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Abstract
Dynamic neural networks are becoming increas-
ingly common, and yet it is hard to implement
them efficiently. On-the-fly operation batching for
such models is sub-optimal and suffers from run
time overheads, while writing manually batched
versions can be hard and error-prone. To ad-
dress this, we extend TensorFlow with pfor, a
parallel-for loop optimized using static loop vec-
torization. With pfor, users can express computa-
tion using nested loops and conditional constructs,
but get performance resembling that of a manu-
ally batched version. Benchmarks demonstrate
speedups of one to two orders of magnitude on
a range of tasks, from Jacobian computation, to
auto-batching Graph Neural Networks.

1. Introduction
Deep learning models are getting increasingly complicated
in structure. New applications, like study of molecular struc-
ture, genetic data, relational databases, program synthesis,
(Chen et al., 2018; Liang et al., 2018; Schlichtkrull et al.,
2018) require dealing with inputs that have rich and dy-
namic structure. Handling such domains requires dynamic
computation graphs, where the model structure is dependent
on each input. This doesn’t work well with frameworks that
require creating a static graph structure a priori (Abadi et al.,
2016; Jia et al., 2014). As a result, define-by-run paradigm
has gained popularity (Tokui et al., 2015; Neubig et al.,
2017a; Paszke et al., 2017), where the programming model
is closer to the host programming language, and constructs
like loops and conditionals can be used freely.

Another interesting trend is that systems for running deep
learning are getting very powerful, with custom accelerator
pods capable of running at petaflops. Leveraging so much
compute can easily make host CPU a bottleneck. Running
dynamic computation in the host language, especially in-
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terpreted languages like python can make this bottleneck
worse.

Given the above two trends, frameworks are increasing turn-
ing to trace compilation (Agrawal et al., 2019; Moldovan
et al., 2018), where the computation gets expressed dynami-
cally, but a combination of static and just-in-time analysis
is used to extract static computation graphs which can be
dispatched to these accelerators. This approach promises
good usability via programming abstractions that are close
to the host programming language, as well as the perfor-
mance advantages of static optimization together with quick
dispatch of large chunks of computation to the accelerators.

However there is a caveat. While trace compilation can
convert loops and conditionals in the host languages to the
corresponding constructs compatible with the accelerators,
the body of these loops are unlikely to get good compute
utilization. This forces the programmers to write manually
batched implementations, which ends up undoing some of
the advantages of define-by-run, and forces them to deal
with complicated padding and masking logic.

Frameworks like DyNet avoid this manual batching by hav-
ing the runtime perform operator batching on the fly (Neu-
big et al., 2017b). However this creates runtime overheads,
undoing some of the advantages of trace compilation.

Given this need to leverage fast accelerators in the con-
text of dynamic computation and trace compilation, we
propose using static analysis on trace compiled graphs to
perform automatic batching. This approach gets rid of run-
time overheads of dynamic batching. Users express their
computation with nested host control flow constructs. Trace
compilation then converts these to nested loop structure in
some intermediate representation, and then static techniques
auto-vectorize these loops.

We use this insight to implement static automatic batch-
ing in TensorFlow. Firstly, we add an SPMD (Single Pro-
gram, Multiple Data) programming abstraction to Tensor-
Flow Python frontend. With SPMD, multiple instances of
a single program operate on different data. We expose it
as parallel-for loop, which we call pfor (see §3.1). Here
the different iterations of the loop can be viewed as differ-
ent instances of the program. Secondly we implement an
algorithm that takes SPMD loop definitions and rewrites
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them in a loop-free manner. This is done by greedily auto-
vectorizing each operation inside the loop body (see §4).

Using this construct of auto-vectorized parallel-for loops,
we implement a range of solutions, from performing auto-
batching on dynamic computation like Graph Neural Net-
works (see §5.2), to computing jacobians (see §3.3) and per-
example gradients (see §3.4). Benchmarks show speedups
of more than an order of magnitude compared to runtime
batching, and an even larger speedup compared to iterative
approaches (see §5).

2. Related Work
DyNet and TensorFlow Fold perform operation batching at
run time. While they show significant improvements over
unbatched execution, the approach has many challenges.
Firstly, there are high overheads for creating per-example
graphs at run time, and to identify and merge similar opera-
tions. Merging may also need memory copies for stacking
the inputs and unstacking the outputs. Additionally, since
control flow lives in python, branching based on values re-
sulting from tensor computations can potentially block the
execution, hurting the potential for batching across control
flow. In contrast, our approach avoids run time graph con-
struction or unnecessary memory copies, and is also able to
batch across nested control flow constructs.

