
erally improved performance over standard experience re-
play. In contrast, EXP has a consistently damaging effect
on performance. As for DER, we find that the influence of
SEL on the regular weight change scenario is insignificant.
EXP however still has a significant negative impact on per-
formance. Regardless of the weight change scenario or ex-
perience replay type, the naive algorithm fails to learn any
kind of tradeoff and as a result it performs poorly across
our experiments.
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Figure 6: Left: Cumulative regret for the Minecart problem when weights change every 50k steps (vertical lines), MN+DER
and OnUVFA+DER overlap each other, CN+SEL and MN+SEL overlap each other. Right: Cumulative regret for the
Minecart problem when weights change over the span of 10 episodes, CN, CN+DER, CN+SEL and CNC overlap to form
the lowest curve.

Table 5: Overall average episodic regret (A) and improvement over MO with Std. ER baseline (>) for the sparse weight
change scenario (lower is better) for Minecart.

Overall
Standard ER DER SEL EXP
Algorithm | A > A > A > A >

NAIVE 0.732 | +125.93% | 0.638 | +96.91% | 0.75 +131.48% | 0.709 | +118.83%
MO 0.324 | — 0.285 | -12.04% | 0.336 | +3.7% 0.748 | +130.86%

MN 0.255 | -21.3% 0.191 | -41.05% | 0.242 | -25.31% 0.43 +32.72%

CN 0.253 | -21.91% 0.18 -44.44% | 0.237 | -26.85% 0.414 | +27.78%

CN-UVFA 0.288 | -11.11% 0.22 -32.1% 0.265 | -18.21% 0.425 | +31.17%

CN-ACTIVE | 0.347 | +7.1% 0.21 -35.19% | 0.325 | +0.31% 0.645 | +99.07%

UVFA 0.338 | +4.32% 0.308 | -4.94% 0.322 | -0.62% 0.609 | +87.96%

Table 6: Average episodic regret (A) and improvement over MO with Std. ER baseline (>) for the sparse weight change
scenario (lower is better) for Minecart over the last 250k steps.

Last 250k steps
Standard ER DER SEL EXP
Algorithm A > A > A > A >
NAIVE 0.791 | +187.64% | 0.651 | +136.73% | 0.851 | +209.45% | 0.802 | +191.64%

MO 0275 | — 0.207 | -24.73% 0.241 | -12.36% 0.818 | +197.45%
MN 0.139 | -49.45% 0.063 | -77.09% 0.133 | -51.64% 0.403 | +46.55%
CN 0.184 | -33.09% 0.068 | -75.27% 0.155 | -43.64% 0.467 | +69.82%

CN-UVFA | 0.218 | -20.73% 0.102 | -62.91% 0.187 | -32.0% 0.414 | +50.55%
CN-ACTIVE | 0.316 | +14.91% 0.088 | -68.0% 0.202 | -26.55% 0.754 | +174.18%
UVFA 0.302 | +9.82% 0.253 | -8.0% 0.213 | -22.55% 0.743 | +170.18%
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Table 7: Overall Average episodic regret (A) and improvement over MO with Std. ER baseline (>) for the regular weight
change scenario (lower is better) for Minecart.

Overall
Standard ER DER SEL EXP
Algorithm A > A > A > A >
NAIVE 0.617 | +55.03% | 0.61 +53.27% | 0.634 | +59.3% 0.635 | +59.55%
MO 0.398 | — 0.43 +8.04% 0.407 | +2.26% 0.478 | +20.1%
MN 0.718 | +80.4% 0.746 | +87.44% | 0.748 | +87.94% | 0.76 +90.95%
CN 0.222 | -4422% | 0.219 | -44.97% | 0.222 | -44.22% | 0.43 +8.04%
CN-UVFA 0.278 | -30.15% | 0.287 | -27.89% | 0.306 | -23.12% | 0.442 | +11.06%
CN-ACTIVE | 0.221 | -4447% | 0.24 -39.7% 0.229 | -42.46% | 0.576 | +44.72%
UVFA 0.435 | +9.3% 0.43 +8.04% 0.472 | +18.59% | 0.62 +55.78%

Table 8: Average episodic regret (A) and improvement over MO with Std. ER baseline (>) for the regular weight change
scenario (lower is better) for Minecart over the last 250k steps.

Last 250k steps
Standard ER DER SEL EXP
Algorithm | A > A > A > A >
NAIVE 0.56 | +117.05% | 0.551 | +113.57% | 0.588 | +127.91% | 0.581 | +125.19%
MO 0.258 | — 0.319 | +23.64% 0.251 | -2.71% 036 | +39.53%
MN 0.67 +159.69% | 0.709 | +174.81% | 0.72 | +179.07% | 0.712 | +175.97%
CN 0.069 | -73.26% 0.064 | -75.19% 0.066 | -74.42% 0.267 | +3.49%
CN-UVFA | 0.149 | -42.25% 0.149 | -42.25% 0.165 | -36.05% 0.299 | +15.89%
CN-ACTIVE | 0.065 | -74.81% 0.071 | -72.48% 0.069 | -73.26% 056 | +117.05%
UVFA 0.273 | +5.81% 0.267 | +3.49% 0.346 | +34.11% 0.538 | +108.53%




