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Abstract

We consider the problems of distribution esti-
mation, and heavy hitter (frequency) estimation
under privacy, and communication constraints.
While the constraints have been studied separately,
optimal schemes for one are sub-optimal for the
other. We propose a sample-optimal ε-locally dif-
ferentially private (LDP) scheme for distribution
estimation, where each user communicates one
bit, and requires no public randomness. We also
show that Hadamard Response, a recently pro-
posed scheme for ε-LDP distribution estimation
is also utility-optimal for heavy hitters estimation.
Our final result shows that unlike distribution es-
timation, without public randomness, any utility-
optimal heavy hitter estimation algorithm must
require Ω(log n) bits of communication per user.

1. Introduction
Inferring efficiently from available data forms the core of
modern data science. In many applications, being able to
infer information from the available data is perhaps the
most critical step. However, in many cases, these data
samples contain sensitive information about the various
users/players, who would like to protect their information
from being leaked. For example, medical data may contain
sensitive information about individuals’ disease and health
record, which can be inferred without proper design of the
collection scheme, a key issue highly publicized following
the publication of (Sweeney, 2002; Homer et al., 2008).

Private data release and computation has been studied
in various domains, such as statistics, machine learning,
database theory, algorithm design, and cryptography (See
e.g., (Warner, 1965; Dalenius, 1977; Dinur & Nissim, 2003;
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Wasserman & Zhou, 2010; Wainwright et al., 2012; Chaud-
huri et al., 2011)). Differential Privacy (DP) (Dwork et al.,
2006) has emerged as one of the most popular notions of
privacy (see (Dwork et al., 2006; Wasserman & Zhou, 2010;
Blum et al., 2013; McSherry & Talwar, 2007; Kairouz et al.,
2017), references therein, and the recent book (Dwork &
Roth, 2014)). DP has been adopted by companies including
Google, Apple and Microsoft (Differential Privacy Team,
Apple, 2017; Erlingsson et al., 2014; Ding et al., 2017).

A popular privacy definition is local differential privacy
(LDP), which was perhaps first proposed in (Warner, 1965),
and more recently in (Beimel et al., 2008; Kasiviswanathan
et al., 2011), where users do not trust the data collector,
and privatize their data before releasing. LDP is a strin-
gent privacy constraint that requires a noise to be added at
each sample, and thus provides privacy to all users, even if
the data collector is compromised. Often, LDP guarantees
come at the cost of increased data requirement for various
canonical inference tasks.

Communication, along with privacy has become a valuable
resource in many applications. For example, in mobile de-
vices, and small sensors with a limited power/limited uplink
capacity, the communication budget can overshadow the lo-
cal computations performed at each of them. This has led to
a growing interest in understanding various inference tasks
under limited communication, where the users do not have
enough communication to even transmit their data (Braver-
man et al., 2016; Dagan & Shamir, 2018), and recent works
have established optimal bounds, and algorithms for funda-
mental problems such as distribution estimation (Diakoniko-
las et al., 2017; Han et al., 2018; Acharya et al., 2018a;b).
In particular, communication constraints have been proven
to increase the data requirements for distribution estimation
and hypothesis testing.

1.1. Notations and Set Up

We consider the following distributed setting. The under-
lying domain of interest is a known discrete set X of size
k. Without loss of generality, let X = [k] := {1, . . . , k}.
There are n users, where user i observes Xi ∈ [k], and
then sends a message Yi ∈ Y , the output domain, to the
central server (data collector, referee)R, who upon observ-
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ing the messages Y n := Y1, . . . , Yn wants to solve some
pre-specified inference task. At user i, the process of gen-
erating message Yi from input Xi can be characterized via
a channel (a randomized mapping) Wi : [k] → Y , where
Wi(x, y) is the probability that Yi = y given that Xi = x.

We now instantiate LDP, and communication constraints as
special cases of this model.

1. Local Differential Privacy. A scheme is ε-Locally Dif-
ferentially Private (LDP), if ∀x, x′ ∈ X , and ∀y ∈ Y ,

Wi(x, y)
Wi(x′, y) ≤ eε, ∀i = 1, . . . , n. (1)

2. Communication Constraints. Given a communication
budget `. The scheme is `-bit communication limited if
Y = {0, 1}`, and therefore, Wi : X → {0, 1}`, namely the
output messages are at most ` bits.