Cavs (Xu et al., 2018) specializes for the case where a stat-
ically defined vertex function is run on each node of a dy-
namically defined graph. Such an assumption allows Cavs
to statically optimize the former, and reduces the overall dy-
namism and hence the run time overheads. They show good
speedups on dynamic models like Tree LSTM. However
their approach is tailored to specific kind of model struc-
tures, and still has some run time overheads. Our approach
is both more general, and avoids run-time dynamic dispatch.

Parallel-for is a well known programming abstraction and is
often implemented by dispatching multiple iterations in par-
allel to a pool of workers (Berke, 1988; Luszczek, 2009). In
fact, TensorFlow’s sequential tf.while_loop defaults
to launching multiple iterations in parallel, making sure any
data dependencies across iterations are respected. As our
benchmarks show, auto-vectorized pfor is able to provide
significant speedups over such parallelism.

Automatic vectorization has been around in the compiler
community for a while (Nuzman et al., 2006; Trifunovic
et al., 2009; Barik et al., 2010; Karrenberg & Hack, 2011).
These approaches perform loop unrolling and tiling, increas-
ing the instruction level parallelism, and then merge scalar
instructions into vector variants. Our approach in contrast
is able to completely get rid of parallel loops and is able
to optimize across deeply nested loops over very large pro-
grams. These results are far beyond those of current low

level auto-vectorization implementations, to the best of our
knowledge.

ISPC (Pharr & Mark, 2012) proposed an SPMD program-
ming model by extending the C language. Their optimiza-
tion process resembles ours, but parallelization happens on
top of a low level IR, and is limited based on the width of
vector instructions. We merge across any number of itera-
tions. Also operating at a higher level tensor representation
allows us to use mathematical properties of the operations,
and leverage loop invariance properties in interesting ways
(see §4). We are able to optimize across opaque kernel
implementations and by generating code at the same level
of abstraction, our generated code is able to call highly
optimized kernels.

Matchbox (Bradbury & Fu) is an ongoing effort to add
SPMD execution to PyTorch. However it does so by rewrit-
ing the Python AST. Given Python’s dynamic typing, this
becomes challenging and needs heuristics, and often de-
layed conversion and run time overheads. In contrast, by
separating out trace compilation from vectorization, our vec-
torization avoids such complexity and overheads, and can
operate on statically typed IR, like TensorFlow’s GraphDef.

3. Implementation
3.1. SPMD Parallel-For Loop

We provide a new Python function, pfor, with the follow-
ing signature:
pfor(loop_body_fn, iters)

It represents a parallel-for loop with iters iterations,
where iteration i calls loop_body_fn(i). The output
is a nested structure of tensors, with the same nesting struc-
ture as the output of loop_body_fn(i), resulting from
stacking the outputs of the different iterations. Note that
in case the shape of an output varies across iterations, it
is stacked into a tf.RaggedTensor. loop_body_fn
is a Python function that takes a scalar integer tensor, rep-
resenting the loop variable, as input, and returns a nested
structure of tensors. iters is a scalar integer tensor repre-
senting the number of pfor iterations to run.

As a toy example pfor(lambda i: i + 1, 2) re-
turns a tensor that evaluates to [1, 2]. Under the cov-
ers, the vectorization machinery described in §4 statically
rewrites the above code to tf.range(2) + 1.

The execution of the pfor loop has SPMD semantics. In
particular, the result of running this loop is the same as run-
ning each instruction in the loop body across all iterations,
in lock step. This semantic is important when there are
side-effecting operations inside the loop body. This is not
common though, and the code is equivalent to sequential
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execution for a large class of useful applications we tried.

We also provide a high level primitives on top of pfor.
vectorized_map(fn, elems)maps the function fn
across all rows of elems. It is similar to tf.map_fn
except that it has SPMD semantics and generally runs much
faster due to vectorization optimization.

Example 1 shows an example of computation over variable
length input, stacked together into inp by padding along
dimension 1. Computation involves running conv2d and
dense layers for each example in this batch. A manually
batched version is also provided, and requires masking of
intermediate outputs. The auto-batched version is much
simpler and matches the speed of manual batching quite
well.

