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A. Basic Results

A.1. Sparsification

In this section we provide approximation guarantees for the Maurey sparsification operator Qs defined in Algorithm 1.

Theorem 6. Let p ∈ [1,2] be fixed. Then for any w ∈ Rd, with probability at least 1 − �,

�Qs(w) −w�
p

≤ 4�w�1�1s�1−
1
p + �w�1�8 log(1��)s

� 1
2 ≤ �w�1�24 log(1��)s

�1− 1
p

. (7)

Moreover, the following in-expectation guarantee holds:

E�Qs(w) −w�
p

≤ �E�Qs(w) −w�p
p

�1�p ≤ 4�w�1�1s�1−
1
p

. (8)

Proof of Theorem 6. Let B = �w�1, and let Z
⌧

= �w�1sgn(w
i⌧ )ei⌧ −w, and observe that E[Z

⌧

] = 0 and Qs(w) −w =
1
s

∑s

⌧=1Z⌧

. Since �w�
p

≤ B, we have �Z
⌧

�
p

≤ 2B, and so Lemma 2 implies that with probability at least 1 − �,

�Qs(w) −w�
p

≤ 2

s
⋅E

Z

� s�
t=1�Zt

�p
p

�1�p +B�8 log(1��)
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Lemma 2. Let p ∈ [1,2]. Let Z1, . . . , Zs

be a sequence of independent Rd-valued random variables with �Z
t

�
p

≤ B almost
surely and E[Z

t

] = 0. Then with probability at least 1 − �,

�1
s

s�
t=1Zt

�
p

≤ 2
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�p
p

�1�p +B�2 log(1��)
s

Furthermore, a sharper guarantee holds in expectation:

E
Z

�1
s
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t=1Zt

�
p

≤ ��EZ

�1
s

s�
t=1Zt

�p
p

��
1�p ≤ 2

s
⋅E

Z
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�p
p

�1�p.
Proof of Lemma 2. To obtain the high-probability statement, the first step is to apply the standard Mcdiarmid-type high-
probability uniform convergence bound for Rademacher complexity (e.g. (Shalev-Shwartz & Ben-David, 2014)), which
states that with probability at least 1 − �,
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,

where ✏ ∈ {±1}n are Rademacher random variables. Conditioning on Z1, . . . , Zn

, we have

E
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.

On the other hand, for the in-expectation results, Jensen’s inequality and the standard in-expectation symmetrization
argument for Rademacher complexity directly yield
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From here the proof proceeds in the same fashion for both cases. Let Z
t

[i] denote the ith coordinate of Z
t

and let
z
i

= (Z1[i], . . . , Zs

[i]) ∈ Rs. We have

E
✏

�1
s

s�
t=1 ✏tZt

�p
p

= d�
i=1E✏

�1
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[i]�2��
p�2

,

where the inequality follows from Jensen’s inequality since p ≤ 2. We now use that cross terms in the square vanish, as well
as the standard inequality �x�2 ≤ �x�p for p ≤ 2:

d�
i=1
��E✏

�1
s

s�
t=1 ✏tZt
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d�
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t=1�Zt

�p
p

.

Proof of Lemma 1. We first prove the result for the smooth case. Let x and y be fixed. Let B = �w�1, and let us abbreviate
R ∶= R∞. Let Z

⌧

= ��w�1sgn(w
i⌧ )ei⌧ −w,x�, and observe that E[Z

⌧

] = 0 and �Qs(w) −w,x� = 1
s

∑s

⌧=1Z⌧

. Since we
have �w�1 ≤ B and �x�∞ ≤ R almost surely, one has �Z

⌧

� ≤ 2BR almost surely. We can write

�(�Qs(w), x�, y) = ���w,x� + 1

s

s�
⌧=1Z⌧

, y�.
Using smoothness, we can write

���w,x� + 1

s

s�
⌧=1Z⌧

, y� ≤ ���w,x� + 1

s

s−1�
⌧=1Z⌧

, y� + �′��w,x� + 1

s

s−1�
⌧=1Z⌧

, y� ⋅ Zs

s
+ �

2s2
(Z

s

)2.
Since E[Z

s

� Z1, . . . , Zs−1] = 0, and since Z
s

is bounded, taking expectation gives

E
Zs����w,x� + 1

s

s�
⌧=1Z⌧

, y� � Z1, . . . , Zs−1� ≤ ���w,x� + 1

s

s−1�
⌧=1Z⌧

, y� + �B2

s2
�x�2∞.

Proceeding backwards in the, fashion, we arrive at the inequality

E
Z

���w,x� + 1

s

s�
⌧=1Z⌧

, y� ≤ �(�w,x�, y) + �B2

s
�x�2∞.

The final result follows by taking expectation over x and y.

For Lipschitz losses, we use Lipschitzness and Jensen’s inequality to write

ELD(Qs(w)) −LD(w) ≤ L�EE
x

�Qs(w) −w,x�2.
The result now follows by appealing to the result for the smooth case to bound E

x

�Qs(w) −w,x�2, since we can interpret
this as the expectation of new linear model loss E

x,y

˜�(�w′, x�, y) ∶= E
x

(�w′, x� − �w,x�)2, where y = �w,x�. This loss is
2-smooth with respect to the first argument, which leads to the final bound.