We consider two inference tasks thatR wants to solve.

1. Discrete Distribution Estimation. p is an unknown dis-
tribution over the input domain [k], namely p ∈ ∆k. Each
Xi is an independent draw from p. R outputs a distribution
from a mapping p̂ : Yn → ∆k to minimize the expected
minimax `1 risk, namely, we want to design the Wi’s and p̂
to minimize the following optimization problem

r(`1, ∆k) := min
p̂

min
W1,...,Wn

max
p∈∆k

E [‖p− p̂‖1] . (2)

When W1, . . . , Wn satisfy (1), we denote r(`1, ∆k) by
rDP(`1, ∆k, ε), and when W1, . . . , Wn are communication
limited by at most ` bits, it is denoted by rCL(`1, ∆k, `)

2. Frequency/Heavy Hitter Estimation. Unlike distribu-
tion estimation, in this case there is no distributional as-
sumption on the Xi’s (i.e., Xn := X1, . . . , Xn can be any
element in [k]n), and the goal is to estimate the empirical
distribution of the symbols. In particular, for x ∈ [k], let Nx

be the number of appearances of x in Xn. The objective is
to estimate the Nx/n’s from the messages under LDP con-
straints. This problem has been studied under the `∞ norm
objective, namely the goal is to design W n := W1, . . . , Wn,
and p̂ to minimize

rDP(`∞, k, ε) := min
p̂

min
Wn

max
Xn

E
[
max

x

∣∣∣∣p̂(x)− Nx

n

∣∣∣∣], (3)

where the expectation is over the randomness over messages
induced by the channels, and the estimator p̂.

We will consider simultaneous message passing (SMP) com-
munication protocols, where each user sends their message
at the same time. And within these, we study both protocols
that have access to public randomness, versus those that do
not.

1. Private-coin Schemes: In private-coin schemes, the
players choose their channels Wi’s independently, without
coordination between each other. Formally, U1, . . . , Un

are n mutually independent random variables distributed
across users 1, . . . , n respectively. User i chooses Wi as a
function of Ui. R knows the distribution of Ui, but not the
instantiation of Ui used to choose Wi. We now show that
for ε-LDP, and/or communication-limited schemes, private-
coin schemes can be assumed to be deterministic, namely
the channels W1, . . . , Wn are all fixed and known toR.
Lemma 1. Private-coin schemes are equivalent to deter-
ministic schemes under LDP, and communication-limited
constraints.

Proof. For any user i, the expected channel is given by
E[Wi], where the expectation is over the randomness in Ui.
Now the channels satisfying (1), and those with output at
most ` bits both form a convex set, and therefore E[Wi]
also satisfies the condition, and we can use a deterministic
scheme with the channel given by E[Wi].

2. Public-coin Schemes: In public-coin protocols, the
users and referee all have access to a common random vari-
able U . The users select their channels as a function of U ,
namely Wi = fi(U). R solves the inference task using
messages Y n, and U .

3. Symmetric Schemes: These are schemes, where each
uses the same privatization scheme. In particular, for private-
coin symmetric schemes, Wi’s are the same for all users,
denoted by W .

We note that private-coin schemes are easier to implement
than public-coin schemes, since they do not require addi-
tional communication from the server specifying U . Even
within private-coin schemes, symmetric schemes are easier
to implement, since all users perform the same operation.

While we consider SMP, there are more general protocols
called interactive/adaptive schemes which we do not con-
sider. These operate in rounds, and in each round some
users send their messages. The other players can choose
their channels upon observing these messages (Duchi et al.,
2013b; Qin et al., 2016; Duchi et al., 2017). The role
of interaction in the local model has been studied in (Ka-
siviswanathan et al., 2011; Smith et al., 2017; Duchi et al.,
2017) and a separation has been proved between the power
of interactive and non-interactive schemes. However, inter-
active schemes are particularly prone to delays, and require
more sophisticated implementation (Smith et al., 2017).