Example 1 Auto-batched vs manually batched code

# inp: Padded input with shape [B, L, D].
# inp_len: length of inp dimension 1. Shape: [B].

def unbatched_model(x, x_len):
x = x[:x_len, :] # Unpads the input
x = tf.reshape(x, [1, -1, 1, D])
x = tf.layers.conv2d(x, D, (3, 1), padding="same")
x = tf.reshape(x, [-1, D])
return tf.layers.dense(x, D)

auto_batched_output = vectorized_map(
unbatched_model, (inp, inp_len))

def batched_model():
indices = tf.reshape(tf.range(L), [1, L])
bool_mask = indices < tf.reshape(inp_len, [B, 1])
mask = tf.cast(bool_mask, tf.float32)
mask = tf.reshape(mask, [B, L, 1])
output = inp * mask
output = tf.reshape(output, [B, L, 1, D])
output = tf.layers.conv2d(output, D, (3, 1),
padding="same")

mask = tf.reshape(mask, [B, L, 1, 1])
output *= mask
output = tf.reshape(output, [B, L, D])
indices = tf.squeeze(tf.where(
tf.reshape(bool_mask, [-1])), axis=1)

output = tf.gather(
tf.reshape(output, [-1, D]), indices)

output = tf.layers.dense(output, D)
indices = tf.reshape(indices, [-1, 1])
output = tf.scatter_nd(indices, output,
[B * L, D])

return tf.reshape(output, [B, L, D])

manually_batched_output = batched_model()

3.2. Graph Auto-Vectorization

A key contribution of this paper is an implementation of
auto-vectorization of the SPMD loop introduced in §3.1.
This vectorization happens on top of high level TensorFlow
IR (aka GraphDef). See §2 for comparison with prior work,
and §4 for how the algorithm works.

The vectorization routine takes a GraphDef representing the

body of the loop function, and a scalar Tensor representing
the number of iterations, and outputs a new set of GraphDef
nodes that implement functionality equivalent to running
pfor with those arguments. We had the option of plugging
this as an optimizing rewrite in the TensorFlow C++ runtime.
However, as a first version, we chose to keep this in the
Python frontend and to invoke it during graph construction.
This allowed us to build this independent of the runtime
internals and makes the conversion routine more accessible
and extensible for the user.

A call to pfor first creates a tf.placeholder repre-
senting the iteration variable i, makes a single call to the
loop_body_fn to create a graph, and then calls the vec-
torization routine. It gets back tensors that represent the vec-
torized version of the outputs of loop_body_fn which is
returned from the call to pfor.

When TensorFlow’s Eager Execution is enabled, calls
to pfor return Tensors with concrete values. Inter-
nally, the implementation switches to graph mode using a
tf.function wrapper, and then calls the returned vector-
ized function. Automatic batching together with Autograph
(Moldovan et al., 2018) compilation allows writing intu-
itive and pythonic code with the performance of manually
batched statically compiled graphs.

3.3. Jacobians and Higher order Gradients

Jacobian is defined as the matrix of all first order par-
tial derivatives of a vector valued function. TensorFlow’s
tf.gradients function computes vector-jacobian prod-
uct and prior to our work did not have an efficient imple-
mentation for computing the full jacobian matrix. Doing
so required a sequential loop, with iteration i computing
gradients of the ith scalar value in the output w.r.t. the
vector inputs, and stacking these gradients into a matrix.
Replacing this sequential loop with a pfor loop enables
our vectorization process to provide a much faster version.

Using this approach, we have added the following func-
tions to TensorFlow: jacobian(output, inp) and
batch_jacobian(output, inp). The former com-
putes the jacobian of output with respect to inp, where
inp can be a nested structure of Tensors. The latter com-
putes the jacobian of each row of output with respect to
each row of inp. The second version is useful when each
output of a batch is dependent only on the corresponding
input in the batch. It leverages this independence between
batch elements to avoid unnecessary computation of zero
values, thus reducing compute and memory requirements.
These primitives can be further composed to produce higher
order gradients, like hessians.

Our new API has enabled research including, (Golub & Sus-
sillo, 2018) for analyzing fixed points of RNNs, (Lee et al.,
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2018) for studying eigen-values of jacobians of machine
translation decoders, and (Pfau et al., 2018) for computing
eigen-functions of linear operators via stochastic optimiza-
tion.