Lemma 3. Let w ∈ Rd be fixed and let F ∶ Rd → R have �
q

-Lipschitz gradient with respect to `
q

, where q ≥ 2. Then
Algorithm 1 guarantees that

EF (Qs(w)) ≤ F (w) + �
q

�w�21
s

. (9)

Proof of Lemma 3. The assumed gradient Lipschitzness implies that for any w,w′
F (w) ≤ F (w′) + �∇F (w′),w −w′� + �

q

2

�w −w′�2
p

,
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where 1
p

+ 1
q

= 1. As in the other Maurey lemmas, we write Z
⌧

= (�w�1sgn(w
i⌧ )ei⌧ − w), so that E[Z

⌧

] = 0 and
Qs(w) −w = 1

s

∑s

⌧=1Z⌧

. We can now write

EF (Qs(w)) = EF�w + 1

s

s�
⌧=sZ⌧

�
Using smoothness, we have

E
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s
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⌧=sZ⌧

� ≤ F�w + 1

s

s−1�
⌧=sZ⌧

� +E
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s

s−1�
⌧=sZ⌧

�, Zs
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2s2
E
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s
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Proceeding backwards in the same fashion, we get

EF (Qs(s)) = E
Z1,...,Zs F�w + 1

s

s�
⌧=sZ⌧

� ≤ �
q

�w�21
s

.

A.2. Approximation for `
p

Norms

In this section we work with the regularizerR(✓) = 1
2�✓�2p, where p ∈ [1,2], and we let q be such that 1

p

+ 1
q

= 1. The main
structural result we establish is a form of Hölder smoothness ofR, which implies that `1 bounded vectors can be sparsified
while preserving Bregman divergences forR, with the quality degrading as p→ 1.

Theorem 7. Suppose that a, b, c ∈ Rd have �a�1 ∨ �b�1 ∨ �c�1 ≤ B. Then it holds that

DR(c�a) −DR(c�b) ≤ 5B�a − b�
p

+ 4B3−p�a − b�p−1∞ .

The remainder of this section is dedicated to proving Theorem 7.

We use the following generic fact about norms; all other results in this section are specific to the `
p

norm regularizer. For
any norm and any x, y with �x� ∨ �y� ≤ B, we have

�x�2 − �y�2 ≤ �x − y�2 + 2�x − y��y� ≤ 4B�x − y�. (10)

To begin, we need some basic approximation properties. We have the following expression:

∇R(✓) = �✓�2−p
p

⋅ ��✓1�p−1sgn(✓1), . . . , �✓d�p−1sgn(✓
d

)�. (11)

Proposition 6. For any vector ✓, �∇R(✓)�
q

= �✓�
p

.

Proof of Proposition 6. Expanding the expression in (11), we have

�∇R(✓)�
q

= �✓�2−p
p

⋅ � d�
i=1�✓i�q(p−1)�

1�q
.

Using that q = p

p−1 , this simplifies to �✓�2−p
p

⋅ �✓�p−1
p

= �✓�
p

.
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Lemma 4. Suppose that �a�
p

∨ �b�
p

≤ B. Then

DR(a�b) ≤ 3B�a − b�
p

.

Proof of Lemma 4. We write
DR(a�b) =R(a) −R(b) − �∇R(b), a − b�.

Using (10) and the expression forR, it follows that

DR(a�b) ≤ 2B�a − b�
p

− �∇R(b), a − b�.
This is further upper bounded by

DR(a�b) ≤ 2B�a − b�
p

+ �∇R(b)�
q

�a − b�
p

.

The result follows by using that �∇R(b)�
q

= �b�
p

≤ B, by Proposition 6.

Lemma 5. Let p ∈ [1,2] and let h(x) = �x�p−1sgn(x). Then h is Hölder-continuous:

�h(x) − h(y)� ≤ 2�x − y�p−1 ∀x, y ∈ R.
Proof of Lemma 5. Fix any x, y ∈ R and assume �x� ≥ �y� without loss of generality. We have two cases. First, when
sgn(x) = sgn(y) we have

�h(x) − h(y)� = ��x�p−1 − �y�p−1� = �x�p−1 − �y�p−1 ≤ (�x� − �y�)p−1 ≤ �x − y�p−1,
where we have used that p − 1 ∈ [0,1] and subadditivity of x� xp−1 over R+, as well as triangle inequality. On the other
hand if sgn(x) ≠ sgn(y), we have

�h(x) − h(y)� = ��x�p−1 + �y�p−1� = �x�p−1 + �y�p−1 ≤ 22−p��x� + �y��p−1.
Now, using that sgn(x) ≠ sgn(y), we have

��x� + �y��p−1 = ��x� ⋅ sgn(x) + �y� ⋅ sgn(x)�p−1 = ��x� ⋅ sgn(x) − �y� ⋅ sgn(y)�p−1 = �x − y�p−1.
Putting everything together, this establishes that

�h(x) − h(y)� ≤ 22−p�x − y�p−1 ≤ 2�x − y�p−1.
Lemma 6. Suppose that �a�

p

∨ �b�
p

≤ B. Then it holds that

�∇R(a) −∇R(b)�∞ ≤ 2B2−p�a − b�p−1∞ + �a − b�
p

, (12)

and �∇R(a) −∇R(b)�
q

≤ 2B2−p�a − b�p−1
p

+ �a − b�
p

. (13)

Proof of Lemma 6. Let h(x) = �x�p−1sgn(x), so that

∇R(✓) = �✓�2−p
p

⋅ (h(✓1), . . . , h(✓d)).
Fix vectors a, b ∈ Rd. Assume without loss of generality that �a�

p

≥ �b�
p

> 0; if �b�
p

= 0 the result follows immediately
from Proposition 6. We work with the following normalized vectors: ā ∶= a��b�

p

and ¯b ∶= b��b�
p

. Our assumptions on the
norms imply �ā�

p

≥ �¯b�
p

= 1.
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Fix a coordinate i ∈ [d]. We establish the following chain of elementary inequalities:

�∇R(ā)
i

−∇R(¯b)
i

� = ��ā�2−p
p

h(ā
i

) − �¯b�2−p
p

h(¯b
i

)�
= ��ā�2−p

p

h(ā
i

) − �ā�2−p
p

h(¯b
i

) + �ā�2−p
p

h(¯b
i

) − �¯b�2−p
p

h(¯b
i

)�
Using the triangle inequality:

≤ �ā�2−p
p

⋅ �h(ā
i

) − h(¯b
i

)� + �¯b
i

�p−1 ⋅ ��ā�2−p
p

− �¯b�2−p
p

�
Using the Hölder-continuity of h established in Lemma 5:

≤ 2�ā�2−p
p

⋅ �ā
i

− ¯b
i

�p−1 + �¯b
i

�p−1 ⋅ ��ā�2−p
p

− �¯b�2−p
p

�
Using that �ā�

p

≥ �¯b�
p

= 1:

≤ 2�ā�2−p
p

⋅ �ā
i

− ¯b
i

�p−1 + �¯b
i

�p−1 ⋅ ��ā�2−p
p

− 1�.
Finally, since �ā�

p

≥ 1 and 2 − p ≤ 1, we can drop the exponent:

≤ 2�ā�2−p
p

⋅ �ā
i

− ¯b
i

�p−1 + �¯b
i

�p−1 ⋅ ��ā�
p

− 1�.
To finish the proof, we rescale both sides of the inequality by �b�

p

. Observe that ∇R(✓) is homogeneous in the following
sense: For any r ≥ 0, ∇R(r✓) = r ⋅ ∇R(✓).
Along with this observation, the inequality we just established implies

�∇R(a)
i

−∇R(b)
i

� ≤ 2�b�
p

�ā�2−p
p

⋅ �ā
i

− ¯b
i

�p−1 + �¯b
i

�p−1 ⋅ ��a�
p

− �b�
p

�≤ 2�b�
p

�ā�2−p
p

⋅ �ā
i

− ¯b
i

�p−1 + �¯b
i

�p−1 ⋅ �a − b�
p= 2��ā�

p

�b�
p

�2−p ⋅ �ā
i

�b�
p

− ¯b
i

�b�
p

�p−1 + �¯b
i

�p−1 ⋅ �a − b�
p= 2�a�2−p

p

⋅ �a
i

− b
i

�p−1 + �¯b
i

�p−1 ⋅ �a − b�
p

.

For the `∞ bound, the result follows immediately by using that �¯b
i

� ≤ �¯b�
p

≤ 1. For the `
q

bound, we use that for any vector

z, �(zp−1
i

)
i≤d�

q

= �z�p−1
p

, and that �¯b�
p

≤ 1.

Proof of Theorem 7. Throughout this proof we use that �x�
p

≤ �x�1 for all p ≥ 1. To start, expanding the definition of the
Bregman divergence we have

DR(c�a) −DR(c�b) =DR(b�a) + �∇R(a) −∇R(b), b − c�.
Using Lemma 4, this is at most

= 3B�a − b�
p

+ �∇R(a) −∇R(b), b − c�.
Now, applying Hölder’s inequality, this is upper bounded by

≤ 3B�a − b�
p

+ �∇R(a) −∇R(b)�∞�b − c�1≤ 3B�a − b�
p

+ 2B�∇R(a) −∇R(b)�∞.
To conclude, we plug in the bound from Lemma 6.
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B. Proofs from Section 2

B.1. Proofs from Section 2.2

Proof of Theorem 1. Let A ∈ Rk×d be the derandomized JL matrix constructed according to Kane & Nelson (2010),
Theorem 2. Let x′

t

= Ax
t

denote the projected feature vector and w� = argmin

w∶�w�2≤1LD(w).
We first bound the regret of gradient descent in the projected space in terms of certain quantities that depend on A, then
show how the JL matrix construction guarantees that these quantities are appropriately bounded.

Since � is L-Lipschitz, we have the preliminary error estimate

�(�Ax,Aw��, y) − �(�x,w��, y) ≤ L ��Ax,Aw�� − �x,w��� ,
and so

LD(A�Aw�) −LD(w�) ≤ L ⋅Ex

��Ax,Aw�� − �x,w��� . (14)

Now recall that the m machines are simply running online gradient descent in serial over the k-dimensional projected space,
and the update has the form u

t

← u
t−1 − ∇�(�ut

, x′
t

�, y
t

), where ⌘ is the learning rate parameter. The standard online
gradient descent regret guarantee (Hazan, 2016) implies that for any vector u ∈ Rk:

1

N

N�
t=1�(�ut

, x′
t

�, y
t

) − 1

N

N�
t=1�(�u,x′t�, yt) ≤ 1

2⌘N
�u�22 + ⌘

2N

N�
t=1 �x′t�22.

Equivalently, we have

1

N

N�
t=1�(�A�ut

, x
t

�, y
t

) − 1

N

N�
t=1�(�A�u,xt

�, y
t

) ≤ 1

2⌘N
�u�22 + ⌘

2N

N�
t=1 �Ax

t

�22
Since the pairs (x

t

, y
t

) are drawn i.i.d., the standard online-to-batch conversion lemma for online convex optimization
(Cesa-Bianchi & Lugosi, 2006) yields the following guarantee for any vector u:

1

N

N�
t=1ES

�LD(A�ut

)� −LD(A�u) ≤ 1

2⌘N
�u�22 + ⌘

2N

N�
t=1ES

�Ax
t

�22
= 1

2⌘N
�u�22 + ⌘L2

2

E
x

�Ax�22.
Applying Jensen’s inequality to the left-hand side and choosing u = u� ∶= Aw�, we conclude that

E
S

�LD � 1

N

N�
t=1A�ut

�� −LD(A�u�) ≤ 1

2⌘N
�Aw��22 + ⌘L2

2

E
x

�Ax�22,
or in other words,

E
S

[LD (ŵ)] −LD(A�Aw�) ≤ 1

2⌘N
�Aw��22 + ⌘L2

2

E
x

�Ax�22.
We now relate this bound to the risk relative to the benchmark LD(w�). Using (14) we have