Our goal is to analyze the trade-offs between utility and
communication and performance of various privatization
schemes for the two problems of LDP distribution estima-
tion, and heavy hitter estimation. Throughout the paper, we
consider the high privacy regime, where ε = O(1).
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1.2. Prior Work

Distribution estimation is a classical task, and in the central-
ized setting, where R observes the true samples Xn (De-
vroye & Lugosi, 2001),

r(`1, ∆k) = Θ
(√

k

n

)
. (4)

Distribution estimation under ε-LDP has been well studied
in the past few years (Duchi et al., 2013a; Erlingsson et al.,
2014; Wang et al., 2016; Kairouz et al., 2016; Ye & Barg,
2018; Acharya et al., 2019; Bassily, 2019). (Duchi et al.,
2013a; Kairouz et al., 2016; Ye & Barg, 2018; Acharya et al.,
2019) have given private-coin, symmetric SMP schemes
which for ε = O(1) (our regime of interest) achieve

rDP(`1, ∆k, ε) = Θ
(√

k2

nε2

)
. (5)

This `1 risk is optimal over all protocols, even while al-
lowing public-coins, or even interactive schemes (Duchi
et al., 2013b; Ye & Barg, 2018; Acharya et al., 2018b). Note
that compared to the centralized setting, the risk is a factor
of
√

k/ε higher (up to constant factors), which shows the
significant drop in the performance under LDP.

In terms of communication requirements (number of
bits to describe Yi’s) for the sample-optimal private-coin
schemes, (Duchi et al., 2013a; Ye & Barg, 2018) re-
quire Ω(k) bits per user, and Hadamard Response (HR)
of (Acharya et al., 2019) requires log k + 2 bits. All these
schemes are private-coin. (Bassily & Smith, 2015) showed
the following remarkable result, which can help understand
some of our contributions better. We rephrase their results,
and the precise statement can be found their paper.

Lemma 2 ((Bassily & Smith, 2015)). Any private-coin
scheme with arbitrary communication requirements can
be converted into a public-coin scheme that requires only
one bit of communication from each user with almost no
loss in performance.

Therefore, with public randomness, we can obtain schemes
that require one bit of communication from each user, and
are sample-optimal. In this paper, we study the problem of
whether public randomness is necessary to reduce communi-
cation. The answer turns out to be different for distribution
estimation and heavy hitter detection. While we can reduce
the communication to one bit without public randomness for
distribution estimation, this is not possible for heavy hitter
detection.

Distribution estimation has also been studied recently under
very low communication budget (Diakonikolas et al., 2017;
Han et al., 2018; Acharya et al., 2018a) , where each user

sends only ` < log k bits to R. In particular, now it is
established that by only using private coin protocols,

rCL(`1, ∆k, `) = Θ
(√

k2

n min{2`, k}

)
. (6)

Further, these results are tight even with public coins. Note
that for ` = 1, when each user can send only one bit,

rCL(`1, ∆k, 1) = Θ
(√

k2

n

)
. (7)

(5), and (7) show the parallel between LDP, and communi-
cation constraints for `1 risk of distribution estimation.

The problem of frequency/heavy hitter detection under ε-
LDP has also received great attention (Hsu et al., 2012;
Erlingsson et al., 2014; Bassily & Smith, 2015; Qin et al.,
2016; Bassily et al., 2017; Ding et al., 2017; Bun et al.,
2018). The state of the art techniques (Bassily & Smith,
2015; Bassily et al., 2017; Bun et al., 2018) require public
randomness to guarantee privacy and reduce communication.
The optimal `∞ risk was established in (Bassily & Smith,
2015) as

rDP(`∞, k, ε) := Θ
(

1
ε

√
log k

n

)
. (8)

The focus of the recent works has been to study the compu-
tation, and communication requirements for this problem.
They all propose algorithms that require O(1) communi-
cation per user by using public randomness as mentioned
above. Perhaps more intrestingly, they are also able to obtain
algorithms whose running time atR is linear in n, and loga-
rithmic in k. However, all these schemes require public-coin
protocols, which implies communication from the server
to the users. We also note that for example in (Bassily
et al., 2017) the randomness can actually be simulated at
each player who can then transmit it, causing an increased
communication cost.

1.3. Our Results and Techniques

Recall that for distribution estimation under LDP constraints,
all known private-coin schemes require Ω(log k) communi-
cation bits per message, and are symmetric.

Our paper was motivated by the following question:

Does there exist a private-coin ε-LDP distribution estima-
tion scheme with only one bit of communication per user?

