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Abstract

In distributed statistical learning, N samples are
split across m machines and a learner wishes to
use minimal communication to learn as well as
if the examples were on a single machine. This
model has received substantial interest in machine
learning due to its scalability and potential for
parallel speedup. However, in high-dimensional
settings, where the number examples is smaller
than the number of features (“dimension”), the
speedup afforded by distributed learning may be
overshadowed by the cost of communicating a
single example. This paper investigates the fol-
lowing question: When is it possible to learn a
d-dimensional model in the distributed setting
with total communication sublinear in d? Start-
ing with a negative result, we observe that for
learning ¢;-bounded or sparse linear models, no
algorithm can obtain optimal error until commu-
nication is linear in dimension. Our main result
is that by slightly relaxing the standard bounded-
ness assumptions for linear models, we can obtain
distributed algorithms that enjoy optimal error
with communication logarithmic in dimension.
This result is based on a family of algorithms that
combine mirror descent with randomized sparsifi-
cation/quantization of iterates, and extends to the
general stochastic convex optimization model.

1. Introduction

In statistical learning, a learner receives examples
Z1,...,2N 1Lid. from an unknown distribution D. Their
goal is to output a hypothesis h € H that minimizes the
prediction error Lp(h) := E,.p £(h, z), and in particular
to guarantee that excess risk of the learner is small, i.e.

Lp(h) - inf Lp(h) < e(H,N), )
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where (H, N) is a decreasing function of N. This paper
focuses on distributed statistical learning. We consider a
distributed setting, where the NV examples are split evenly
across m machines, with n := N /m examples per machine,
and the learner wishes to achieve an excess risk guaran-
tee such as (1) with minimal overhead in computation or
communication.

Distributed learning has been the subject of extensive inves-
tigation due to its scalability for processing massive data:
We may wish to efficiently process datasets that are spread
across multiple data-centers, or we may want to distribute
data across multiple machines to allow for parallelization
of learning procedures. The question of parallelizing com-
putation via distributed learning is a well-explored problem
(Bekkerman et al., 2011; Recht et al., 2011; Dekel et al.,
2012; Chaturapruek et al., 2015). However, one drawback
that limits the practical viability of these approaches is that
the communication cost between machines may overshadow
gains in parallel speedup (Bijral et al., 2016). Indeed, for
high-dimensional statistical inference tasks where N could
be much smaller than the dimension d, or in modern deep
learning where the number of model parameters exceeds the
number of examples (e.g. (He et al., 2016)), communicat-
ing a single gradient or sending the raw model parameters
between machines constitutes a significant overhead.

Algorithms with reduced communication complexity in dis-
tributed learning have received significant recent develop-
ment (Seide et al., 2014; Alistarh et al., 2017; Zhang et al.,
2017; Suresh et al., 2017; Bernstein et al., 2018; Tang et al.,
2018), but typical results here take as a given that when
gradients or examples live in d dimensions, communication
will scale as Q2(d). Our goal is to revisit this tacit assump-
tion and understand when it can be relaxed. We explore the
question of sublinear communication:

Suppose a hypothesis class H has d parameters. When is it
possible to achieve optimal excess risk for H in the
distributed setting using o(d) communication?

1.1. Sublinear Communication for Linear Models?

Let us first focus on linear models, which are a special
case of the general learning setup (1). We restrict to linear
hypotheses of the form h,,(z) = (w,z) where w, z € R¢
and write £(hy,, z) = ¢({(w,z),y), where ¢(-,y) is a fixed
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link function and z = (z,y). We overload notation slightly
and write

LD(w) :E(a:,y)~'D qﬁ((w,x),y) )

This formulation captures standard learning tasks such as
square loss regression, where ¢((w, z),y) = ((w, z) - y)*,
logistic regression, where ¢({w, x),y) = 1og(1 + e‘y(“””)),
and classification with surrogate losses such as the hinge
loss, where ¢({w, z),y) = max{l - (w,z) - y,0}.

Our results concern the communication complexity of learn-
ing for linear models in the ¢, /¢,-bounded setup: weights
belong to W, := {w eR?| |w],, < Bp} and feature vectors
belong to X, == {x e R? | |], < Ry}." This setting is a nat-
ural starting point to investigate sublinear-communication
distributed learning because learning is possible even when
N «d.