E
S

[LD (ŵ)] −LD(w�) ≤ 1

2⌘N
�Aw��22 + ⌘L2

2

E
x

�Ax�22 +LEx

��Ax,Aw�� − �x,w��� .
Taking expectation with respect to the draw A, we get that

E
S

E
A

[LD (ŵ)] −LD(w�) ≤ Ex

�E
A

� 1

2⌘N
�Aw��22 + ⌘L2

2

�Ax�22 +L ��Ax,Aw�� − �x,w����� . (15)

It remains to bound the right-hand side of this expression. To begin, we condition on the vector x with respect to which the
outer expectation in (15) is taken. The derandomized JL transform guarantees (Kane & Nelson (2010), Theorem 2) that for
any � > 0 and any fixed vectors x,w�, if we pick k = O �log(1��)�"2�, then with probability at least 1 − �,

�Ax�2 ≤ (1 + ")�x�2, �Aw��2 ≤ (1 + ")�w��2 and ��Ax,Aw�� − �x,w��� ≤ "

4

�x�2�w��2.
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We conclude that by picking " = O�1�√N�, with probability 1 − �,

�Ax�2 ≤ O(R2), �Aw��2 ≤ O(B2), and ��Ax,Aw�� − �x,w��� ≤ O�B2R2√
N
�.

To convert this into an in-expectation guarantee, note that the quantities �Ax�2, �Aw��2, and �Ax,Aw�� all have magnitude
O(poly(d)) with probability 1 (up to scale factors B2 and R2). Hence,

E
A

� 1

2⌘N
�Aw��22 + ⌘L2

2

�Ax�22 +L ��Ax,Aw�� − �x,w����
≤ (1 − �) ⋅O � B2

2

2⌘N
+ ⌘L2R2

2

2

+ LB2R2√
N
� + � ⋅O �poly(d) ⋅ � B2

2

2⌘N
+ ⌘L2R2

2

2

+LB2R2�� .
Picking � = 1��poly(d)N and using the step size ⌘ =� B

2
2

L

2
R

2
2N

, we get the desired bound:

E
A

� 1

2⌘N
�Aw��22 + ⌘L2

2

�Ax�22 +L ��Ax,Aw�� − �x,w���� ≤ O(LB2R2�√N).
Since this in-expectation guarantee holds for any fixed x, it also holds in expectation over x:

E
x

E
A

� 1

2⌘N
�Aw��22 + ⌘L2

2

�Ax�22 +L ��Ax,Aw�� − �x,w���� ≤ O(L�√N).
Using this inequality to bound the right-hand side in (15) yields the claimed excess risk bound. Recall that we have
k = O �log(1��)�"2� = O (N log(Nd)), and so the communication cost to send a single iterate (taking into account
numerical precision) is upper bounded by O(N log(Nd) ⋅ log(LB2R2N)).
B.2. Proofs from Section 2.4

Our lower bounds are based on reduction to the so-called “hide-and-seek” problem introduced by Shamir (2014).

Definition 1 (Hide-and-seek problem). Let {P
j

}d
j=1 be a set of product distributions over {±1}d defined via EPj [zi] =

2⇢ {j = i}. Given N i.i.d. instances from P
j

� , where j� is unknown, detect j�.
Theorem 8 (Shamir (2014)). Let W ∈ [d] be the output of a (b,1,N) protocol for the hide-and-seek problem. Then there
exists some j� ∈ [d] such that

Pr

j

�(W = j�) ≤ 3

d
+�Nb⇢2

d
.

Proof of Theorem 2. Recall that W1 = �w ∈ Rd � �w�1 ≤ 1�. We create a family of d statistical learning instances as
follows. Let the hide-and seek parameter ⇢ ∈ [0,1�2] be fixed. Let D

j

have features drawn from the be the jth hide-
and-seek distribution P

j

and have y = 1, and set �(�w,x�, y) = −�w,x�y, so that LDj(w) = −2⇢wj

. Then we have
min

w∈W1 LDj(w) = −2⇢. Consequently, for any predictor weight vector w we have

LDj(w) −LDj(w�) = 2⇢(1 −wj

).
If LDj(ŵ) − LDj(w�) < ⇢, this implies (by rearranging) that ŵ

j

> 1
2 . Since ŵ ∈W1 and thus ∑d

i=1�ŵj

� ≤ 1, this implies
j = argmax

i

ŵ
i

. Thus, if we define W = argmax

i

ŵ as our decision for the hide-and-seek problem, we have

Pr

j

�LDj(ŵ) −LDj(w�) < ⇢� ≤ Pr

j

(W = j).
Appealing to Theorem 8, this means that for every algorithm ŵ there exists an index j for which

Pr

j

�LDj(ŵ) −LDj(w�) < ⇢� ≤ 3

d
+�Nb⇢2

d
.

To conclude the result we choose ⇢ = 1
16

�
d

bN

∧ 1
2 .
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Proof of Proposition 1. This result is an immediate consequence of the reductions to the hide-and-seek problem established
in Theorem 2. All that changes is which lower bound for the hide-and-seek problem we invoke. We set ⇢ ∝ d

bN

in the
construction in Theorem 2, then appeal to Theorem 3 in Shamir (2014).

Proof of Proposition 2. We create a family of d statistical learning instances as follows. Let the hide-and seek parameter
⇢ ∈ [0,1�2] be fixed. Let P

j

be the jth hide-and-seek distribution. We create distribution D
j

via: 1) Draw x ∼ P
j

2) set
y = 1. Observe that E[x

i

x
k

] = 0 for all i ≠ k and E�x2
i

� = 1, so ⌃ = I . Consequently, we have

LDj(w) = Ex∼Pj(�w,x� − y)2 = w�⌃w − 4⇢wj

+ 1 = �w�22 − 4⇢wj

+ 1.
Let w� = argmin

w∈�w�1≤1LDj(w). It is clear from the expression above w�
i

= 0 for all i ≠ j. For coordinate j we have
w�

j

= argmin−1≤↵≤1�↵2 − 4⇢↵�. Whenever ⇢ ≤ 1�2 the solution is 2⇢, so we can write w� = 2⇢e
j

, which is clearly 1-sparse.

