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Abstract
A central server needs to perform statistical in-
ference based on samples that are distributed
over multiple users who can each send a mes-
sage of limited length to the center. We study
problems of distribution learning and identity test-
ing in this distributed inference setting and exam-
ine the role of shared randomness as a resource.
We propose a general purpose simulate-and-infer
strategy that uses only private-coin communica-
tion protocols and is sample-optimal for distri-
bution learning. This general strategy turns out
to be sample-optimal even for distribution test-
ing among private-coin protocols. Interestingly,
we propose a public-coin protocol that outper-
forms simulate-and-infer for distribution testing
and is, in fact, sample-optimal. Underlying our
public-coin protocol is a random hash that when
applied to the samples minimally contracts the
chi-squared distance of their distribution from the
uniform distribution.

1. Introduction
Sample-optimal statistical inference has taken center-stage
in modern data analytics where the number of samples can
be comparable to the dimensions of the data. In many emerg-
ing applications, especially those arising in sensor networks
and the Internet of Things (IoT), we are not only constrained
in the number of samples but are also given access to only
limited communication about the samples. We consider
such a distributed inference setting and seek sample-optimal
algorithms for inference under communication constraints.

In our setting, n players get independent samples from an
unknown k-ary distribution and each can send only ` bits
about their observed sample to a central referee using a
simultaneous message passing (SMP) protocol for commu-
nication. The referee uses communication from the players
to accomplish an inference task P .
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Question 1.1. What is the minimum number of players n
required by an SMP protocol that successfully accomplishes
P , as a function of k, `, and the relevant parameters of P?

Our first contribution is a general simulate-and-infer strat-
egy for inference under communication constraints where
we use the communication to simulate samples from the un-
known distribution at the referee. To describe this strategy,
we introduce a natural notion of distributed simulation: n
players observing an independent sample each from an un-
known k-ary distribution p can send `-bits each to a referee.
A distributed simulation protocol consists of an SMP proto-
col and a randomized decision map that enables the referee
to generate a sample from p using the communication from
the players. Clearly, when1 ` ≥ log k such a sample can
be obtained by getting the sample of any one player. But
what can be done in the communication-starved regime of
` < log k?

We first show that perfect simulation is impossible using
any finite number of players in the communication-starved
regime. But perfect simulation is not even required for our
application. When we allow a small probability of declaring
failure, namely admit Las Vegas simulation schemes, we
obtain a distributed simulation scheme that requires an opti-
mal O

(
k/2`

)
players to simulate k-ary distributions using

` bits of communication per player. Thus, our proposed
simulate-and-infer strategy can accomplish P with a blow-
up in sample-complexity by an extra factor of O

(
k/2`

)
.

The specific inference tasks we consider are those of dis-
tribution learning, where we seek to estimate the unknown
k-ary distribution to an accuracy of ε in total variation dis-
tance, and identity testing where we seek to know if the
unknown distribution is q or ε-far from it in total variation
distance. For distribution learning, the simulate-and-infer
strategy matches the lower bound from (Han et al., 2018b)
and is therefore sample-optimal. For identity testing, the
plot thickens.

Recently, a lower bound for the sample complexity of iden-
tity testing using only private-coin protocols was estab-
lished (Acharya et al., 2018b). The simulate-and-infer pro-
tocol is indeed a private-coin protocol and it attains this
lower bound. When public coins (shared randomness) are
available, (Acharya et al., 2018b) derived a different, more
relaxed lower bound. The performance of simulate-and-

1We assume throughout that log k is an integer.
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infer is far from this lower bound. Our second contribution
is a public-coin protocol for identity testing that not only out-
performs simulate-and-infer but matches the lower bound
in (Acharya et al., 2018b) and is sample-optimal.

We provide a concrete description of our results in the next
section, followed by an overview of our proof techniques
in the subsequent section. To put our results in context, we
provide a brief overview of the literature as well.

1.1. Main results

We begin by summarizing our distributed simulation results.

Theorem 1.2. For every k, ` ≥ 1, there exists a private-
coin protocol with ` bits of communication per player for
distributed simulation over [k] and expected number of play-
ers O

(
(k/2`) ∨ 1

)
. Moreover, this expected number is op-

timal, up to constant factors, even when public-coin and
interactive communication protocols are allowed.

The proposed algorithm is a Las Vegas algorithm,2 which
produces a sample from the unknown distribution when they
terminate, but they may never terminate. In fact, we can
show that distributed simulation is impossible, unless we
allow for such algorithms.
Theorem 1.3. For k ≥ 1, ` < log k, and any N ∈ N,
there does not exist a SMP protocol with N players and `
bits of communication per player for distributed simulation
over [k]. Furthermore, the result continues to hold even for
public-coin and interactive communication protocols.

The proof is delegated to Appendix B.