Consider the case where p and ¢ are dual, i.e. £ + é =1, and

where ¢ is 1-Lipschitz. Here it is well known (Zhang, 2002;
Kakade et al., 2009) that whenever ¢ > 2, the optimal sample
complexity for learning, which is achieved by choosing
the learner’s weights @ using empirical risk minimization
(ERM), is

S | BrRiCy
Lp(w) - wlenv{;p Lp(w)=0 -~ | 3)

where C;; = ¢ — 1 for finite ¢ and C', = log d, namely

B2R2 logd
LD(@) - wlerll/fil LD(U}) = 9( 1]\7g) (4)

We see that when ¢ < oo the excess risk for the dual £,,/¢,
setting is independent of dimension so long as the norm
bounds B, and R, are held constant, and that even in the
01/ case there is only a mild logarithmic dependence.
Hence, we can get nontrivial excess risk even when the
number of examples N is arbitrarily small compared to the
dimension d. This raises the intriguing question: Given
that we can obtain nontrivial excess risk when N < d, can
we obtain nontrivial excess risk when communication is
sublinear in d?

To be precise, we would like to develop algorithms
that achieve (3)/(4) with total bits of communication
poly (N, m,logd), permitting also poly(B,, R,) depen-
dence. The prospect of such a guarantee is exciting
because—in light of the discussion above—as this would
imply that we can obtain nontrivial excess risk with fewer
bits of total communication than are required to naively send
a single feature vector.

'Recall the definition of the £, norm: |wl, = (Zf:1|wi|p)1/p.

1.2. Contributions

We provide new communication-efficient distributed learn-
ing algorithms and lower bounds for ¢,,/¢,-bounded linear
models, and more broadly, stochastic convex optimization.
We make the following observations:

* For ¢5/l3-bounded linear models, sublinear communi-
cation is achievable, and is obtained by using a deran-
domized Johnson-Lindenstrauss transform to compress
examples and weights.

* For ¢; /{+-bounded linear models, no distributed algo-
rithm can obtain optimal excess risk until communica-
tion is /inear in dimension.

These observations lead to our main result. We show that
by relaxing the ¢; /¢, -boundedness assumption and instead
learning ¢; /¢,-bounded models for a constant g < co, one
unlocks a plethora of new algorithmic tools for sublinear
distributed learning:

1. We give an algorithm with optimal rates matching (3),
with total communication poly (N, m?,logd).

2. We extend the sublinear-communication algorithm to
give refined guarantees, including instance-dependent
small loss bounds for smooth losses, fast rates for
strongly convex losses, and optimal rates for matrix
learning problems.

Our main algorithm is a distributed version of mirror de-
scent that uses randomized sparsification of weight vectors
to reduce communication. Beyond learning in linear mod-
els, the algorithm enjoys guarantees for the more general
distributed stochastic convex optimization model.

To elaborate on the fast rates mentioned above, another
important case where learning is possible when N <« d
is the sparse high-dimensional linear model setup, cen-
tral to compressed sensing and statistics. Here, the stan-
dard result is that when ¢ is strongly convex and the
benchmark class consists of k-sparse linear predictors, i.e.
Wy = {w e R?| |w]|, < k}, one can guarantee

B klog (d/k)
Lp(w) wlenvg0 Lp(w) = @( N ) %)
With /..-bounded features, no algorithm can obtain optimal
excess risk for this setting until communication is linear in
dimension, even under compressed sensing-style assump-
tions. When features are ¢,-bounded however, our general
machinery gives optimal fast rates matching (5) under Lasso-
style assumptions, with communication poly (N9, logd).

The remainder of the paper is organized as follows. In
Section 2 we develop basic upper and lower bounds for the
05 /05 and ¢; /£ -bounded settings. In Section 3 we shift to
the ¢1 /¢,-bounded setting, where we introduce the family of
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sparsified mirror descent algorithms that leads to our main
results and sketch the analysis.

1.3. Related Work

Much of the work in algorithm design for distributed learn-
ing and optimization does not explicitly consider the number
of bits used in communication per messages, and instead
tries to make communication efficient via other means, such
as decreasing the communication frequency or making learn-
ing robust to network disruptions (Duchi et al., 2012; Zhang
et al., 2012). Other work reduces the number of bits of
communication, but still requires that this number be linear
in the dimension d. One particularly successful line of work
in this vein is low-precision training, which represents the
numbers used for communication and elsewhere within the
algorithm using few bits (Alistarh et al., 2017; Zhang et al.,
2017; Seide et al., 2014; Bernstein et al., 2018; Tang et al.,
2018; Stich et al., 2018; Alistarh et al., 2018). Although
low-precision methods have seen great success and adop-
tion in neural network training and inference, low-precision
methods are fundamentally limited to use bits proportional
to d; once they go down to one bit per number there is
no additional benefit from decreasing the precision. Some
work in this space tries to use sparsification to further de-
crease the communication cost of learning, either on its own
or in combination with a low-precision representation for
numbers (Alistarh et al., 2017; Wangni et al., 2018; Wang
et al., 2018). While the majority of these works apply low-
precision and sparsification to gradients, a number of recent
works apply sparsification to model parameters (Tang et al.,
2018; Stich et al., 2018; Alistarh et al., 2018); We also adopt
this approach. The idea of sparsifying weights is not new
(Shalev-Shwartz et al., 2010), but our work is the first to
provably give communication logarithmic in dimension. To
achieve this, our assumptions and analysis are quite a bit
different from the results mentioned above, and we crucially
use mirror descent, departing from the gradient descent ap-
proaches in (Tang et al., 2018; Stich et al., 2018; Alistarh
etal., 2018).