We can now write the excess risk for a predictor w as

LDj(w) −LDj(w�) = �w�22 − 4⇢wj

+ 4⇢2 =�
i≠jw2

i

+ (w
j

− 2⇢)2.
Now suppose that the excess risk for w is at most ⇢2. Dropping the sum term in the excess risk, this implies

(w
j

− 2⇢)2 < ⇢2.
It follows that w

j

∈ (⇢,3⇢). On the other hand, we also have

�
i≠jw2

i

< ⇢2,
and so any i ≠ j must have �w

i

� < ⇢. Together, these facts imply that if the excess risk for w is less than ⇢2, then
j = argmax

i

w
i

.

Thus, for any algorithm output ŵ, if we define W = argmax

i

ŵ
i

as our decision for the hide-and-seek problem, we have

Pr

j

�LDj(ŵ) −LDj(w�) < ⇢2� ≤ Pr

j

(W = j).
The result follows by appealing to Theorem 2 and Theorem 3 in (Shamir, 2014).

B.3. Discussion: Support Recovery

Our lower bound for the sparse regression setting (5) does not rule out the possibility of sublinear-communication distributed
algorithms for well-specified models. Here we sketch a strategy that works for this setting if we significantly strengthen the
statistical assumptions.

Suppose that we work with the square loss and labels are realized as y = �w�, x�+ ", where " is conditionally mean-zero and
w� is k-sparse. Suppose in addition that the population covariance ⌃ has the restricted eigenvalue property, and that w�
satisfies the so-called “�-min” assumption: All non-zero coordinates of w� have magnitude bounded below.

In this case, if N�m = ⌦(k log d) and the smallest non-zero coefficients of w� are at least ⌦̃(�m�N) the following strategy
works: For each machine, run Lasso on the first half of the examples to exactly recover the support of w� (e.g. Loh et al.
(2017)). On the second half of examples, restrict to the recovered support and use the strategy from Zhang et al. (2012):
run ridge regression on each machine locally with an appropriate choice of regularization parameter, then send all ridge
regression estimators to a central server that averages them and returns this as the final estimator.

This strategy has O(mk) communication by definition, but the assumptions on sparsity and �-min depend on the number of
machines. How far can these assumptions be weakened?

C. Proofs from Section 3

Throughout this section of the appendix we adopt the shorthand B ∶= B1 and R ∶= R
q

. Recall that 1
p

+ 1
q

= 1.

To simplify expressions throughout the proofs in this section we use the convention ŵ0 ∶= w̄ and w̃i ∶= wi

n+1.



Distributed Learning with Sublinear Communication

We begin the section by stating a few preliminary results used to analyze the performance of Algorithm 2 and Algorithm 3.
We then proceed to prove the main theorems.

For the results on fast rates we need the following intermediate fact, which states that centering the regularizerR at w̄ does
not change the strong convexity from Proposition 3 or smoothness properties established in Appendix A.2.
Proposition 7. LetR(w) = 1

2�w − w̄�2p, where �w�1 ≤ B. Then DR(a�b) ≥ p−1
2 �a − b�2p and if �a�1 ∨ �b�1 ∨ �c�1 ≤ B it

holds that
DR(c�a) −DR(c�b) ≤ 10B�a − b�

p

+ 16B3−p�a − b�p−1∞ .

Proof of Proposition 7. LetR0(w) = 1
2�w�2p. The result follows from Proposition 3 and Theorem 7 by simply observing

that ∇R(w) = ∇R0(w − w̄) so that DR(w�w′) =DR0(w − w̄�w′ − w̄). To invoke Theorem 7 we use that �a − w̄�1 ≤ 2B,
and likewise for b and c.

Lemma 7. Algorithm 2 guarantees that for any adaptively selected sequence ∇i

t

and all w� ∈W , any individual machine
i ∈ [m] deterministically satisfies the following guarantee:

n�
t=1�∇i

t

,wi

t

−w�� ≤ ⌘C
q

2

n�
t=1�∇i

t

�2
q

+ 1

⌘
�DR(w��wi

1) −DR(w��wi

n+1)�
Proof of Lemma 7. This is a standard argument. Let w� ∈W be fixed. The standard Bregman divergence inequality for
mirror descent (Ben-Tal & Nemirovski, 2001) implies that for every time t, we have

�∇i

t

,wi

t

−w�� ≤ �∇i

t

,wi

t

− ✓i
t+1� + 1

⌘
�DR(w��wi

t

) −DR(w��wi

t+1) −DR(wi

t

�✓i
t+1)�.

Using Proposition 7, we have an upper bound of

�∇i

t

,wi

t

− ✓i
t+1� + 1

⌘
�DR(w��wi

t

) −DR(w��wi

t+1) − p − 1
2

�wi

t

− ✓i
t+1�2

p

�.
Using Hölder’s inequality and AM-GM:

≤ ⌘

2(p − 1)�∇i

t

�2
q

+ p − 1
2⌘
�wi

t

− ✓i
t+1�2

p

+ 1

⌘
�DR(w��wi

t

) −DR(w��wi

t+1) − p − 1
2

�wi

t

− ✓i
t+1�2

p

�
= ⌘

2(p − 1)�∇i

t

�2
q

+ 1

⌘
�DR(w��wi

t

) −DR(w��wi

t+1)�.
The result follows by summing across time and observing that the Bregman divergences telescope.