Since the distributed simulation protocol in Theorem 1.2 is
a private-coin protocol, we can use it to generate the desired
number of samples from the unknown distribution at the
center to obtain the following result.
Theorem 1.4 (Informal). For any inference task P over
k-ary distributions with sample complexity s in the non-
distributed model, there exists a private-coin protocol for
P using ` bits of communication per player and requiring
n = O(s · (k/2` ∨ 1)) players.

Instantiating this general statement for distribution learning
and identity testing leads to the following results.
Corollary 1.5. For every k, ` ≥ 1, simulate-and-infer can
accomplish distribution learning over [k], with ` bits of

communication per player and n = O
(

k2

(2`∧k)ε2

)
players.

Corollary 1.6. For every k, ` ≥ 1, simulate-and-infer can
accomplish identity testing over [k] using ` bits of communi-

cation per player and n = O
(

k3/2

(2`∧k)ε2

)
players.

Using the lower bound in (Han et al., 2018b) (see,
also, (Acharya et al., 2018b)), we obtain that simulate-and-

2Or, roughly equivalently, when one is allowed to abort with a
special symbol with small constant probability.

infer is sample-optimal for distribution learning even when
public-coin protocols are allowed. In fact, the sample com-
plexity of simulate-and-infer for identity testing matches the
lower bound for private-coin protocols in (Acharya et al.,
2018b), rendering it sample-optimal.

Our most striking result is the next one which shows that
public-coin protocols can outperform the sample complexity
of private-coin protocols for identity testing by a factor of√
k/2`.

Theorem 1.7. For every k, ` ≥ 1, there exists a public-
coin protocol for identity testing over [k] using ` bits of

communication per player and n = O
(

k√
2`∧kε2

)
players.

We further note that our protocol is remarkably simple to de-
scribe and implement: We generate a random partition of [k]
into 2` parts and report which part each sample lies in. Al-
though, as stated, our protocol seems to require Ω(` · k) bits
of shared randomness, an immediate inspection of the proof
shows that 4-wise independent shared randomness suffice,
drastically reducing the number of random bits required.

Our results are summarized in the table below.

Distribution Learning Identity Testing

Public-Coin Private-Coin Public-Coin Private-Coin

k
ε2
· k
2`

√
k

ε2
·
√

k
2`

√
k

ε2
· k
2`

Table 1. Summary of the sample complexity of distributed learn-
ing and testing, under private and public randomness. All results
are order optimal.

Interestingly, this shows that public randomness, despite
allowing a significant sample complexity improvement for
identity testing, is not helpful for distribution learning. A
high-level heuristic to explain this discrepancy can be ob-
tained by focusing on the uniform distribution. For testing,
we are given a fixed (unknown) distribution at distance ε,
and public randomness helps as it allows focusing on the
appropriate direction to separate this distribution from the
uniform one. However, for learning, ones needs to dis-
tinguish the uniform distribution from all distributions at
distance ε – i.e., in all directions at once, thereby making
public randomness useless.

1.2. Proof techniques

We now provide a high-level description of the proofs of
our main results.

Distributed simulation. The upper bound of Theorem 1.2
uses a rejection sampling based approach; see Section 5 for
details. The lower bound follows by relating distributed sim-
ulation to communication constrained distribution learning
and using the lower bound for sample complexity of latter
from (Han et al., 2018b; Acharya et al., 2018b).

Distributed identity testing. Using a reduction due Gol-
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dreich (Goldreich, 2016), we note first that it suffices to
consider uniformity testing. To test whether an unknown
distribution p is uniform using at most ` bits to describe
each sample, a natural idea is to randomly partition the
alphabet into L := 2` parts, and send to the referee inde-
pendent samples from the L-ary distribution q induced by
p on this partition. For a random balanced partition (i.e.,
where every part has cardinality k/L), clearly the uniform
distribution uk is mapped to the uniform distribution uL.
Thus, one can hope to reduce the problem of testing unifor-
mity of p (over [k]) to that of testing uniformity of q (over
[L]). The latter task would be easy to perform, as every
player can simulate one sample from q and communicate it
fully to the referee with logL = ` bits of communication.
Hence, the key issue is to argue that this random “flattening”
of p would somehow preserve the distance to uniformity;
namely, that if p is ε-far from uk, then (with a constant
probability over the choice of the random partition) q will
remain ε′-far from uL, for some ε′ depending on ε, L, and
k. If true, then it is easy to see that this would imply a very
simple protocol with O(

√
L/ε′

2
) players, where all agree

on a random partition and send the induced samples to the
referee, who then runs a centralized uniformity test. There-
fore, in order to apply the aforementioned natural recipe, it
suffices to derive a “random flattening” structural result for
ε′ �

√
(L/k)ε.

