MixHop: Higher-Order Graph Convolution Architectures via Sparsified Neighborhood Mixing

A. Synthetic Dataset

For generating synthetic data, we split nodes to equal size
classes 1,2, ..., k. Ateach iteration, we add new node v with
a random class to the graph. The probability of connecting
v to existing node w is the following:

o ifc, = ¢y py—u = dy X homophily

o if ¢, # ¢yl Pu—su = dy X homophily X wyc, .,
Where ¢, is class of node v and w),, _, | is weight of con-
necting two different classes with distance |c, — ¢,|. By
distance we mean shortest distance of two classes on a cir-
cle, starting from class 1 to k respectively. The weight
is exponentially decreasing with increasing of distance.
For example if we have 6 classes and wj;_4 = 1, then
W)1-3] = Wji-5] = 2 and Wi1—2| = Wj1—-6] = 4. We
normalize w such that " w; = 1. We use k& = 10.

The final probability of connecting v to u is normalized
over all existing nodes: p,_,, = %. Since Y w; =1,
based on (Karimi et al., 2017), samf)ling edges proportional
to Py, at each iteration, would give us a graph with desired
homophily and Barabasi-Albert degree distribution. Figure
6, shows two graphs with same number of nodes and edges,
but with different homophily coefficients. As expected,
edges of 6a are between different classes, while the edges

of 6b are within classes.

(a) Homophily = 0.1

(b) Homophily = 0.9

Figure 6: Synthetic data generated for (a) homophily = 0.1
and (b) homophily = 0.9. Both graphs have 500 nodes,
2798 edges and 10 equal size classes. Classes are specified
with different color of node.

The feature values of the nodes are sampled from 2D Gaus-
sians. In particular, each node class has its own Gaus-
sian. The means of the Gaussians can be best described
in polar coordinates: Each mean has radius 300 and an-
gle %r X (class id). The covariance matrix of each class is
3500 x diag([7,2]), that is rotated by angle 27 x (class id).
The synthetic datasets are available for download via github.

B. Future Work

Because our work has general applicability to a large num-
ber of graph tasks, we believe there is significant room to
fine tune our model. In the spirit of Hamilton et al. (2017),
we can extend our methods to large graphs (e.g. with mil-
lions of edges) that might not fit in computer memory. Such
scalability would be vital for the practical usage of these
methods. In this work, we utilize a weighted softmax out-
put layer that acts as a regularization method on the final
feature output of the model. We believe that different kinds
of output layers may be better suited for different tasks. An
easy extension of our work is to analyze how our model
performs with a fully connected output layer. Similarly, to
apply our model to graph classification, one can average all
node representations at the output layer (e.g. using a set2set
model) to feed into classification layers for the full graph.
While we analyze the ability of our model to learn delta
operators in this work, we think that it would be fascinating
to visualize how each delta operator actually operates in the
graph. Specifically, we want to observe which community
edges the model is capturing. In future experiments, we
hope to explore methods of visualizing these features.

https://github.com/samihaija/mixhop/tree/master/data/synthetic