Now consider the special case of ε = 1. If such a scheme
exists, then from (5), and (7), it would be optimal simulta-
neously under both LDP, and communication constraints.
Further recall that private-coin protocols are easier to im-
plement, and do not require additional communication from
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Randomness
Communication

O(1) bits O(log k) bits

Symmetric, Private Randomness Ω(1) (Theorem 6) Θ
(√

k2

nε2

)
(Acharya et al., 2019)

Private Randomness Θ(
√

k2

nε2 ) (Corollary 1) Θ
(√

k2

nε2

)
Public Randomness Θ

(√
k2

nε2

)
Θ
(√

k2

nε2

)
Table 1. `1 risk for distribution learning under different communication budget and available randomness.

Randomness
Communication

O(1) bits O(log k) bits

Symmetric, Private Randomness Ω(1) Θ
(√

log k
nε2

)
(Theorem 7)

Private Randomness ω(1) (Theorem 8) Θ
(√

log k
nε2

)
Public Randomness Θ

(√
log k
nε2

)
(Bassily & Smith, 2015) Θ

(√
log k
nε2

)
Table 2. `∞ risk for frequency estimation under different communication budget and available randomness.

R to specify the public randomness. Our first result shows
that such a scheme exists. (See Theorem 5 for a precise
statement).

Theorem 1. There is a private-coin ε-LDP distribution
estimation scheme, with optimal `1 risk and requiring one
bit of communication per user.

Our result builds on the Hadamard Response (HR) mech-
anism, and instead of sending information about rows of
the matrix as done in (Acharya et al., 2019), we send only
binary information about the columns. Additionaly, by ul-
tilizing the distributional assumption under the samples, we
assign different users to send information about different
columns. The scheme, and analysis is given in Section 2.

The scheme achieving Theorem 1 is asymmetric, and we
next show any symmetric private scheme with ` < log k
bits of communication per user cannot achieve a non-trivial
`1 risk (See Theorem 6 for a precise statement).

Theorem 2. Let ` < log k. For any private-coin symmetric
scheme that sends ` bits per user, there exists a distribution
p ∈ ∆k such that E[‖p̂− p‖1] ≥ 1.

This result implies among all symmetric private-coin
schemes, HR has optimal communication (up to two bits)
of log k + 2 bits.

We then consider the heavy hitter estimation, for which
all known optimal algorithms use public randomness. We
show that HR scheme, which is a symmetric scheme with no
public randomness and only log k+2 bits of communication
per user, has the optimal `∞ risk for heavy hitter estimation.
(See Theorem 7 for a precise statement)

Theorem 3. HR has optimal `∞ risk for heavy hitter esti-
mation.

However, we remark that the computation requirements of
HR is O(k log k + n), which can be much worse than the
guarantees in (Bassily et al., 2017) for k � n.

Finally, we consider the communication requirements for
heavy hitter estimation. Even though the problems of distri-
bution and heavy hitter estimation are similar, unlike distri-
bution estimation for which there is an optimal private-coin
ε-LDP protocol with one bit communication, we prove that
any optimal private-coin scheme (even asymmetric) must
send Ω(log n) bits to solve the frequency estimation prob-
lem (See Theorem 8 for a precise statement).

Theorem 4. Suppose ` = o(log n). There is no private-coin
heavy hitter estimation scheme with optimal performance
that communicates ` bits.

For a complete summary of results, see Table 1 and 2. In
each table, the problem becomes easier as we go down in
rows and go right in columns.

1.4. Organization

We first give our private-coin distribution estimation scheme
with one bit communication in Section 2. In Section 3, we
show that any symmetric private-coin scheme must transmit
log k bits per user. In Section 4, we prove the optimality
of Hadamard Response and finally we show that without
public randomness, heavy hitter estimation is impossible
with communication complexity o(log n).
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2. Private-coin LDP Distribution Estimation
with One Bit Communication

We propose a deterministic scheme, namely the Wi’s are
fixed apriori, for LDP distribution estimation that has the
optimal `1 risk, and where the output of each Wi is binary,
i.e., one bit of communication per user. The approach is
the following. Each user is assigned to a deterministic set
B ⊂ [k]. Upon observing a sample X ∼ p, they output
Y ∈ {0, 1}, according to the following distribution

Pr (Y = 1) =
{

eε

eε+1 , if X ∈ B,
1

eε+1 , otherwise.
(9)

In other words, each user sends the indicator of whether
their input belongs to a particular subset of the domain. The
choice of the subsets is inspired by the Hadamard Response
(HR) scheme described in (Acharya et al., 2019). A brief
introduction of HR can be found in Section 4 where we
show that HR is utility-optimal for heavy hitter estimation.