3.4. Per-Example Gradients

A common approach in stochastic optimization is to com-
pute the sum of losses over a batch of elements, and then
compute its gradients w.r.t the parameters. However some
optimization strategies require computing the gradient of
each scalar loss w.r.t the parameters and then combining
these per-example gradients in sophisticated ways to com-
pute the parameter updates, e.g. (Alain et al., 2015).

Computing per-example gradients requires running a se-
quential loop where each iteration runs the forward and
backward pass for a single batch element. This is highly
inefficient. Alternatively, one could perform manual surgery
on the generated graphs to compute per-example gradients
(Goodfellow, 2015).

Expressing this computation is straightforward with
vectorized_map, by having the map function be the
forward and backward computation, and mapping it over
the batch of inputs. §5.4 shares some benchmark numbers
to show that this provides significant speedups over the
iterative approach.

4. Graph Auto Vectorization Algorithm
Here we provide more details about auto-vectorization of
pfor loops mentioned in §3.2. We first explain the moti-
vation and high level approach, followed by details on how
vectorization leverages loop invariance. Next we talk about
handling conditionals, loops and stateful operations. Finally
we discuss managing memory overheads of vectorized code.
For more formal details and correctness of the conversion
process, we refer the user to (Agarwal & Ganichev, 2019).

4.1. Motivation and Challenges

Conversion at Tensor level abstraction allows leveraging
mathematical properties of the operations instead of infer-
ring them from deeply nested loop nests. Also this con-
version works even when the kernel implementations are
opaque and proprietary, common with GPU kernels. Output
of the vectorization process is itself expressed using Ten-
sorFlow operations, which in turn uses highly optimized
kernels. For example, vectorization of tf.mamtul can
generate tf.batch_matmul which would leverage ad-
vanced optimization, like loop tiling, cache and memory
bandwidth utilization, done in the implementation of that
kernel. Vectorizing individual low level instructions inside
tf.matmul is likely to produce inefficient code.

Vectorizing at the level of TensorFlow kernels requires
dealing with a much larger and complicated instruction
set. These kernels can have complicated semantics like
broadcasting, multiple input attributes, and could deal with
variable number of inputs with different ranks and shapes.
Vectorization needs to deal with this, both for correctness,
as well as for optimization specific to those diverse seman-
tics. In addition, it also tracks loop invariance of tensors
and generates optimized code based on which combination
of inputs is loop invariant (see §4.3). Dealing with mutable
state, TensorFlow’s data structures, like TensorArray
and Stack, as well as nested control flow constructs, like
tf.cond and tf.while_loop further complicates this
conversion.

4.2. Conversion Routine

The algorithm is given a scalar tf.Placeholder Tensor
that corresponds to the loop iteration counter, i, a list of Ten-
sors corresponding to the outputs of loop_body_fn(i),
and a scalar Tensor corresponding to the number of iter-
ations iters. The algorithm traverses nodes from i to
the outputs in topological order. For each node, η, visited
during the traversal, it calls a converter function specific
to the kernel of η. The semantics of this converter is to
add new nodes to the graph that efficiently implement the
functionality of running η iters times and stacking the
outputs.

Lets revisit pfor(lambda i: i + 1, 2) as an ex-
ample. Here we first create a placeholder node, ηi, then
call the body function on it. This creates some extra nodes:
ηconst with value 1 and ηadd with inputs ηi and ηconst. Ad-
ditionally, ηiters node with value 2 is created for the num-
ber of iterations. The auto vectorization routine is then
invoked. It first visits node ηi and adds a new node η̂i which
computes tf.range(ηiters). ηconst is visited and left as is.
ηadd is visited which creates a new node η̂add that performs
η̂i + ηconst. This node is then returned as the output of the
conversion process. This node represents the expression
tf.range(2) + 1.

4.3. Loop Invariance

In the example in §4.2, note that ηconst was left as is. This
is because it was loop invariant. i.e. the output of the
node did not depend on the iteration variable i. In gen-
eral, the body of the pfor can reference tensors from
outside the loop body, create tensors using tf.const or
tf.random_uniform, or create operations using inputs
that doesn’t recursively depend on i.

We track this dependence on the loop iteration counter i,
and leverage it inside the converters. For example, when
vectorizing tf.matmul, if both inputs to tf.matmul
depend on i, we create a tf.batch_matmul, while if
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only one of them depends on i, we perform some reshapes,
and possibly transposes, and call tf.matmul. Note that
this rule is based on the mathematical properties of the
operations.

In general, each registered converter considers the cross
product of loop invariance of all the inputs to the operation
to generate vectorized code. If all inputs are loop invariant,
and the kernel is stateless, then we reuse the output directly.