Lower bounds on the accuracy of learning procedures with
limited memory and communication have been explored in
several settings, including mean estimation, sparse regres-
sion, learning parities, detecting correlations, and indepen-
dence testing (Shamir, 2014; Duchi et al., 2014; Garg et al.,
2014; Steinhardt & Duchi, 2015; Braverman et al., 2016;
Steinhardt et al., 2016; Acharya et al., 2019a;b; Raz, 2018;
Han et al., 2018; Sahasranand & Tyagi, 2018; Dagan &
Shamir, 2018; Dagan et al., 2019). In particular, the results
of (Steinhardt & Duchi, 2015) and (Braverman et al., 2016)
imply that optimal algorithms for distributed sparse regres-
sion need communication much larger than the sparsity level
under various assumptions on the number of machines and
the communication protocol.

2. Linear Models: Basic Results

In this section we develop basic upper and lower bounds for
communication in £5/¢5- and ¢; /¢ -bounded linear models.
Our goal is to highlight that the communication complexity
of distributed learning and the statistical complexity of cen-
tralized learning do not in general coincide, and to motivate
the ¢, /{,-boundedness assumption under which we derive
communication-efficient algorithms in Section 3.

2.1. Preliminaries

We formulate our results in a distributed communication
model following Shamir (2014). Recalling that n = N /m,
the model is as follows.

e For machinei=1,...,m:
— Receive n i.i.d. examples S; := 21, ..., 2/,

— Compute message W; = f;(S;; W1,...,W;_1),
where W; is at most b; bits.

e Return W = f(Wy,...,Wp,).

We refer to Y./, b; as the total communication, and we refer
to any protocol with b; < b Vi as a (b,n, m) protocol. As a
special case, this model captures a serial distributed learning
setting where machines proceed one after another: Each
machine does some computation on their data z¢, . . ., 2% and
previous messages W7, ..., W,_q, then broadcasts their own
message W; to all subsequent machines, and the final model
in (1) is computed from W, either on machine m or on a
central server. The model also captures protocols in which
each machine independently computes a local estimator
and sends it to a central server, which aggregates the local
estimators to produce a final estimator (Zhang et al., 2012).
All of our upper bounds have the serial structure above, and
our lower bounds apply to any (b, n, m) protocol.

2.2. /5 /¢5-Bounded Models

In the ¢5/¢>-bounded setting, we can achieve sample opti-
mal learning with sublinear communication by using dimen-
sionality reduction. The idea is to project examples into
k = O(N) dimensions using the Johnson-Lindenstrauss
transform, then perform a naive distributed implementation
of any standard learning algorithm in the projected space.
Here we implement the approach using stochastic gradient
descent.

To project the examples onto the same subspace, the ma-
chines need to agree on a JL transformation matrix. To
do so with little communication, we consider the deran-
domized sparse JL transform of Kane & Nelson (2010),
which constructs a collection A of matrices in R¥*¢ with
|A| = exp (O(log(k/d) - log d)) for confidence parameter 4.
The first machine randomly selects an entry of .4 and sends
the identity of this matrix using O(log(k/d) - log d) bits to
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Algorithm 1 (Maurey Sparsification).
Input: Weight vector w € R, Sparsity level s.
* Define p € Ay via p; o< |wy].
e ForT=1,...,s:
— Sample index i, ~ p.
* Return Q°(w) := % >y sen(w;, e .

the other m — 1 machines. The dimension k and parameter
0 are chosen as a function of N.

Each machine uses the matrix A to project its features down
to k dimensions. Letting z; = Az, denote the projected fea-
tures, the first machine starts with a k-dimensional weight
vector u; = 0 and performs the online gradient descent up-
date (Zinkevich, 2003; Cesa-Bianchi & Lugosi, 2006) over
its n projected samples as:

up < w1 = NVO((ue, T4), Yt ),

where 1 > 0 is the learning rate. Once the first machine
has passed over all its samples, it broadcasts the last iter-
ate u,+1 as well the average Y\, us, which takes O(k;)
communication. The next machine machine performs the
same sequence of gradient updates on its own data using
Un+1 as the initialization, then passes its final iterate and the
updated average to the next machine. This repeats until we
arrive at the mth machine. The mth machine computes the
k-dimensional vector T := % Zﬁl g, and returns @ = A4
as the solution.