Proof of Theorem 3. To begin, the guarantee from Lemma 7 implies that for any fixed machine i, deterministically,

n�
t=1�∇i

t

,wi

t

−w�� ≤ ⌘C
q

2

n�
t=1�∇i

t

�2
q

+ 1

⌘
�DR(w��wi

1) −DR(w��wi

n+1)�.
We now use the usual reduction from regret to stochastic optimization: since wi

t

does not depend on ∇i

t

, we can take
expectation over ∇i

t

to get

E� n�
t=1�∇LD(wi

t

),wi

t

−w��� ≤ ⌘C
q

2

n�
t=1E�∇i

t

�2
q

+ 1

⌘
E�DR(w��wi

1) −DR(w��wi

n+1)�
and furthermore, LD is convex, this implies

E� n�
t=1LD(wi

t

) −LD(w�)� ≤ ⌘C
q

2

n�
t=1E�∇i

t

�2
q

+ 1

⌘
E�DR(w��wi

1) −DR(w��wi

n+1)�.
While the regret guarantee implies that this holds for each machine i conditioned on the history up until the machine begins
working, it suffices for our purposes to interpret the expectation above as with respect to all randomness in the algorithm’s
execution except for the randomness in sparsification for the final iterate ŵ.
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We now sum this guarantee across all machines, which gives

E�m�
i=1

n�
t=1LD(wi

t

) −LD(w�)� ≤ ⌘C
q

2

m�
i=1

n�
t=1E�∇i

t

�2
q

+ 1

⌘

m�
i=1E�DR(w��wi

1) −DR(w��wi

n+1)�.
Rewriting in terms of w̃i and its sparsified version ŵi and using that w1

1 = w̄, this is upper bounded by

≤ ⌘C
q

2

m�
i=1

n�
t=1E�∇i

t

�2
q

+ DR(w��w̄)
⌘

+ 1

⌘

m−1�
i=1 E�DR(w��ŵi) −DR(w��w̃i)�.

We now bound the approximation error in the final term. Using Proposition 7, we get

m−1�
i=1 E�DR(w��ŵi) −DR(w��w̃i)� ≤ O�m−1�

i=1 BE�ŵi − w̃i�
p

+B3−pE�ŵi − w̃i�p−1∞ �.
Theorem 6 implies that E�ŵi − w̃i�

p

≤ O�B�1
s

�1− 1
p � and E�ŵi − w̃i�p−1∞ ≤ O�Bp−1�1

s

� p−1
2 �.9 In particular, we get

m−1�
i=1 E�DR(w��ŵi) −DR(w��w̃i)� ≤ O��m−1�

i=1 B2�1
s
�1− 1

p +B3−p ⋅Bp−1�1
s
� 1

2�� = O��B2
m−1�
i=1 �1s�

1− 1
p + �1

s
� p−1

2 ��.
Since p ≤ 2, the second summand dominates, leading to a final bound of O�B2m�1

s

� p−1
2 �. To summarize, our developments

so far (after normalizing by N ) imply

E� 1

mn

m�
i=1

n�
t=1LD(wi

t

) −LD(w�)� ≤ ⌘C
q

2N

m�
i=1

n�
t=1E�∇i

t

�2
q

+ DR(w��w̄)
⌘N

+O��B2m

⌘N
�1
s
� p−1

2 ��.
Let w̃ denote wi

t

for the index (i, t) selected uniformly at random in the final line of Algorithm 2. Interpreting the
left-hand-side of this expression as a conditional expectation over w̃, we get

E[LD(w̃)] −LD(w�) ≤ ⌘C
q

2N

m�
i=1

n�
t=1E�∇i

t

�2
q

+ DR(w��w̄)
⌘N

+O��B2m

⌘N
�1
s
� p−1

2 ��. (16)

Note that our boundedness assumptions imply �∇i

t

�2
q

≤ R2 and DR(w��w̄) =DR(w��0) ≤ B

2

2 , so when s = ⌦(m 2
p−1 ) this

is bounded by

E[LD(w̃)] −LD(w�) ≤ ⌘C
q

R2

2

+O�B2

⌘N
� ≤ O(�C

q

B2R2�N),
where the second inequality uses the choice of learning rate.

From here we split into two cases. In the general loss case, since LD is R-Lipschitz with respect to `
p

(implied by the
assumption that subgradients lie in X

q

via duality), we get

LD(ŵ) −LD(w�) ≤ LD(w̃) −LD(w�) +R�ŵ − w̃�
p

.

We now invoke Theorem 6 once more, which implies that

E�ŵ − w̃�
p

≤ O��B� 1s0 �1−
1
p��.

We see that it suffices to take s0 = ⌦((N�Cq

) p
2(p−1) ) to ensure that this error term is of the same order as the original excess

risk bound.
9The second bound follows by appealing to the `2 case in Theorem 6 and using that �x�∞ ≤ �x�2.
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In the linear model case, Lemma 1 directly implies that

ELD(ŵ) ≤ LD(w̃) +O(�B2R2�s0),
and so s0 = ⌦(N�Cq

) suffices.

Proof of Theorem 4. We begin from (16) in the proof of Theorem 3 which, once s = ⌦(m 2
p−1 ), implies

E[LD(w̃)] −LD(w�) ≤ ⌘C
q

2N

m�
i=1

n�
t=1E�∇i

t

�2
q

+O�B2

⌘N
�,

where w̃ is the iterate wi

t

selected uniformly at random at the final step and the expectation is over all randomness except
the final sparsification step. Since the loss `(⋅, z) is smooth, convex, and non-negative, we can appeal to Lemma 3.1 from
Srebro et al. (2010), which implies that

�∇i

t

�2
q

= �∇`(wi

t

, zi
t

)�2
q

≤ 4�
q

`(wi

t

, zi
t

).
Using this bound we have

E[LD(w̃)] −LD(w�) ≤ 4⌘C
q

�
q

2N

m�
i=1

n�
t=1E `(wi

t

, zi
t

) +O�B2

⌘N
� = 2⌘C

q

�
q

⋅ E[LD(w̃)] +O�B2

⌘N
�.