Recall Sylvester’s construction of Hadamard matrices:

Definition 1. Let H1
def= [1], and for m = 2j , for j ≥ 1,

Hm
def=
[
Hm/2 Hm/2
Hm/2 −Hm/2

]
.

Let K = 2dlog2(k+1)e be the smallest power of 2 larger
than k. Let HK be the K × K Hadamard matrix. For
simplicity of working with HK , we assume that the under-
lying distribution is over [K] by appending p with zeros,
giving pK = (p(1), . . . , p(k), 0, . . . , 0). For y = 1, . . . , K,
let Bi be the set of all x ∈ [K], such that HK(x, y) = 1,
namely the row indices that have ‘1’ in the ith column. We
associate the subsets for each user as follows. We deter-
ministically divide the n users numbered 1, . . . , n into K
subsets S1, S2, . . . , SK , such that

Sy := {j ∈ [n]|j ≡ y (mod K)}. (10)

For each user j, let yj ∈ [K] be the such that j ∈ Syj . The
jth user then sends its binary output Yi according to the
distribution in (9), with B = Byj , and X = Xj .

For any y = 1, . . . , K, the users in Sy have the same output
distribution. Let sy be the probability Yj = 1 for j ∈ Sy.
Let p(By) = Pr (X ∈ By|X ∼ p). Note that

sy = p(By) · eε

eε + 1 + (1− p(By)) 1
eε + 1

= 1
eε + 1 + p(By) · eε − 1

eε + 1 . (11)

Let pB := (p(B1), p(B2), . . . , p(BK)). Then we obtain

s := (s1, . . . , sK) = 1
eε + 11K + eε − 1

eε + 1pB . (12)

This relates p(By) with sy, and now we relate p(x) with
p(By)’s. Recall that B1 = [K], the entire set. Since By’s
are defined by the rows of Hadamard matrix, we obtain the
following (Acharya et al., 2019),

pB = HK · pK + 1K

2 . (13)

We can now relate the results and describe our estimate.

1. Use an empirical estimate ŝ for s as

ŝy := 1
|Sy|

∑
j∈Sy

Yj . (14)

2. Motivated by (11) estimate pB as

p̂B = eε + 1
eε − 1

(
ŝ− 1K

eε + 1

)
. (15)

3. Estimate for the original distribution using (13) as

p̂K := H−1
K · (2p̂B − 1K) = 1

K
HK · (2p̂B − 1K).

(16)

4. Output p̂, the projection of the first k coordinates of
the K dimensional p̂K on the simplex4k.

Theorem 5. Let p̂ be the output of the scheme above when
the underlying distribution is p. Then,

E
[
‖p̂− p‖22

]
≤ min

{
2k(eε + 1)2

n(eε − 1)2 , 8

√
(eε + 1)2 log k

n(eε − 1)2

}
.

Proof. First note that ŝ is an unbiased estimator of
s, (13), (11) and (14), are all linear. Therefore, p̂K is an
unbiased estimator of pK . Hence,

E
[
‖p̂K(1 : k)− pK(1 : k)‖22

]
=

k∑
x=1

Var
(

p̂K(x)
)

.

From (16), p̂K(x) is a weighted sum of {(2p̂B(y)− 1)}K
y=1

with coefficients either + 1
K or − 1

K . Hence ∀x ∈ [K],

Var
(

p̂K(x)
)
≤ 4

K2

K∑
y=1

Var
(

p̂B(y)
)

= 4
K2

(
eε + 1
eε − 1

)2 K∑
y=1

Var (ŝy) .

By (14), ŝy is an average of |Sy| independent Bernoulli
random variables. From (10), we also have that |Sy| ≥
bn

k c ≥
n

2K , whenever n > K. Hence ∀y ∈ [K],

Var (ŝy) = 1
|Sy|2

∑
j∈Sy

Var (Yj) ≤ K

2n
.
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Combining these, we get: ∀x ∈ [K],

Var
(

p̂K(x)
)

= 4
K2

(
eε + 1
eε − 1

)2 K∑
y=1

Var (ŝy) ≤ 2(eε + 1)2

n(eε − 1)2 .