Theorem 1. When ¢ is L-Lipschitz and k£ =
Q(N log(dN)), the strategy above guarantees that

. L2B2R?
EsEa [Lo(@)] - inf Lp(w)<O (\ / ]\?2) ,

where Eg denotes expectation over samples and E4 de-
notes expectation over the algorithm’s randomness. The
total communication is O(mN log(dN)log(LBzRaN) +
mlog(dN)logd) bits.

2.3. /41 /¢ -Bounded Models: Model Compression

While the results for the ¢5/¢>-bounded setting are en-
couraging, they are not useful in the common situation
where features are dense. When features are /.,-bounded,
Equation (4) shows that one can obtain nearly dimension-
independent excess risk so long as they restrict to ¢;-
bounded weights. This /1 /{.-bounded setting is particu-
larly important because it captures the fundamental problem
of learning from a finite hypothesis class, or aggregation
(Tsybakov, 2003): Given a class H of {+1}-valued pre-
dictors with [H| < co we can set 2 = (h(z))nep € R,
in which case (4) turns into the familiar finite class bound

\1og|H|/N (Shalev-Shwartz & Ben-David, 2014). Thus,
algorithms with communication sublinear in dimension for
the ¢1 /¢, setting would lead to positive results in the gen-
eral setting (1).

As first positive result in this direction, we observe that by
using the well-known technique of randomized sparsifica-
tion or Maurey sparsification, we can compress models to
require only logarithmic communication while preserving
excess risk.> The method is simple: Suppose we have a
weight vector w that lies in the simplex A4. We sample s el-
ements of [d] i.i.d. according to w and return the empirical
distribution, which we will denote Q*(w). The empirical
distribution is always s-sparse and can be communicated
using at most O(slog (ed/s)) bits when s < d,* and it fol-
lows from standard concentration tools that by taking s large
enough the empirical distribution will approximate the true
vector w arbitrarily well.

The following lemma shows that Maurey sparsification in-
deed provides a dimension-independent approximation to
the excess risk in the ¢1 /¢ -bounded setting. It applies to a
version of the Maurey technique for general vectors, which
is given in Algorithm 1.

Lemma 1. Let w € R be fixed and suppose features belong
to Xo. When ¢ is L-Lipschitz, Algorithm 1 guarantees that

2 p2 2 /
E Lp(Q*(w)) < Lp(w) + (2’:}%:’“"1)1 2’

where the expectation is with respect to the algorithm’s ran-
domness. Furthermore, when ¢ is 3-smooth* Algorithm 1
guarantees:

E Lp(Q*(w)) SLD(w)JrM'

The number of bits required to communicate Q°*(w), in-
cluding sending the scalar |w|, up to numerical precision,
is at most O(slog (ed/s) + log(LB1Reos)). Thus, if any
single machine is able to find an estimator @ with good
excess risk, they can communicate it to any other machine
while preserving the excess risk with sublinear communi-
cation. In particular, to preserve the optimal excess risk
guarantee in (4) for a Lipschitz loss such as absolute or
hinge, the total bits of communication required is only

2We refer to the method as Maurey sparsification in reference
to Maurey’s early use of the technique in Banach spaces (Pisier,
1980), which predates its long history in learning theory (Jones,
1992; Barron, 1993; Zhang, 2002).

’That O(slog (ed/s)) bits rather than, e.g., O(slogd) bits
suffice is a consequence of the usual “stars and bars” counting
argument. We expect one can bring the expected communication
down further using an adaptive scheme such as Elias coding, as in
Alistarh et al. (2017).

4 A scalar function is said to be S-smooth if it has [B-Lipschitz
first derivative.
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O(N +log (LB1R«N)), which is indeed sublinear in di-
mension! For smooth losses (square, logistic), this improves

further to only O(v/N log (ed/N) +log (LB RoN)) bits.

2.4. {1 /{.-Bounded Models: Impossibility

Alas, we have only shown that if we happen to find a good
solution, we can send it using sublinear communication. If
we have to start from scratch, is it possible to use Maurey
sparsification to coordinate between all machines to find a
good solution?

Unfortunately, the answer is no: For the ¢;/{., bounded
setting, in the extreme case where each machine has a single
example, no algorithm can obtain a risk bound matching (4)
until the number of bits b allowed per machine is (nearly)
linear in d.