4.4. Handling Conditionals

TensorFlow conditionals, tf.cond, use special nodes like
Switch and Merge to implement the functionality. When
traversing the graph, we first convert such forms into equiv-
alent functional forms by separating out the sub-graphs
corresponding to the condition, and the then and else blocks.
The condition is first vectorized and the output vector rep-
resents which iterations would go into the then and else
blocks. All external references from inside these blocks
are then partitioned to only contain values for those indices.
The then and else blocks are then recursively converted,
and the outputs are finally assembled in the correct order.
See (Agarwal & Ganichev, 2019, §3.6) for more details on
converting conditionals.

4.5. Handling Nested Loops

Now let us consider the case of loops nested inside the
pfor. If that loop is itself a pfor loop, then the com-
piler is invoked to convert it first. In case of sequential
tf.while, corresponding converters need to be invoked.
If these loops are deeply nested, each converter will in turn
invoke compilation recursively which will lead to converting
these loops inside out.

Similar to the conditional case, we first extract a functional
form consisting of sub-graphs that correspond to the con-
dition and the loop body. The generated code consists of
a tf.while_loop which, in each iteration, keeps track
of the indices, I , of all pfor loops that are still active, and
runs the condition and body on only those indices. Similar
to the conditional case, this involves subsetting all the vec-
torized inputs of those blocks to the set I , and having the
recursive compilation be aware of the list and count of active
iterations. Intermediate outputs for all the pfor indices that
become inactive are collected in a TensorArray indexed
based on the complement of I . When the loop is done,
the entries in the TensorArray are stitched together and
returned.

Note that a simpler and more optimized implementation is
done for the case where the while loop condition is loop
invariant. See (Agarwal & Ganichev, 2019, §3.7) for more
details on converting nested loops.

4.6. Handling Stateful Operations

Semantics of stateful operations inside parallel-for loop is
dictated by SPMD semantics, and works given that the con-
version happens in the topological ordering of the nodes.
It is possible for such programs to be invalid, e.g. if mul-
tiple iterations try setting the same variable to different
values. Our conversion process detects potential collisions
pessimistically and raises an error.

First we consider operations that are idempotent. Examples
include creating and reading a Variable. These can be run
once and outputs can be marked as loop-invariant. Next
we consider operations that are commutative and associa-
tive. Examples include subtracting or adding a delta into a
Variable. This can be done by first reducing all the updates
and then applying the reduced value to the mutable state.
Note that addition to Variable can be used to implement sum
reductions across all parallel iterations, which in turn can be
used to implement operations like batch normalization.

See (Agarwal & Ganichev, 2019, §3.8) for more details on
converting stateful operations. Vectorization is similarly
implemented for operations on data structures like Stacks
and TensorArrays. Optimizing these, and reasoning about
loop invariance of such operations in deeply nested contexts,
raises many challenges, beyond the scope of this paper.

4.7. Memory Usage

Given that all iterations of pfor are effectively run in
parallel, this can increase the memory usage. To control
that, we provide a knob parallel_iterations, to
the pfor function which controls how many iterations
are compiled together. Setting this parameter causes the
loop to get tiled into two nested loops, an outer sequential
tf.while_loop, and and internal vectorized pfor loop.
This allows trading off between memory usage and compute
speedup.

In practice, we have been able to run large experiments,
without running into memory problems. In cases of au-
tomatic batching, pfor generates batched code similar to
existing manually batched ones, and hence matches its mem-
ory usage as well. For jacobians and per-example gradients,
we have experimented with very large networks, with rea-
sonable batch sizes and significant speedups.

5. Benchmarks
5.1. Setup

Experiments were run on a 6 core Intel Xeon E5-1650
3.60GHz CPU with 64GB of RAM and a NVIDIA Maxwell
Titan X GPU.
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Figure 1. Throughput vs batch size for auto-batching forward pass of three models, one per column. Top row corresponds to GPU, while
bottom one is CPU. Different curves are for runs with and without pfor auto-vectorization, and with and without DyNet auto-vectorization.

5.2. Models

Linear Projection is a simple setup which applies linear
projection on input data. Inputs are randomly generated
float vectors with shape [768]. Projection matrix is a con-
stant [768, 768] matrix of floats. Throughput is reported in
GFLOPS against batch size.