Then the final estimate p̂ is the projection of pK on the first
k coordinates onto the simplex4k. Since4k is convex,

E
[
‖p̂− p‖22

]
≤ E

[
‖p̂K(1 : k)− pK(1 : k)‖22

]
≤

k∑
i=1

(
eε + 1
eε − 1

)2 2
n
≤ 2k(eε + 1)2

n(eε − 1)2 .

Moreover, we have the following lemma:

Lemma 3. (Corollary 2.3 (Bassily, 2019)) Let L ⊂ Rd

be a symmetric convex body of k vertices {aj}k
j=1, and

let y ∈ L and ȳ = y + z for some z ∈ Rd. Let ŷ =
arg minw∈L‖w− ȳ‖22. Then, we must have:

‖y− ŷ‖22 ≤ 4 max
j∈[k]
{〈z, aj〉} (17)

Notice that according to (15), (14) and (11), {p̂B(y) −
pB(y)}K

y=1 are empirical averages of independent zero
mean Bernoulli random variables scaled by constant eε+1

eε−1
and they are mutually independent. Hence, they are sub-

Gaussian with variance proxy K
2n

(
eε+1
eε−1

)2
.

Additionally, by (11) and (16), we know each of {p̂K(x)−
pK(x)} is a linear combination of {p̂B(y) − pB(y)}K

y=1

with coefficient either + 2
K or − 2

K . Hence {p̂K(x) −
pK(x)}’s are also sub-Gaussian with variance proxy
2
n ( eε+1

eε−1 )2 (see Corollary 1.7 (Rigollet, 2015)).

Hence using Lemma 3, we have:

E
[
‖p̂− p‖22

]
≤ 4E

[
kmax

x=1
|p̂K(x)− pK(x)|

]
≤ 8

√
(eε + 1)2 log k

n(eε − 1)2 .

The last step is due to a well-known bound on expectation of
maximum of sub-Gaussian random variables (see Theorem
1.16 (Rigollet, 2015)).

Corollary 1. Let p̂ be the distribution estimated by the
scheme described above. Then for any input p,

E [‖p̂− p‖1] ≤

√
2k2(eε + 1)2

n(eε − 1)2 .

Proof. By Cauchy-Schwarz inequality, E [‖p̂− p‖1] ≤√
kE [‖p̂− p‖22]. Plugging in Theorem 5 gives the

bound.

Notice here that eε − 1 = O(ε) when ε = O(1). Hence we

have E [‖p̂− p‖1] = O(
√

k2

nε2 ), which is order optimal.

3. Lower Bound on Communication
Complexity of Symmetric Schemes

We show that any private-coin symmetric distribution esti-
mation scheme must communicate at least log k bits.
Theorem 6. For any private-coin scheme without shared
randomness that transmits ` < log k bits per user, there
exists a distribution p0 ∈ 4k such that for Xn ∼ p0,

E [‖p̂(Y n)− p0‖1] ≥ 1, (18)

where Y n are the messages sent toR after privatizing Xn.

Proof. Assume that Y = [2`] is the output alphabet. By
Lemma 1, and symmetry, let W be an `-bit communica-
tion channel used by each user. We can describe W as a
transition probability matrix (TPM) W ∈ Rk×2` :

W (x, y) := Pr (Y = y|X = x).

When the input distribution is p, the distribution of the out-
put message is q = W T p. Notice that W T is an 2` × k
matrix, which is underdetermined since 2` < k. Therefore,
there exists a non-zero vector e such that W T e = 0. Fur-
ther, since W is a TPM, each row of W sums to one, and
therefore W T e = 0 implies that

∑k
x=1 e(x) = 0.

By scaling appropriately, we can ensure that ‖e‖1 = 2,
which ensures that the positive entries sum to one, and neg-
ative entries sum to −1. Now consider the distributions
specified by these entries, namely let p1 = max{e, 0} and
p2 = max{−e, 0}. Then these two distributions have dis-
joint support, however,

W T p1 = q = W T p2,

showing that their output message distributions are identical
and they cannot be distinguished. Since ‖p1 − p2‖1 = 2,
when we get Y n ∼ qn, for at least one of these distributions,
the expected `1 error is 1, proving the result.

Note that Theorem 6 holds for all symmetric schemes, not
just ε-LDP schemes, which means the result also extends to
non-private setting, proving the importance of asymmetry
in communication efficient distribution estimation. Further,
with just two more bits, using log k + 2 bits, HR is private-
coin, symmetric, and does optimal distribution estimation.