Theorem 2. Consider the problem of learning with linear
loss in the (b,1, N) model, where the risk is Lp(w) =
E(z,y)~p[~y{w, z)]. Let the benchmark class be the £; ball
Wi, where By = 1. For any algorithm @ there exists a
distribution D with |z, <1 and |y| < 1 such that

Pr(LD(ﬁF) = inf Lp(w)> 55 g% A %) > 5.

The lower bound also extends to the case of multiple ex-
amples per machine (i.e., m > 1), albeit with a less sharp
tradeoff.

Proposition 1. Let m, n, and € > 0 be fixed. In the setting
of Theorem 2, any algorithm in the (b, n, m) protocol with
b < O(d'"¢/?/\/N) has excess risk at least Q(/d5/N)

with constant probability.

This lower bound follows almost immediately from reduc-
tion to the “hide-and-seek” problem of Shamir (2014). The
weaker guarantee from Proposition 1 is a consequence of
the fact that the lower bound for the hide-and-seek problem
from Shamir (2014) is weaker in the multi-machine case.

The value of Theorem 2 and Proposition 1 is to rule out
the possibility of obtaining optimal excess risk with com-
munication polylogarithmic in d in the ¢, /¢, setting, even
when there are many examples per machine. This motivates
the results of the next section, which show that for ¢; /¢,-
bounded models it is indeed possible to get polylogarithmic
communication for any value of m.

One might hope that it is possible to circumvent Theorem 2
by making compressed sensing-type assumptions, e.g. as-
suming that the vector w* is sparse and that restricted eigen-
value or a similar property is satisfied. Unfortunately, this is
not the case.’

3See Appendix B.2 for additional discussion of compressed
sensing based assumptions under which sublinear communication
may be possible.

Proposition 2. Consider square loss regression in the
(b,1, N) model. For any algorithm @ there exists a dis-
tribution D with the following properties:

* ||z||, <1 and |y| < 1 with probability 1.

e ¥ := E[za"] = I, so that the population risk is 1-
strongly convex, and in particular has restricted strong
convexity constant 1.

.. . .
* w" = argmin,,, | < Lp(w) is 1-sparse.

 Pr{Lo(®) - Lo(w) = 5 (4 ) a 1) 2 1
Moreover, any algorithm in the (b,n,m) protocol with
b < O(d'"%/?/\/N) has excess risk at least Q(d®/N) with
constant probability.

That Q(d) communication is required to obtain optimal
excess risk for m = N was proven in (Steinhardt & Duchi,
2015). The lower bound for general m is important here
because it serves as a converse to the algorithmic results we
develop for sparse regression in Section 3.°

3. Sparsified Mirror Descent

We now deliver on the promise outlined in the introduction
and give new algorithms with logarithmic communication
under an assumption we call {1 /{,-boundness. The model
for which we derive algorithms in this section is more gen-
eral than the linear model setup (2) to which our lower
bounds apply. We consider problems of the form

miIli%ize Lp(w) = E,.pl(w, z), (6)
we

where ((-, 2) is convex, W € Wy = {w e R? | |w], < By}
is a convex constraint set, and subgradients 9¢(w, z) are
assumed to belong to X, = {z ¢ R*| ||, < R,}. This
setting captures linear models with ¢;-bounded weights and
£4-bounded features as a special case, but is more general,
since the loss can be any Lipschitz function of w.

We have already shown that one cannot expect sublinear-
communication algorithms for ¢, /¢.,-bounded models, and
so the £,-boundedness of subgradients in (6) may be thought
of as strengthening our assumption on the data generating
process. That this is stronger follows from the elementary
fact that ||z, > ||, forall .

Statistical complexity and nontriviality. For the dual
01/l setup in (2) the optimal rate is ©(y/logd/N). While
our goal is to find minimal assumptions that allow for dis-
tributed learning with sublinear communication, the reader

6(Braverman et al., 2016) also prove a communication lower
bound for sparse regression. Their lower bound applies for all val-
ues of m and for more sophisticated interactive protocols, but does
not rule out the possibility of poly (N, m,log d) communication.
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may wonder at this point whether we have made the prob-
lem easier statistically by moving to the ¢, /¢, assumption.
The answer is “yes, but only slightly.” When ¢ is constant
the optimal rate for ¢ /¢,-bounded models is ©(y/1/N),’
and so the effect of this assumption is to shave off the log d
factor that was present in (4).

3.1. Lipschitz Losses

Our main algorithm is called sparsified mirror descent (Al-
gorithm 2). The idea is to run the online mirror descent
algorithm (Ben-Tal & Nemirovski, 2001; Hazan, 2016) in
serial across the machines and sparsify the iterates whenever
we move from one machine to the next.