To test convolution based networks, we use two different
architectures. Models using batch norm have been omitted
from these benchmarks since our implementation of vec-
torizing ”fused” batch norm kernels in TensorFlow is still
experimental.

ConvMnist setup uses a convolutional architecture as de-
scribed in (tensorflow, 2016). It is a stack of two conv-relu-
maxpool blocks followed by a linear-relu-dropout-linear
block. Inputs are batches of [28, 28] images and output has
shape [10].

VGG16 is as described in (Simonyan & Zisserman, 2014).
We picked this model since it supports different input image
sizes as well as different number of output classes. Input
sizes used are [48, 48] and [224, 224].

For testing dynamic networks on variable length sequences,
we use multiple different kinds of models as described be-
low.

LSTM experiments use a single-layer unidirectional RNN
based on the LSTM cell described in (Hochreiter & Schmid-
huber, 1997). Input is batch of variable length sequences,
with each element being a 128 dimensional vector. LSTM
state size is 256, except if mentioned otherwise (e.g. in
§5.5).

TreeLSTM uses architecture as described in (Tai et al., 2015).
Inputs are batches of randomly structured binary trees. To
construct each tree, we sample the number of leaves ran-
domly uniformly between 2 and some maximum number
(15 or 100), and assign a random embedding to it. A random
tree structure is imposed on these leaves as a random brack-
eting of the list of these leaves. The model works by first
embedding the tokens at the leaves. Computation proceeds
iteratively from the leaves to the root of each tree. Each
node’s computation resembles LSTM cell computation, ex-
tended to handle recurrent state coming from multiple chil-
dren. Embedding size and LSTM cell state size are both
128.

GatedGraphNN uses the Gated Graph Neural Network ar-
chitecture as described in (Li et al., 2015). Inputs are batches
of randomly structured directed graphs. Each graph can
have some maximum number of nodes (20 or 100), and
each node has up to some max number of neighbors (respec-
tively 5 or 10). Nodes are embedded into 64 dimensional
space. In each step, for each node, its neighbor’s embed-
dings are propagated through an edge specific transform,
and then combined using a GRU based network to compute
the new embedding for that node.

5.3. Automatic Batching of Forward Pass

We compare the performance of the forward pass of mod-
els implemented by looping over the batch elements using
pfor, or using sequential tf.while_loop. Some of
these models are also compared against DyNet, with and
without auto-batching enabled. We vary the batch size and
report throughput (measured as GFLOPS or images/token-
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Figure 2. TreeLSTM inference throughput, in leaf tokens / sec vs
batch size. Different plots are for runs on CPU, with and without
automatic batching, and with small vs large trees.

s/edges processed per second) against the batch size, in
Figures 1, 2 and 3.

5.3.1. LINEAR PROJECTION

Linear Projection setup is as explained in §5.2. This toy
setup allows us to closely study the achieved vs expected
FLOPS and also to examine the generated code. Figure 1a
shows the throughput as GFLOPS attained vs the batch size.

For this setup, pfor is able to rewrite the computation as a
matrix multiplication with inputs of size [batch size, 768]
and [768, 768], thus approaching peak hardware perfor-
mance as batch size increases. Iterative approaches on the
other hand perform a sequence of vector-matrix multiplica-
tions and are much slower, by 1 to 1.5 orders of magnitude.

Note that TensorFlow’s tf.while_loop launches up to
10 iterations in parallel. This parallelism allows good scal-
ing on CPU since different iterations are able to use differ-
ent CPU threads, and hence use multiple cores. For GPU
though, given a stream based execution, kernel execution
gets serialized and hence performance of the sequential loop
scales poorly.

DyNet performs well at small batch sizes, especially on
GPU. In this regime, the computation time is dominated by
fixed overheads, which appear lower for DyNet. However
it does not scale as well at higher batch sizes likely due
to run time overheads of performing batching. Without
auto-batching enabled, execution fails to effectively utilize
multiple CPU cores.

5.3.2. CONVMNIST

Figure 1b reports the number of images processed per sec-
ond by the ConvMNIST model described in §5.2.

It turns out that pfor is able to match the performance
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Figure 3. GatedGraphNN inference throughput, in edges / sec vs
batch size. Different plots are for runs on GPU, with and without
automatic batching, and with small vs large graphs.

of a manually batched version. Manually examining the
generated graph reveals that the generated model is similar
to the manual version as well.