An issue with this approach, unfortunately, is that the total
variation distance (that is, the `1 distance) does not behave
as desired under these random flattenings, and the validity
of our desired result remains unclear. Fortunately, an analo-
gous statement with respect to the `2 distance turns out to
be much more manageable and suffices for our purposes.
In more detail, we show that a random flattening of p does
preserve, with constant probability, the `2 distance to unifor-
mity; in our case, by Cauchy–Schwarz the original `2 dis-
tance will be at least γ � ε/

√
k, which implies using known

`2 testing results that one can test uniformity of the “ran-
domly flattened” q with O(1/(

√
Lγ2)) = O(k/(2`/2ε2))

samples. This yields the desired guarantees on the proto-
col. However, the proposed algorithm suffers one drawback:
The amount of public randomness required for the players
to agree on a random balanced partition is Ω(k logL) =
Ω(k · `), which in cases with large alphabet size k can be
prohibitive.

1.3. Related prior work

Distribution learning problem is finite-dimensional paramet-
ric learning problem, and the identity testing problem is a
specific goodness-of-fit problem. Both these problems have
a long history in statistics. However, the sample-optimal
setting of interest to us has received a lot of attention in
the past decade, especially in the computer science litera-
ture; see (Rubinfeld, 2012; Canonne, 2015; Balakrishnan &
Wasserman, 2018) for survey. Most pertinent to our work is

uniformity testing (Goldreich & Ron, 2000; Paninski, 2008;
Diakonikolas et al., 2017a), the prototypical distribution
testing problem for which the sample complexity was es-
tablished to be Θ(

√
k/ε2) in Paninski (2008); Valiant &

Valiant (2017).

Distributed hypothesis testing and estimation problems were
first studied in information theory, although in a different
setting than what we consider (Ahlswede & Csiszár, 1986;
Han, 1987; Han & Amari, 1998). The focus in that line of
work has been to characterize the trade-off between asymp-
totic error exponent and communication rate per sample.

Closer to our work is distributed parameter estimation and
functional estimation that has gained significant attention in
recent years (see e.g., (Duchi et al., 2013; Garg et al., 2014;
Braverman et al., 2016; Watson, 2018)). In these works,
much like our setting, independent samples are distributed
across players, which deviates from the information theory
setting described above where each player observes a fixed
dimension of each independent sample. However, the com-
munication model in these results differs from ours, and the
communication-starved regime we consider has not been
studied in these works.

The problem of distributed density estimation, too, has gath-
ered recent interest in various statistical settings (Boyd et al.,
2011; Balcan et al., 2012; Zhang et al., 2013; Shamir, 2014;
Diakonikolas et al., 2017b; Han et al., 2018b; Xu & Ragin-
sky, 2017; Acharya et al., 2018c). Our work is closest to two
of these: The aforementioned (Han et al., 2018b;a) and (Di-
akonikolas et al., 2017b). The latter considers both `1 (total
variation) and `2 losses, although in a different setting than
ours. Specifically, they study an interactive model where
the players do not have any individual communication con-
straint, but instead the goal is to bound the total number of
bits communicated over the course of the protocol. This
difference in the model leads to incomparable results and
techniques (for instance, the lower bound for learning k-ary
distributions in our model is higher than the upper bound in
theirs).

Our current work further deviates from this prior literature,
since we consider distribution testing as well and examine
the role of public-coin for SMP protocols. Additionally,
a central theme here is the connection to distribution sim-
ulation and its limitation in enabling distributed testing.
In contrast, the prior work on distribution estimation, in
essence, establishes the optimality of simple protocols that
rely on distributed simulation for inference. (We note that
although recent work of (Blais et al., 2017) considers both
communication complexity and distribution testing, their
goal and results are very different – indeed, they explain how
to leverage on negative results in the standard SMP model
of communication complexity to obtain sample complexity
lower bounds in collocated distribution testing.)

Problems related to joint simulation of probability distribu-
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tions have been the object of focus in the information theory
and computer science literature. Starting with the works of
Gács and Körner (Gács & Körner, 1973) and Wyner (Wyner,
1975) where the problem of generating shared randomness
from correlated randomness and vice-versa, respectively,
were considered, several important variants have been stud-
ied such as correlated sampling (Broder, 1997; Kleinberg &
Tardos, 2002; Holenstein, 2007; Bavarian et al., 2016) and
non-interactive simulation (Kamath & Anantharam, 2012;
Ghazi et al., 2016; De et al., 2018). Yet, our problem of
exact simulation of a single (unknown) distribution with
communication constraints from multiple parties has not
been studied previously to the best of our knowledge.

1.4. Organization

We begin by setting notation and recalling some useful defi-
nitions and results in Section 2, before formally introducing
our distributed model in Section 3. Next, Section 4 intro-
duces the question of distributed simulation and contains our
protocols and impossibility results for this problem. In Sec-
tion 5, we consider the relation between distributed simula-
tion and private-coin distribution inference. The subsequent
section, Section 6, focuses on the problem of uniformity test-
ing and contains the proofs of the upper and lower bounds
of Theorem 1.7. Due to lack of space, we only provide
proof outlines and the details are relegated to the appendix.