In a bit more detail, Algorithm 2 proceeds from machine to
machine sequentially. On each machine, the algorithm gen-
erates a sequence of iterates wi, ..., w!, by doing a single
pass over the machine’s n examples 2%, ..., 2% using the mir-

ror descent update with regularizer R(w) = é w ||;, where

141 _ 1, and using stochastic gradients Vi € 9/(wi, z¢).

Afterl the last example is processed on machine ¢, we com-
press the last iterate using Maurey sparsification (Algo-
rithm 1) and send it to the next machine, where the process
is repeated.

To formally describe the algorithm, we recall the definition
of the Bregman divergence. Given a convex regularization
function R : R - R, the Bregman divergence for R is de-
fined as Dg (w|w") = R(w) -R(w") = (VR(w"),w — w').
For the (1 /¢, setting we exclusively use the regularizer
_1 2 1,1 _

R(w) = 3wl where &+ = = 1.

The main guarantee for Algorithm 2 is as follows.
Theorem 3. Let g > 2 be fixed. Suppose that subgradients
belong to X, and that W ¢ W,. If we run Algorithm 2 with
n="5L /ﬁ and with initial point @ = 0, then whenever

q
s=Q(m 2(a- D) and sq = Q(N ?) the algorithm guarantees

E[Lo(@)] - Lo(w’) < Oy Z5i™ ).

where Cj; = ¢ — 1 is a constant depending only on g.

The total number of bits sent by each machine—
besides communicating the final iterate wW—is at most
O(m2@ D log(d/m) + log(B1R,N)), and so the total
number of bits communicated globally is at most

O(N% log(d/N) + m?* log(d/m) + mlog(BquN)).

In the linear model setting (2) with 1-Lipschitz loss ¢ it
suffices to set sg = (V') so the total bits of communication
is O(Nlog(d/N) + m?* ! log(d/m) + mlog(B1R,N)).

"The upper bound follows from (3) and the lower bound follows
by reduction to the one-dimensional case.

Algorithm 2 (Sparsified Mirror Descent).
Input:
Constraint set VW with |w]|; < Bj.
Gradient norm parameter g € [2, 00).
Gradient £, norm bound R,.
Learning rate 7, Initial point w, Sparsity s, sg € N.

Define p = - and R(w) = & |w - .
For machme i=1,...,m:

* Receive @'~ from machine i — 1 and set w! =
@*! (if machine 1 set wi = w).

e Fort=1,...,n:// ‘Mirror descent step.
— Get gradient Vj € 90(w; ; z}).
= VR(01:1) < VR(w;) = V.
- Wi,y < Argming gy Dr(w]0,1).

e Let @' < Q*(w!,,). // Sparsification.

* Send @' to machine i + 1.

Sample i € [m], t € [n] uniformly at random and
return @ := Q*° (wy).

We see that the communication required by sparsified mir-
ror descent is exponential in the norm parameter g. This
means that whenever ¢ is constant, the overall communi-
cation is polylogarithmic in dimension. When ¢ = logd,
|z[, ~ [%]. up to a multiplicative constant. In this case
the communication from Theorem 3 becomes polynomial in
dimension, which we know from Section 2.4 is necessary.

The guarantee of Algorithm 2 extends beyond the statistical
learning model to the first-order stochastic convex optimiza-
tion model, as well as the online convex optimization model.

Proof sketch. They basic premise behind the algorithm
and its analysis is that by using the same learning rate across
all machines, we can pretend as though we are running a
single instance of mirror descent on a centralized machine.
The key difference from the usual analysis is that we need
to bound the error incurred by sparsification between suc-
cessive machines. Here, the choice of the regularizer is
crucial. A fundamental property used in the analysis of
mirror descent is strong convexity of the regularizer. To give
convergence rates that do not depend on dimension (such
as (3)) it is essential that the regularizer be 2(1)-strongly
convex. Our regularizer R indeed has this property.

Proposition 3 (Ball et al. (1994)). For p € (1,2], R is
(p - 1)-strongly convex with respect to [-|,,. Equivalently,
Dr(w|w") 2 p—;l Jw - w’H; Yw,w' e R%.

On the other hand, to argue that sparsification has negligible
impact on convergence, our analysis leverages smoothness
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of the regularizer. Strong convexity and smoothness are at
odds with each other: It is well known that in infinite dimen-
sion, any norm that is both strongly convex and smooth is
isomorphic to a Hilbert space (Pisier, 2011). What makes
our analysis work is that while the regularizer R is not
smooth, it is Holder-smooth for any finite q. This is suffi-
cient to bound the approximation error from sparsification.
To argue that the excess risk achieved by mirror descent
with the £, regularizer R is optimal, however, it is essential
that the gradients are £,-bounded rather than ¢.,-bounded.