4. Hadamard Response is Optimal for Heavy
Hitter Estimation

We first describe the scheme briefly, and prove the optimality.
We refer the reader to (Acharya et al., 2019) for details.
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Recall that K is the smallest power of 2 larger than k. Let
HK be the K ×K Hadamard matrix. The output alphabet
of the messages is Y := [K] For each input symbol x ∈
{1, . . . , k}, let Cx be the symbols y ∈ [K] such that there
is a 1 in the yth column of the (x + 1)th row of HK . The
reason we start with the second row is because the first row
of HK is all one’s. Since HK is Hadamard,

1. ∀x ∈ [k], |Cx| = K
2 , and

2. ∀x 6= x′ ∈ [k], |Cx ∩ Cx′ | = K
4 .

HR is the following symmetric privatization scheme for all
user with output y ∈ [K], x ∈ [k],

W (x, y) =
{

2eε

K(1+eε) if y ∈ Cx,
2

K(1+eε) otherwise.
(19)

Consider an arbitrary input Xn, with Nx being the number
of appearances of x’s in Xn. Let NCx :=

∑
i∈[n] 1{Yi ∈

Cx} be the number of output symbols that are in Cx. Then,
we have

E [NCx ] =
∑
i∈[n]

E [1{Yi ∈ Cx}] =
∑
i∈[n]

Pr (Yi ∈ Cx)

=
∑
i∈[n]

(
1{Xi = x} eε

1 + eε
+ 1{Xi 6= x}1

2

)

= eε − 1
2(eε + 1)Nx + n

2 . (20)

Hence,

p̂(x) = 2(eε + 1)
n(eε − 1)

(
NCx −

n

2

)
. (21)

is an unbiased estimator for Nx

n . The performance of the
estimator is stated in Theorem 7.

Theorem 7. For any dataset Xn, the encoding scheme
in (19) combined with the estimation scheme in (21) satisfies
that:

E
[
max
x∈[k]

∣∣∣∣p̂(x)− Nx

n

∣∣∣∣] ≤ 4(eε + 1)
eε − 1

√
log k

n
. (22)

Proof. According to (20), we know the estimator is unbi-
ased. Since each NCx is a sum of n independent Bernoulli
random variables, p̂(x)’s are sub-Gaussian with varaince
proxy 4(eε+1)2

n(eε−1)2 . Hence, by Theorem 1.16 from (Rigollet,
2015), we get the result in (22).

In (Bassily & Smith, 2015), a matching lower bound of

Ω( 1
ε

√
log k

n ) when ε = O(1) is proved for LDP heavy hit-
ter estimation algorithms. The above theorem shows that

the proposed algorithm has optimal performance. We re-
mark that this scheme has communication complexity of
log k bits per user, and the total computation complexity
is O(k log k + n). The dependence on k is usually unde-
sirable in this problem, and therefore more sophisticated
schemes are designed, which require higher communication
complexity or shared randomness.

5. Constant Bits of Communication is not
Optimal for Heavy Hitter Estimation

The previous section showed that with ` = log k + 2 bits of
communication per user we can solve heavy hitters problem
optimally. In this section, we assume that ` < log k − 2,
and prove that there is no private-coin heavy hitter detection
scheme that communicates o(log n) bits per user and is
optimal.
Theorem 8. Let ` < log k−1. For all private-coin response
schemes ({Wi}n

i=1, p̂) with only private randomness and `
bits of communication, there exists a dataset X1, . . . , Xn

with n > 12(2` + 1)2, and x0 ∈ [k] such that:

E
[
‖p̂(Y n)(x0)− Nx(Xn)

n
‖∞
]
≥ 1

2`+2 + 4 ,

where Yi = Wi(Xi) for i ∈ [n].

Proof. We will use the probabilistic method to show the
existence of such a dataset. To do so, we design a dataset
generating process, and show that the expected `∞ loss over
the process and randomness induced by the channels is large,
which is smaller than the expected `∞ loss for the worst
dataset.