2. Preliminaries
We write log (resp. ln) for the binary (resp. natural) loga-
rithm, and [k] for the set of integers {1, 2, . . . , k}. Given a
fixed (and known) discrete domain X of size k, we denote
by ∆X the set of probability distributions over X , i.e.,

∆X = { p : X → [0, 1] : ‖p‖1 = 1 } .

A property of distributions over X is a subset P ⊆ ∆X .
Given p ∈ ∆X and a property P , the distance from p to the
property is defined as

dTV(p,P) := inf
q∈P

dTV(p,q) (1)

where dTV(p,q) = supS⊆X (p(S)− q(S)) for p,q ∈
∆X , is the total variation distance between p and q. For
a given parameter ε ∈ (0, 1], we say that p is ε-close to
P if dTV(p,P) ≤ ε; otherwise, we say that p is ε-far
from P . For a discrete set X , we write uX for the uniform
distribution on X , and will sometimes omit the subscript
when the domain is clear from context. We indicate by
x ∼ p that x is a sample drawn from the distribution p.

In addition to total variation distance, we shall rely in some
of our proofs on the χ2 and Kullback–Leibler (KL) di-
vergences between discrete distributions p,q ∈ ∆X , de-
fined respectively as χ2(p,q) :=

∑
x∈X

(px−qx)
2

qx(1−qx)
and

D(p‖q) :=
∑
x∈X px ln px

qx
.

We use the standard asymptotic notation O(·), Ω(·), and
Θ(·); and will sometimes write an . bn to indicate that
there exists an absolute constant c > 0 such that an ≤
c · bn for all n. Finally, we will denote by a ∧ b and a ∨
b the minimum and maximum of two numbers a and b,
respectively.

3. Communication, Simulation, and Inference
Protocols

We set the stage by describing the communication proto-
cols we study for both the distributed simulation and the
distributed inference problems. Throughout the paper, we
restrict to simultaneous communication models with private
and public randomness. We remark that simultaneous com-
munication does not mean that the messages are sent at the
same time. It is a formalism that implies that the messsages
from any user cannot be used by others in their protocols.

Formally, n players observe samples X1, . . . , Xn with
player i given access to Xi. The samples are assumed to be
generated independently from an unknown distribution p. In
addition, player i has access to uniform randomness Ui such
that (U1, . . . , Un) is jointly independent of (X1, . . . , Xn).
An `-bit simultaneous message-passing (SMP) communi-
cation protocol π for the players consists of {0, 1}`-valued
mappings π1, . . . , πn where player i sends the message
Mi = πi(Xi, Ui). The message M = (M1, . . . ,Mn) sent
by the players is received by a common referee. Based
on the assumptions on the availability of the randomness
(U1, . . . , Un) to the referee and the players, three natural
classes of protocols arise:

1. Private-coin protocols: U1, . . . , Un are mutually inde-
pendent and unavailable to the referee.

2. Public-coin protocols: All player and the referee have
access to U1, . . . , Un.

For the ease of presentation, we represent the private
randomness communication fi(xi, Ui) using a channel
Wi : X → {0, 1}` where player i upon observing xi de-
clares y with probability Wi(y|xi). Also, for public-coin
protocols, we can assume without loss of generality that
U1 = U2 = · · · = Un.

Distributed simulation protocols. An `-bit simulation
S = (π, δ) of k-ary distributions using n players consists of
an `-bit SMP protocol π and a decision map δ comprising
mappings δx : (M,U) 7→ [0, 1] such that for each message
m and randomness u,∑

x

δx(m,u) ≤ 1.

Upon observing the message M = (M1, . . . ,Mn) and
(depending on the type of protocol) randomness U =
(U1, . . . , Un), the referee declares the random sample X̂ =
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x with probability δx(M,U) or declares an abort symbol
⊥ if no x is selected. For concreteness, we assume that the
random variable X̂ takes values in X ∪ {⊥} with {X̂ =⊥}
corresponding to the abort event. When π is a private or
public-coin protocol, respectively, the simulation S is called
private or public-coin simulation.

A simulation S is an α-simulation if for every p

Pr
p

[
X̂ = x | X̂ 6=⊥

]
= px, ∀x ∈ X ,

and the abort probability satisfies Prp

[
X̂ =⊥

]
≤ α.When

the probability of abort is zero, S is termed a perfect simu-
lation.

Distributed inference protocols. We give a general defi-
nition of distributed inference protocols that is applicable
beyond the use-cases considered in this work. An inference
problem P can be described by a tuple (C,X , E , L) where
C denotes a family of distributions on the alphabet X , E a
class of allowed estimates for elements of C (or their func-
tions), and L : C × E → Rq+ is a loss function that evaluates
the accuracy of our estimate e ∈ E when p ∈ C was the
ground truth.