In more detail, the proof has three components:

* Telescoping. Mirror descent gives a regret bound that tele-
scopes across all m machines up to the error introduced
by sparsification. To match the optimal centralized re-
gret, we only need to to bound m error terms of the form
Dr(w*|Q*(wy41)) = Dr(w”|wy,,q).

* Holder-smoothness. We prove (Theorem 7) that the dif-
ference above is of order

, . 5 : —
By Q* (wye1) = Wi lp + By P 1Q% (i) = w557

* Maurey for £, norms. We prove (Theorem 6) that
1Q% (whyy) = wi i, S (%)1—1/;) and likewise that

s(. i 1/2

”Q (wn+1)_wn+1||°°5(%) .
With a bit more work these inequalities yield Theorem 3. We

close this section with a few more notes about Algorithm 2
and its performance.

Remark 1. For the special case of {1/{,-bounded linear
models with Lipschitz link function, it is straightforward
to show that the following strategy also leads to sublinear
communication: Truncate each feature vector to the top
O(N/?) coordinates, then send all the truncated examples
to a central server, which returns the empirical risk mini-
mizer. This strategy matches the risk of Theorem 3 with total
communication O~(Nq/2Jr1 ), but has two deficiencies. First,
the total communication is larger than the O(N +m?2ah)
bound achieved by Theorem 3, unless m is very large. Sec-
ond, it does not extend to the general optimization setting.

3.2. Smooth Losses

We can improve the statistical guarantee and total communi-
cation further for the case where Lp is smooth with respect
to ¢, rather than just Lipschitz. We assume that ¢ has 3,-
Lipschitz gradients, in the sense that for all w,w’ € W for
all z, [Vl(w, z) - Vl(w', 2)|, < Bq|w—w,, where pis
such that L + 1,

P g
Theorem 4. Suppose in addition to the assumptions of
Theorem 3 that ¢(-, z) is non-negative and has 3,-Lipschitz
gradients with respect to £,. Let L* = inf,,e)y Lp(w). If we

2
run Algorithm 2 with learning rate 1 = y / CﬁBﬁ A ﬁ
qarq arq

2
and @ = 0 then, if s = Q(m?(9)) and s = ’BéBifv nE,
q q

the algorithm guarantees

E[Lp(@)] - L* < O(\/WJr Cqﬂj\«;Bf )

The total number of bits sent by each machine—
besides communicating the final iterate w—is at most
O(m?*(91og(d/m)), and so the total number of bits com-
municated globally is at most O(mlog(5,B1N))+

l

Compared to the previous theorem, this result provides a
so-called “small-loss bound” (Srebro et al., 2010), with the
main term scaling with the optimal loss L*. The dependence
on N in the communication cost can be as low as O(v/N)
depending on the value of L*.

ﬁéBLffV A év) log(d/N) +m?271 log(d/m)).

3.3. Fast Rates under Restricted Strong Convexity

So far all of the algorithmic results we have present scale
as O(N~/?). While this is optimal for generic Lipschitz
losses, we mentioned in Section 2 that for strongly convex
losses the rate can be improved in a nearly-dimension in-
dependent fashion to O(N 1) for sparse high-dimensional
linear models. As in the generic Lipschitz loss setting, we
show that making the assumption of ¢; /¢,-boundedness is
sufficient to get statistically optimal distributed algorithms
with sublinear communication, thus providing a way around
the lower bounds for fast rates in Section 2.4. The key as-
sumption for the results in this section is that the population
risk satisfies a form of restricted strong convexity.

Assumption 1. There is a constant v, such that Vw € W,
Lp(w) - Lp(w*) = (VLp(w*),w - w*) > Zw - w* .

In a moment we will show how to relate this property to the
standard restricted eigenvalue property in high-dimensional
statistics (Negahban et al., 2012) and apply it to sparse
regression.

Our main algorithm for strongly convex losses is Algo-
rithm 3, which is stated in Appendix C due to space con-
straints. The algorithm does not introduce any new tricks
for distributed learning over Algorithm 2; rather, it invokes
Algorithm 2 repeatedly in an inner loop, relying on these
invocations to take care of communication. This reduction
is based on techniques developed in (Juditsky & Nesterov,
2014), whereby restricted strong convexity is used to estab-
lish that error decreases geometrically as a function of the
number of invocations to the sub-algorithm. We refer the
reader to Appendix C for additional details.