Similar to Section 3, recall that each Wi can be represented
by a k × 2` transition probability matrix (TPM) where for
user i, Wi(x, y) = Pr (Yi = y|Xi = x). Consider distribu-
tions p1, . . . , pn over [k], and suppose the data at user i, Xi

is generated from pi. Then qi, the output distribution of Yi

is given by W T
i pi. We will restrict to distributions pi’s to

have support over the first 2` + 1 symbols. Namely, for all
2` + 1 < x ≤ k, pi(x) = 0. Similar to the proof of The-
orem 6, since the output dimension is 2`, for each i, there
exists a non-zero vector ei ∈ Rk, such that ei(x) = 0 for
2` + 1 < x, and W T

i ei = 0. Further, recall that since Wi

is a TPM,
∑k

x=1 ei(x) = 0. Therefore, upon normalizing,
assume ‖ei‖1 = 2. Let

pi = max{ei, 0}, p′i = max{−ei, 0}.

Then pi and p′i are valid distributions over [k] and effective
support only {1, . . . , 2` +1}, and ‖pi−p′i‖1 = 2. Similarly
construct pi, p′i for each i = 1, . . . , n. Then,

2n =
k∑

x=1

n∑
i=1
|pi(x)− p′i(x)| =

2`+1∑
x=1

n∑
i=1
|pi(x)− p′i(x)|,
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where we use that pi, and p′i are supported onlyover the first
2` + 1 symbols. Hence there exists x0 ∈ [2` + 1], such that

n∑
i=1
|pi(x0)− p′i(x0)| ≥ 2n

2` + 1 .

Without loss of generality, assume ∀i, pi(x0) ≤ p′i(x0).
Then the above equation becomes

n∑
i=1

p′i(x0)−
n∑

i=1
pi(x0) ≥ 2n

2` + 1 . (23)

Now consider two datasets generated as follows. Xn satis-
fies ∀i ∈ [n], Xi ∼ pi and X ′n satisfies ∀i ∈ [n], X ′i ∼ pi.
Moreover since

W T
i pi = qi = W T

i p′i,

the output distribution Y n is identical for X ′n, and Xn.

Let Nx0(Xn) and Nx0(X ′n) be the number of appearances
of x0 in Xn and Xn. Then by (23),

E [Nx0(Xn)]− E [Nx0(X ′n)] >
2n

2` + 1 .

Moreover, since Nx0 are sum of independent binary random
variables, Var (Nx0) ≤ n/4. Now suppose ` < 1

4 log n −
1, then n/(2` + 1) > n3/4. Therefore, by Chebychev’s
inequality, for large n,

Pr
(

Nx0(Xn)−Nx0(X ′n) >
n

2` + 1

)
> 0.9.

Since the two output distributions are indistinguishable, we
have the error is at least n

2`+1+2 for one of the cases if this
event happens. Hence the expectated loss would be at least
0.9× n

2`+1+2 > n
2`+2+4 .

Hence we can see when ` = O(1). We cannot learn the
frequency reliably up to accuracy better than a constant.
Moreover, when ` = o(log n + log(1/ε)), we get

1
2`+1 + 1 >

√
log k

nε2 ,

implying that optimal frequency estimation algorithms must
require Ω(log n + log(1/ε)) bits of communication when
there is no public randomness. Similar to Section 3, the
result also extends to non-private settings.

6. Experiments
We conduct empirical evaluations for the one bit distri-
bution learning algorithm without public randomness pro-
posed in Section 2. We compare the proposed algorithm

(onebit) with other algorithms including Randomized Re-
sponse (RR) (Warner, 1965), RAPPOR (Erlingsson et al.,
2014), Hadamard Response (HR) (Acharya et al., 2019)
and subset selection (subset) (Ye & Barg, 2018). To obtain
samples, we generate synthetic data from various classes
of distributions including uniform distribution, geometric
distributions with parameter 0.8 and 0.98, Zipf distributions
with parameter 1.0 and 0.5 and Two-step distribution. We
conduct the experiments for k = 1000 and ε = 1. The
results are shown in Figure 1. Each point is the average of
30 independent experiments.

From the figures, we can see the performance of our pro-
posed scheme is comparable to the best among all schemes
for various kinds of distributions. And the communication
complexity is only one bit while the least among others is
Ω(log k) bits (Acharya et al., 2019).

(a) Uniform (b) Geo(0.8)

(c) Geo(0.98) (d) Zipf(0.5)

(e) Zipf(1.0) (f) Two Steps

Figure 1. `1-error for k = 1000, p from Uniform, Geo(0.8),
Geo(0.98), Zipf(0.5), Zipf(1.0) and Two-step distributions

.
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