An `-bit distributed inference protocol I = (π, e) for the
inference problem (C,X , E , L) consists of an `-bit SMP pro-
tocol π and an estimator e available to the referee who, upon
observing the messageM = π(Xn, U) and the randomness
U , estimates the unknown p as e(M,U) ∈ E . As before,
we say that a private-, or public-coin inference protocol,
respectively, uses a private- or public-coin communication
protocol π.

For ~γ ∈ Rq+, an inference protocol (π, e) is a ~γ-inference
protocol if

Ep[Li(p, e(M,U))] ≤ γi, ∀1 ≤ i ≤ q.

We instantiate the abstract definition above in two illustrative
questions that we will pursue in this paper.
Example 3.1 (Distribution learning). Consider the prob-
lem Lk(ε, δ) of estimating a k-ary distribution p by observ-
ing independent samples from it, namely the finite alphabet
distribution learning problem. This problem is obtained
from the general formulation above by setting X to be [k], C
and E both to be the (k−1)-dimensional probability simplex
Ck, and L(p, p̂) as follows:

L(p, p̂) = 1{dTV(p,p̂)>ε}.

For this case, we term the δ-inference protocol an `-bit
(k, ε, δ)-learning protocol for n player. In this case, γ is
equal to δ, the probability of error.
Example 3.2 (Uniformity testing). In the uniformity testing
problem Tk(ε, δ), our goal is to determine whether p is the
uniform distribution uk over [k] (null hypothesis H0) or if it

satisfies dTV(p,uk) > ε (alternative hypothesis H1). This
can be obtained as a special case of our general formulation
by setting X = [k], C to be the set containing uk and all
p satisfying dTV(p,uk) > ε, E = {0, 1}, and the loss
function L to be

L(p, b) = b · 1{p=uk} + (1− b) · 1{p6=uk}, b ∈ {0, 1} ,

where b denotes the output of the test (i.e., declaring hypoth-
esis Hb).

For this case, we term the δ-inference protocol an `-bit
(k, ε, δ)-uniformity testing protocol for n players. Further,
for simplicity we will refer to (k, ε, 1/3)-uniformity testing
protocols simply as (k, ε)-uniformity testing protocols.

Note that distributed variants of several other inference prob-
lems such as that of estimating functionals of distributions
and parametric estimation problems can be included as in-
stantiations of the distributed inference problem described
above.

We close by noting that while we have restricted to the SMP
model of communication, the formulation can be easily
extended to include interactive communication protocols
where the communication from each player can be heard
by all the other players (and the referee), and in its turn,
a player communicates using its local observation and the
communication received from all the other players in the
past. A formal description of such a protocol can be given
in the form of a multiplayer protocol tree à la (Kushilevitz
& Nisan, 1997). However, such considerations are beyond
the scope of this paper.

A note on the parameters. It is immediate to see that
for ` ≥ log k the distributed and centralized settings are
equivalent, as the players can simply send their input sample
to the referee (thus, both upper and lower bounds from the
centralized setting carry over).

4. Distributed Simulation
In this section, we consider the distributed simulation prob-
lem described in the previous section. The proof of impossi-
bility of perfect simulation (Theorem 1.3) when ` < log k
and n < ∞ is given in Appendix B. We now consider
α-simulation for constant α ∈ (0, 1) and exhibit an `-bit α-
simulation of k-ary distributions using O(k/2`) players. In
fact, by drawing on a reduction from distributed distribution
learning, we will show in the next section that this is the
least number of players required (up to a constant factor)
for α-simulation for any α ∈ (0, 1). The sample complexity
of our simulation algorithm for a general α can be shown
to be O(k/2` log(1/α)); we omit the argument here due
to space constraints and defer it to the full version of the
paper (Acharya et al., 2019).

We now establish Theorem 1.2 and provide α-simulation
protocols for k-ary distributions using n = O(k/2`) players.
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We first present the protocol for the case ` = 1, before
extending it to general `. The proof of lower bound for
the number of players required for α-simulation of k-ary
distributions is based on the connection between distributed
simulation and distributed distribution learning and will
be provided in the next section where this connection is
discussed in detail.

For ease of presentation, we allow a slightly different class
of protocols where we have an infinitely long sequence of
players, each with access to one independent sample from
the unknown p. The referee’s protocol entails checking
each player’s message and deciding either to declare an
output X̂ = x and stop, or see the next player’s output. We
assume that with probability one the referee uses finitely
many players and declares an output. The cost of maximum
number of players of the previous setting is now replaced
with the expected number of players used to declare an
output. By an application of Markov’s inequality, this can
be easily related to our original setting of private-coin α-
simulation.