Theorem 5. Suppose Assumption 1 holds, that subgradients
belong to X, for ¢ > 2, and that W c W,;. When the
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parameter ¢ > 0 is a sufficiently large absolute constant,
Algorithm 3 guarantees that

E[Lp(@r)] - Lp(w*) < O(%}Jffi)-

The total numbers of bits communicated is

2 2\ 2(q-1)
)

a7 q

plus O(mlog(B1R,N)). Treating scale parameters
as constants, the total communication simplifies to
O(qu’Qqu’l log d).

Application: Sparse Regression. As an application of
Algorithm 3, we consider the sparse regression setting (5),
where Lp(w) = Eq , ((w, ) - y)*. We assume ||z, < R,
and |y| < 1. We let w* = argmin,,y, Lp(w), so [w*|; <
B;. We assume w* is k-sparse with support set S c [d].

We invoke Algorithm 3 constraint set W =
{weR?| |w|, < |w*|,} and let & = E[zz"]. Our
bound depends on the restricted eigenvalue parameter:

. 2 2
Y= lnfuewfw*\{o}HEl/QV”Q/HVHT
Proposition 4. Algorithm 3, with constraint set ¥V and
appropriate choice of parameters, guarantees:

= x k
Bl Lo (7)) - Lo(w') < O(C, BT RS- ).
Suppressing problem-dependent constants, total communi-
cation is of order O((N?972m?¢ ! logd)/k*7*).

3.4. Extension: Matrix Learning and Beyond

The basic idea behind sparsified mirror descent—that
by assuming /,-boundedness one can get away with us-
ing a Holder-smooth regularizer that behaves well under
sparsification—is not limited to the ¢4 /¢, setting. To extend
the algorithm to more general geometry, all that is required
is the following:

* The constraint set VV can be written as the convex hull
of a set of atoms A that has sublinear bit complexity.

* The data should be bounded in some norm ||-| such that
the dual ||-|, admits a regularizer R that is strongly
convex and Holder-smooth with respect to |-,

* ||, is preserved under sparsification. We remark in
passing that this property and the previous one are
closely related to the notions of type and cotype in
Banach spaces (Pisier, 2011).

Here we deliver on this potential and sketch how to ex-
tend the results so far to matrix learning problems where
W ¢ R is a convex set of matrices. As in Sec-
tion 3.1 we work with a generic Lipschitz loss Lp(W) =

E. {(W, z). Letting [W|g = tr((WWT)%) denote the
Schatten p-norm, we make the following spectral ana-
logue of the ¢1/¢,-boundedness assumption: W ¢ W, :=
{W eR™||W|g, <Bi} and subgradients 9¢(-,z) be-
long to X, = {X e R4 | I1X]g, < Rq}, where ¢ > 2.
Recall that S; and S, are the nuclear norm and spectral

norm, respectively. The S;/S., setup has many applications
in learning (Hazan et al., 2012).

We make the following key changes to Algorithm 2:
¢ Use the Schatten regularizer R(W) = %HWH?%

* Use the following spectral version of the Maurey opera-
tor Q°(W): Let W have singular value decomposition
W = Z;-izl oju;v; with o; > 0 and define P € Ay via
P, < ;.8 Sample i1, ...,1s 1.i.d. from P and return

QW) ="Terye g, o

* Encode and transmit Q°(W) as the sequence
(Wiy,Viy )+ -5 (Wi, vi, ), plus the scalar | W] g, . This
takes O(sd) bits.

Proposition 5. Let ¢ > 2 be fixed, and suppose that sub-
gradients belong to Xs, and that W ¢ Wg,. If we run
the variant of Algorithm 2 described above with learning
rate 1) = %2, / ﬁ and initial point W = 0, then whenever
5=0Q(m>@ D) and sy = Q(N?), the algorithm guarantees

E[Lp(W)] - infwew Lp(W) < O(\/ %)

where C; = ¢ — 1. The total number of bits communicated
globally is at most O(m??1d + N2d).

In the matrix setting, the number of bits required to naively
send weights TV e R%? or subgradients 9¢(WV, z) € R%*4
is O(d?). The communication required by our algorithm
scales only as O(d), so it is indeed sublinear. The proof of
Proposition 5 is sketched in Appendix C.

4. Discussion

We hope our work will lead to further development of al-
gorithms with sublinear communication. A few immediate
questions:

* Can we get matching upper and lower bounds for com-
munication in terms of m, IV, log d, and ¢?

e Currently all of our algorithms work serially. Can we
extend the techniques to give parallel speedup?

* Returning to the general setting (1), what abstract prop-
erties of the hypothesis class ‘H are required to guar-
antee that learning with sublinear-communication is
possible?

8We may assume o; > 0 without loss of generality.
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