Let " ∶= 2⌘C
q

�
q

. Rearranging, we write

(1 − ")E[LD(w̃)] −LD(w�) ≤ O� B2

2⌘N
�.

When " < 1�2, this implies E[LD(w̃)] − (1 + 2")LD(w�) ≤ O� B

2

2⌘N �, and so, by rearranging,

E[LD(w̃)] −LD(w�) ≤ O�⌘Cq

�
q

L� + B2

2⌘N
�.

The choice ⌘ =� B

2

Cq�qL
�
N

∧ 1
4Cq�q

ensures that " ≤ 1�2, and that

⌘C
q

�
q

L� + B2

2⌘N
= O��

�
C

q

�
q

B2L�
N

+ C
q

�
q

B2

N

��.
Now, Lemma 3 implies that, conditioned on w̃, we have ELD(ŵ) ≤ LD(w̃) + �qB

2

s0
. The choice s0 = ��qB

2
N

CqL
� ∧ N

Cq

guarantees that this approximation term is on the same order as the excess risk bound of w̃.

Proposition 8. Suppose we run Algorithm 2 with initial point w̄ that is chosen by some randomized procedure independent
of the data or randomness used by Algorithm 2. Suppose that we are promised that this selection procedure satisfies
E�w̄ −w��2

p

≤ ¯B2. Suppose that subgradients belong to X
q

for q ≥ 2, and that W ⊆ W1. Then, using learning rate

⌘ ∶= B̄

R

�
1

CqN
, s = ⌦�m2(q−1)(B�B̄)4(q−1)�, and s0 = ⌦((N�Cq) q

2 ⋅ (B�B̄)q), the algorithm guarantees

E[LD(ŵ)] −LD(w�) ≤ O�� ¯BR

�
C

q

N

��.
Proof of Proposition 8. We proceed exactly as in the proof of Theorem 3, which establishes that conditioned on w̄,

E[LD(ŵ)] −LD(w�) ≤ ⌘C
q

2N

m�
i=1

n�
t=1E�∇i

t

�2
q

+ DR(w��w̄)
⌘N

+O��B2m

⌘N
�1
s
� p−1

2 �� +O�BR� 1
s0
�1−1�p�.

We now take the expectation over w̄. We have that EDR(w��w̄) = 1
2 E�w̄ −w��2p ≤ ¯B2�2. It is straightforward to verify

from here that the prescribed sparsity levels and learning rate give the desired bound.
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Algorithm 3 (Sparsified Mirror Descent for Fast Rates).
Input:

Constraint setW with �w�1 ≤ B1.
Gradient norm parameter q ∈ [2,∞).
Gradient `

q

norm bound R
q

.
RSC constant �

q

. Constant c > 0.

Let ŵ0 = 0, B
k

= 2−k�2B and N
k+1 = Cq

⋅ � 4cR
�Bk−1 �2.

Let T =max

�T � ∑T

k=1Nk

≤ N�.
Let examples have order: z11 , . . . , z1n, . . . , zm1 , . . . , zm

n

.

For round k = 1, . . . , T :
Let ŵ

k

be the result of running Algorithm 2 on N
k

consecutive examples in the ordering above,
with the following configuration:

1. The algorithm begins on the example immediately after the last one processed at round k − 1.
2. The algorithm uses parameters B1, R

q

, s, s0, and ⌘ as prescribed in Proposition 8, with initialization w̄ = ŵ
k−1

and radius ¯B = B
k−1.

Return ŵ
T

.

Proof of Theorem 5. Let ŵ0 = 0, and let us use the shorthand � ∶= �
q

.

We will show inductively that E�ŵ
k

−w��2
p

≤ 2−kB2 =∶ B2
k

. Clearly this is true for ŵ0. Now assume the statement is true
for ŵ

k

. Then, since E�ŵ
k

−w��2
p

≤ B2
k

, Proposition 8 guarantees that

E[LD(ŵk+1)] −LD(w�) ≤ c ⋅Bk

R

�
C

q

N
k+1 ,

where c > 0 is some absolute constant. Since the objective satisfies the restricted strong convexity condition (Assumption 1),
and since LD is convex andW is also convex, we have �∇LD(w�),w −w�� ≥ 0 and so

E�ŵ
k+1 −w��2

p

≤ 2c ⋅B
k

R

�

�
C

q

N
k+1 .

Consequently, choosing N
k+1 = Cq

⋅ � 4cR
�Bk
�2 guarantees that

E�ŵ
k+1 −w��2

p

≤ 1

2

B2
k

,

so the recurrence indeed holds. In particular, this implies that

E[LD(ŵT

)] −LD(w�) ≤ �

4

B2
T−1 = 2−T ⋅ �B2

2

.

The definition of T implies that

T ≥ log2� N

32C
q

��B
Rc
�2�,

and so

E[LD(ŵT

)] −LD(w�) ≤ 2−T ⋅ �B2

2

≤ O�Cq

R2

�N
�.

This proves the optimization guarantee.
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To prove the communication guarantee, let m
k

denote the number of consecutive machines used at round k. The total
number of bits broadcasted—summing the sparsity levels from Proposition 8 over T rounds—is at most

log d ⋅ T�
k=1(mk

)2q−1� B

B
k−1 �4(q−1) + �Nk

C
q

� q
2 ⋅ � B

B
k−1 �q,

plus an additive O(m log(BRN)) term to send the scalar norm for each sparsified iterate ŵ
i

. Note that we have m
k

= Nk

n

∨1,
so this is at most

log d ⋅ T�
k=1�Nk

n
�2q−1� B

B
k−1 �4(q−1) + �Nk

C
q

� q
2 ⋅ � B

B
k−1 �q.