Theorem 4.1. There exists a 1-bit private-coin protocol
that outputs a sample x ∼ p using messages of at most 20k
players in expectation.

Proof Sketch. We describe the base version of the protocol
below, and the delegate the description of the complete
protocol and the detailed proof to Appendix C.

The scheme, base version. Consider a protocol with 2k
players where the 1-bit communication from players (2i−1)
and (2i) just indicates if their observation is i or not, namely
π2i−1(x) = π2i(x) = 1{x=i}.

On receiving these 2k bits, the refereeR acts as follows:

• if exactly one of the bits M1,M3, . . . ,M2k−1 is equal
to one, say the bit M2i−1, and the corresponding bit
M2i is zero, then the referee outputs X̂ = i;

• otherwise, it outputs ⊥.

In the above, the probability ρp that some i ∈ [k] is declared
as the output (and not ⊥) is

ρp :=

k∑
i=1

(1− pi) · pi
∏
j 6=i

(1− pj) =

k∏
j=1

(1− pj),

so that

ρp = exp

k∑
j=1

ln(1− pj) = exp

(
−
∞∑
t=1

‖p‖tt
t

)

≥ exp

(
−

(
1 +

∞∑
t=2

‖p‖t2
t

))
=

1− ‖p‖2
e1−‖p‖2

which is bounded away from 0 as long as p is far from being
a point mass (i.e., ‖p‖2 is not too close to 1).

Further, for any fixed i ∈ [k], the probability thatR outputs
i is

pi ·
k∏
j=1

(1− pj) = piρp ∝ pi .

The full scheme now requires some modifications to this
approach, esp. to handle this “point mass” issue; we provide
the entire proof in Appendix C, establishing the stated bound
of 20k players (in expectation).

The extension for general ` is given in Appendix D.

5. The Simulate-and-Infer Strategy
In this section, we focus on the connection between dis-
tributed simulation and (private-coin) distributed inference.
We first describe the implications of the results from Sec-
tion 4 for any distributed inference task; before considering
the natural question this general connection prompts: “Are
the resulting protocols optimal?”

Having a distributed simulation protocol at our disposal, a
natural protocol for distributed inference entails using dis-
tributed simulation to generate independent samples from
the underlying distribution, as many as warranted by the
sample complexity of the underlying problem, before run-
ning a sample inference algorithm (for the centralized set-
ting) at the referee. The resulting protocol will require a
number of players roughly equal to the sample complexity
of the inference problem when the samples are centralized
times

(
k/2`), the number of players required to simulate

each independent sample at the referee. We refer to such
protocols that first simulate samples from the underlying
distribution and then use a standard sample-optimal infer-
ence algorithm at the referee as simulate-and-infer protocols.
Formally, we have the following result.
Theorem 5.1. Let P be an inference problem for distri-
butions over a domain of size k that is solvable using
ψ(P, k) samples with error probability at most 1/3. Then,
the simulate-and-infer protocol for P requires at most
O
(
ψ(P, k) · k

2`

)
players, with each player sending at most

` bits to the referee and the overall error probability at most
2/5.

Proof. The reduction is quite straightforward, and works in
the following steps: (i) Partition the players into blocks of
size 54k/2`; (ii) run the distributed simulation protocol on
each block; and (iii) run the centralized algorithm over the
simulated samples. Recall from the previous section that we
have a Las Vegas protocol for distributed simulation using
27k/2` players in expectation. Thus, by Markov’s inequal-
ity, each block in the above protocol simulates a sample
with probability at least 1/2. If the number of samples sim-
ulated is larger than ψ(P, k), then the algorithm has error
at most 1/3. Denoting the number of blocks by B, the num-
ber of samples produced has expectation at least B/2, and
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variance at most B/4. By Chebychev’s inequality, the prob-
ability that the number of samples simulated being less than
B/2 −

√
B/4
√

15 is at most 1/15. If B > 4ψ(P, k) + 8,
then B/2−

√
B
√

15/4 > ψ(P, k). As 1/3 + 1/15 = 2/5,
the result follows from a union bound.

As immediate corollaries of the result, we obtain distributed
inference protocols for distribution learning and unifor-
mity testing. Specifically, using the well-known result that
Θ
(
k/ε2

)
samples are sufficient to learn a distribution over

[k] to within a total variation distance ε with probability 2/3,
we obtain Corollary 1.5.

Next, from the existence of uniformity testing algorithms us-
ing O(

√
k/ε2) samples (Paninski, 2008; Valiant & Valiant,

2017; Diakonikolas et al., 2017a), we obtain Corollary 1.6
for uniformity testing. The result for identity testing follows
using the reduction from (Goldreich, 2016).

Interestingly, a byproduct of this connection between
simulate-and-infer and distribution learning (more precisely,
of Corollary 1.5) is that our α-simulation protocol requires
the optimal number of players, up to constants.