Overall trends on this setup are comparable to those of the
linear projection benchmark in §5.3.1. One noticeable dif-
ference is that on CPU, performance of tf.while_loop
scales better than that of linear projection benchmark. This
is likely because this model puts less pressure on memory
bandwidth, given the convolutional structure. pfor still
outperforms the other three for moderate and large batch
sizes.

5.3.3. LSTM

LSTM setup is as described in §5.2. Input sequence lengths
for LSTM are sampled uniformly at random between 1 and
100, inclusively.

Figure 1c reports tokens per second processed vs batch size.
Here pfor needs relatively larger batch sizes to outperform
other implementations, and the margins are narrower. This
is likely caused by the following two factors. Firstly, our
implementation of vectorizing tf.while_loop still has
overheads, especially related to host to device copies for
the GPU case, which we are working on optimizing. For
the CPU case, pfor performance is close to the manually
batched version. Secondly, given that sequence lengths are
randomly chosen, iterations of the sequential loop generated
by pfor progressively operate on smaller batches (i.e. input
sequences that are not done), thus lowering the effective
batch size, and hence the speedup.

5.3.4. TREE LSTM

Tree LSTM setup is as described in §5.2. Manually batching
such computation is hard given that the structure of the trees
varies across the inputs. Our implementation has two nested
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Figure 4. Throughput of per-example gradient computation on
ConvMNIST and LSTM with and without automatic batching,
on GPU. The x-axis is the number of examples in the batch. The y-
axis is the number of per-example gradients that can be computed.

loops: a parallel loop over the batch elements, and an inner
sequential loop over the depth of each tree, where the former
is optimized using pfor.

Figure 2 shows the results of running inference on this
model with and without auto-batching. We tested this on
small vs large trees, respectively with maximum number of
leaves per tree of 15 and 100. We vary batch size and report
throughput as total leaf tokens processed per second. Large
batch sizes and large trees seem to have larger speedups
with pfor.

5.3.5. GATED GRAPH NEURAL NETWORKS

Setup for gated graph neural networks is as described in
§5.2. These are implemented by specifying a graph vertex
function which is applied in parallel to all nodes in the graph
using a pfor loop. Figure 3 shows the results of running in-
ference on this model, with and without automatic batching,
and with running on small and large graph sizes. We vary
the batch size and report throughput as the total number
of edges in the graphs processed per second. Automatic
batching presents significant speedups.

5.4. Per-Example Gradients

For these benchmarks, we compute per-example gradients
as explained in §3.4, for the ConvMNIST and LSTM mod-
els (see §5.2). We report example gradients processed per
second as we vary batch size.

Figure 4 shows that tf.while_loop based implementa-
tion achieves low constant throughput for both models while
pfor based implementation is able to scale much better. At
the highest batch size of 256 for the LSTM model, pfor
outperforms tf.while_loop by a factor of 38.
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Figure 5. Throughput of computing jacobians (output with respect
to input) for VGG16 and LSTM models as output size is varied,
with and without auto-batching, on GPU. VGG16 uses two differ-
ent input image sizes.

5.5. Jacobians

Here we compare our jacobian API (see §3.3) against an iter-
ative approach. Experiments are run on GPU using VGG16
and LSTM models (see §5.2). However for LSTM, we stat-
ically unrolled the loop for 10 steps since TensorFlow is
currently unable to compute Jacobian of tf.while_loop
given its Stack based gradient implementation.

Since the iteration is over the output elements, for these ex-
periments, we vary the output size and measure throughput
as rows of jacobian processed per second, reported in Figure
5. This metric normalizes the compute done for a given task
as we vary the output size. We observe that the iterative
implementation scales poorly with output sizes. pfor runs
faster by up to 60 times at high output sizes.

6. Summary
We have extended TensorFlow to provide a parallel-for loop
with SPMD semantics. In addition we have implemented a
static optimization algorithm to auto-vectorize such loops.
This is novel compared to existing run time operation batch-
ing as well as static instruction level auto vectorization ap-
proaches. Higher level constructs, like vectorized_map
and jacobian, further enrich TensorFlow’s capability.
Automatic batching provides a big usability jump for dy-
namic computation graphs without sacrificing performance.
GPU benchmarks show speedups of up to two orders of
magnitude compared to TensorFlow’s sequential loop and
an order of magnitude compared to DyNet with runtime
batching. Such speedups have already enabled new research
that was not feasible earlier, e.g. (Pfau et al., 2018; Lee
et al., 2018; Golub & Sussillo, 2018).
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