The first term in this sum simplifies to O�log d ⋅ � CqR
2

n�

2
B

2 �2q−1� ⋅ ∑T

k=1 2(4q−3)k, while the second simplifies to

O�log d ⋅ � R

�B

�q2q� ⋅ ∑T

k=1 2qk. We use that ∑T

t=1 �t ≤ �T+1 for � ≥ 2 to upper bound by

O�log d ⋅ � C
q

R2

n�2B2
�2q−12q� ⋅ 2(4q−3)T +O�log d� R

�B
�q2q� ⋅ 2qT .

Substituting in the value of T and simplifying leads to a final bound of

O�log d ⋅ � �2B2

C
q

R2
�2(q−1)m2q−1N2(q−1) + log d ⋅ ��BN

C
q

R
�q�. (17)

Proof of Proposition 4. It immediately follows from the definitions in the proposition that Algorithm 3 guarantees

E[LD(ŵT

)] −LD(w�) ≤ O�Cq

B2R2

�
q

N
�,

where �
q

is as in Assumption 1. We now relate �
q

and �. From the optimality of w� and strong convexity of the square loss
with respect to predictions it holds that for all w ∈W

p

,

E[LD(w)] −LD(w�) − �∇LD(w�),w −w�� ≥ E�x,w −w��2.
Our assumption on � implies

E�x,w −w��2 = �⌃1�2(w −w�)�2
2
≥ ��w −w��22.

Using Proposition 9, we have

�w −w��
p

≤ �w −w��1 ≤ 2�(w −w�)S�1 ≤ 2√k�(w −w�)S�2 ≤ 2√k�w −w��2
Thus, it suffices to take �

q

= �

4k .

The following proposition is a standard result in high-dimensional statistics. For a given vector w ∈ Rd, let w
S

∈ Rd denote
the same vector with all coordinates outside S ⊆ [d] set to zero.
Proposition 9. LetW , w�, and S be as in Proposition 4. All w ∈W satisfy the inequality �(w −w�)

S

c�1 ≤ �(w −w�)S�1.

Proof of Proposition 9. Let ⌫ = w −w�. From the definition ofW , we have that for all w ∈W ,�w��1 ≥ �w�1 = �w� + ⌫�1.
Applying triangle inequality and using that the `1 norm decomposes coordinate-wise:�w� + ⌫�1 = �w� + ⌫S + ⌫Sc�1 = �w� + ⌫S�1 + �⌫Sc�1 ≥ �w��1 − �⌫S�1 + �⌫Sc�1.
Rearranging, we get �⌫

S

c�1 ≤ �⌫S�1.
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Proof of Proposition 5. To begin, we recall from Kakade et al. (2012) that the regularizer R(W ) = 1
2�W �2Sp

is (p − 1)-
strongly convex for p ≤ 2. This is enough to show under our assumptions that the centralized version of mirror descent

(without sparsification) guarantees excess risk O��CqB
2
1R

2
q

N

�, with C
q

= q − 1, which matches the `1�`q setting.

What remains is to show that the new form of sparsification indeed preserves Bregman divergences as in the `1�`q setting.
We now show that when W and W � have �W �

S1
∨ �W ��

S1
≤ B,

E[DR(W ��Qs(W )) −DR(W ��W )] ≤ O��B2�1
s
� p−1

2 ��.
To begin, let U ∈ Rd×d be the left singular vectors of W and V ∈ Rd×d be the right singular vectors. We define �̂ =�W �S1

s

∑s

⌧=1 ei⌧ , so that we can write W = Udiag(�)V � and Qs(W ) = Udiag(�̂)V �.
Now note that since the Schatten norms are unitarily invariant, we have

�W −Qs(W )�
Sp
= �Udiag(� − �̂)V ��

Sp
= �� − �̂�

p

for any p. Note that our assumptions imply that ���1 ≤ B, and that �̂ is simply the vector Maurey operator applied to �, so
it follows immediately from Theorem 6 that

E�� − �̂�
p

≤ 4B�1
s
�1−1�p and

�
E�� − �̂�2∞ ≤ 4B�1s�1�2. (18)

Returning to the Bregman divergence, we write

DR(W ��Qs(W )) −DR(W ��W ) =DR(W �Qs(W )) + �∇R(Qs(W )) −∇R(W ),W −W ��≤DR(W �Qs(W )) + �∇R(Qs(W )) −∇R(W )�
S∞�W −W ��

S1≤DR(W �Qs(W )) + 2B�∇R(Qs(W )) −∇R(W )�
S∞ .

It follows immediately using Lemma 4 that

DR(W �Qs(W )) ≤ 3B�W −Qs(W )�
Sp
= 3B�� − �̂�

p

.

To make progress from here we use a useful representation for the gradient ofR. Define

g(�) = ���2−p
p

⋅ ���1�p−1sgn(�1), . . . , ��d

�p−1sgn(�
d

)�.
Then using Theorem 30 from Kakade et al. (2012) along with (11), we have

∇R(W ) = Udiag(g(�))V �, and ∇R(Qs(W )) = Udiag(g(�̂))V �.
For the gradient error term, unitary invariance again implies that

�∇R(Qs(W )) −∇R(W )�
S∞ = �Udiag(g(�) − g(�̂))V ��

S∞ = �g(�) − g(�̂)�∞.
Lemma 6 states that �g(�) − g(�̂)�∞ ≤ 2B2−p�� − �̂�p−1∞ + �� − �̂�

p

.

Putting everything together, we get

DR(W ��Qs(W )) −DR(W ��W ) ≤ 5B�� − �̂�
p

+ 4B3−p�� − �̂�p−1∞ .

The desired result follows by plugging in the bounds in (18).