Corollary 5.2. Let ` ∈ {1, . . . , log k}, and α ∈ (0, 1).
Then, any `-bit public-coin (possibly adaptive) α-simulation
protocol for k-ary distributions must have n = Ω(k/2`)
players.

Remark 5.3. We note that the learning upper bound of Corol-
lary 1.5 coincides with the one reported in (Han et al.,
2018a), although the latter was obtained using a different
technique. The authors of (Han et al., 2018b) also describe
a distributed protocol for distribution learning, but their cri-
terion is the `2 distance instead of total variation.3 Finally,
the learning lower bound we invoke in the proof of Corol-
lary 5.2 is established by adapting a similar lower bound
from (Han et al., 2018b) which, too, applied to learning in
the `2 metric.

6. Public-Coin Uniformity Testing
In this section, we consider public-coin protocols for (k, ε)-
uniformity testing and establish the following upper and
lower bounds for the required number of players.

Theorem 6.1. For 1 ≤ ` ≤ log k, there exists an `-
bit public-coin (k, ε)-uniformity testing protocol for n =
O
(

k
2`/2ε2

)
players.

Note that this is much fewer than the O(k3/2/(2`ε2))
players required by simulate-and-infer, and indeed by any
private-coin using the private-coin uniformity testing lower
bound from (Acharya et al., 2018b). In fact, public-coin
uniformity testing lower bound from (Acharya et al., 2018b)

3We note that, based on a preliminary version of our manuscript
on arXiv, the `2 learning upper bound of (Han et al., 2018b) was
updated to use a “simulate-and-infer” protocol as well.

shows that the required number of players is optimal up to
constant factors.

We establish Theorem 6.1 below. Before delving into the
proof, we note that the results for uniformity testing imply
similar upper and lower bounds for the more general ques-
tion of identity testing, where the goal is to test whether
the unknown distribution p is equal to (versus ε-far from) a
reference distribution q known to all the players.

Corollary 6.2. For 1 ≤ ` ≤ log k, and for any fixed
q ∈ ∆[k], there exists an `-bit public-coin (k, ε,q)-identity
testing protocol for n = O

(
k

2`/2ε2

)
players. Further, any `-

bit public-coin (k, ε,q)-identity testing protocol must have
Ω
(

k
2`/2ε2

)
players (in the worst case over q).

We describe this reduction (similar to that in the non-
distributed setting) in Appendix A, further detailing how it
actually leads to the stronger notion of “instance-optimal”
identity testing in the sense of (Valiant & Valiant, 2017).

We now prove Theorem 6.1. Interestingly, the corre-
sponding protocol is remarkably simple, and, moreover,
is “smooth” – that is, no player’s output depends too much
on any particular symbol from [k] (this in turn could be
a desirable feature in some cases, for instance, in privacy-
minded settings, to control the sensitivity of the algorithm;
or for extensions where a quantization of the samples had
to be performed, and one seeks an algorithm robust to the
specific choice of quantization). Before delving into the
details of this protocol, we mention (as briefly evoked in
the introduction) that it can actually be implemented in a
randomness-efficient way. Indeed, although it at first glance
appears to require a significant amount of public random-
ness, namely Θ(k · `) = Ω(k) bits, we note that the analysis
only relies on properties of the second and fourth moments
of some suitable random variables; as such, correctness of
the protocol only requires 4-wise independent random bits.
This in turn can be implemented with only O(log k) bits of
public randomness.

The protocol will rely on a generalization of the following
observation: if p is ε-far from uniform, then for a subset
S ⊆ [k] of size k

2 generated uniformly at random, we have
p(S) = 1

2±Ω(ε/
√
k), with constant probability. Of course,

if p is uniform, then p(S) = 1
2 with probability one. Fur-

ther, note that this fact is qualitatively tight: for the specific
case of p assigning probability (1± ε)/k to each element,
the bias obtained will be 1

2±Θ(ε/
√
k) with high probability.

As a warm-up, we observe that the above claim immediately
suggests a protocol for the case ` = 1: The n players,
using their shared randomness, agree on a uniformly random
subset S ⊆ [k] of size k/2, and send to the referee the bit
indicating whether their sample fell into this set. Indeed,
if p is ε-far from uniform, with constant probability all
corresponding bits will be (ε/

√
k)-biased, and in this case
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the referee can detect it with n = O(k/ε2) players.4

The claim in question, although very natural, is already non
trivial to establish due to the dependencies between the dif-
ferent elements randomly assigned to the set S. We refer
the reader to Corollary 15 in (Acharya et al., 2018a) for a
proof involving anticoncentration of a suitable random vari-
able, Z :=

∑
i∈[k](pi − 1/k)Xi, with X1, . . . , Xk being

(correlated) Bernoulli random variables summing to k/2.
At a high-level, the argument goes by analyzing the second
and fourth moments of Z, and applying the Paley–Zygmund
inequality.

For our purposes, we need to show a generalization of the
aforementioned claim, considering balanced partitions into
L := 2` pieces instead of 2. To do so, we first set up
some notation. Let L < k be an integer; for simplicity
and with little loss of generality, assume that L divides k.
Further, with Y1, . . . , Yk independent and uniform random
variables on [L], let random variables X1, . . . , Xk have the
same distribution as Y1, . . . , Yk conditioned on the event
that for every r ∈ [L],

∑k
i=1 1{Yi=r} = k

L . Note that each
Xi, too, is uniform on [L], but Xis are not independent. For
p ∈ ∆[k], define random variables Z1, . . . , ZL as follows:

Zr :=

k∑
i=1

pi1{Xi=r} . (2)

Equivalently, (Z1, . . . , ZL) correspond to the probabilities
(p(S1), . . . ,p(SL)) where S1, . . . , SL is a uniformly ran-
dom partition of [k] into L sets of equal size.

Theorem 6.3. For the (random) distribution q =
(Z1, . . . , ZL) over [L] induced by (Z1, . . . , ZL) above, the
following holds: (i) if p = u, then ‖q− uL‖2 = 0 with
probability one; and (ii) if `1(p,u) > ε, then

Pr
[
‖q− uL‖22 > ε2/k

]
≥ c ,

for some absolute constant c > 0.

The proof of this theorem is quite technical and is deferred
to Appendix E. We now explain how it yields a protocol with
the desired guarantees (i.e., matching the bounds of The-
orem 6.1). By Theorem 6.3, setting L = 2` we get that
with constant probability the induced distribution q on [L]
is either uniform (if p was), or at `2 distance at least ε′ from
uniform, where ε′ :=

√
ε2/k.5 However, testing uniformity

vs. (γ/
√
L)-farness from uniformity in `2 distance, over

4To handle the small constant probability, it suffices to re-
peat this independently constantly many times, on disjoint sets of
O(k/ε2) players.

5Note that here `2 and χ2 distances are equivalent, as the
reference distribution is the uniform one. With this in mind, the
result we establish can be seen as a random hashing of the k-
ary alphabet into L elements, which preserves the χ2 distance to
uniform of each distribution with constant probability.

[L], has sample complexity O(
√
L/γ2) (see e.g., Proposi-

tion 3.1 of (Chan et al., 2014) or Theorem 2.10 of (Canonne
et al., 2017)), and for our choice of γ :=

√
Lε′ ∈ (0, 1), we

have √
L

γ2
=

√
L

Lε′2
=

k√
Lε2

=
k

2`/2ε2
, (3)

giving the bound we sought. This is the idea underlying the
following result:

Corollary 6.4. For 1 ≤ ` ≤ log k, there exists an `-
bit public-coin (k, ε)-uniformity testing protocol for n =
O
(

k
2`/2ε2

)
players, which uses O(`k) bits of randomness.

Proof. The protocol proceeds as follows: Let m = Θ(1)
be an integer such that (1 − c)m ≤ 1/6, where c is the
constant from Theorem 6.3; define δ := 1/(6m). Let N =
Θ(k/(2`/2ε2)) be the number of samples sufficient to test
(ε/
√
k)-farness in `2 distance from the uniform distribution

over [L], with failure probability δ (as guaranteed by (3)).
Finally, let n := mN = Θ(k/(2`/2ε2)). Given n players,
the protocol divides them into m disjoint batches of N
players, and each group acts independently as follows:

• Using their shared randomness, the players choose
uniformly at random a partition Π of [k] into subsets
of size k/2`.

• Next, they send to the referee the ` bits indicating in
which part of the partition their observed sample fell.

The referee, receiving these N messages (which correspond
to N independent samples of the distribution q ∈ ∆[2`]

induced by p on Π) runs the `2 uniformity test, with failure
probability δ and distance parameter ε/

√
k. After running

these m tests, the referee rejects if any of the batch is re-
jected, and accepts otherwise.

By a union bound, all these m tests will be correct with
probability at least 1 − mδ = 5/6. If p = uk, then all
m batches generate samples from the uniform distribution
on [L], and the referee returns accept with probability at
least 5/6. However, if p is ε-far from uniform then with
probability at least 1− (1−c)m ≥ 5/6 at least one of them
groups will choose a partition such that the corresponding
induced distribution on [L] is at `2 distance at least ε/

√
k

from uniform; by a union bound, this implies the referee
will return reject with probability at least 1− 2 · 1/6 = 2/3.

The bound on the total amount of randomness required
comes from the fact that m = Θ(1) independent partitions
of [k] into L := 2` are chosen and each such partition can
be specified using O(log(Lk)) = O(k · `) bits.
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