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Abstract

Adaptive regularization methods pre-multiply a
descent direction by a preconditioning matrix.
Due to the large number of parameters of ma-
chine learning problems, full-matrix precondi-
tioning methods are prohibitively expensive. We
show how to modify full-matrix adaptive reg-
ularization in order to make it practical and
effective. We also provide a novel theoreti-
cal analysis for adaptive regularization in non-
convex optimization settings. The core of our
algorithm, termed GGT, consists of the effi-
cient computation of the inverse square root of
a low-rank matrix. Our preliminary experiments
show improved iteration-wise convergence rates
across synthetic tasks and standard deep learn-
ing benchmarks, and that the more carefully-
preconditioned steps sometimes lead to a better
solution.

1. Introduction

Stochastic gradient descent is the workhorse behind the re-
cent deep learning revolution. This simple and age-old al-
gorithm has been supplemented with a variety of enhance-
ments to improve its practical performance, and sometimes
its theoretical guarantees.

Amongst the acceleration methods there are three main cat-
egories: momentum, adaptive regularization, and variance
reduction. Momentum (in its various incarnations, like
heavy-ball or Nesterov acceleration) is the oldest enhance-
ment. It has a well-developed theory, and is known to im-
prove practical convergence in a variety of tasks, small and
large. It is also easy to implement. Variance reduction is
the most recent advancement; in theory and practice, it is
mostly applicable to convex optimization, and is thus less
influential in deep learning.
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This brings us to adaptive regularization: the most sophis-
ticated, hard to implement, and widely-debated acceler-
ation method. While state-of-the-art optimizers such as
Adam and AdaGrad (Kingma & Ba, 2014; Duchi et al.,
2011) do use adaptive regularization, they exclusively re-
strict the preconditioner to a diagonal matrix; as such, they
often marketed as per-coordinate “adaptive learning-rate”
methods. Despite solid theoretical guarantees, the practical
value of diagonal adaptive regularization as compared to
“vanilla” SGD has been the subject of much debate (Wilson
et al., 2017). However, the efficacy of full-matrix adaptive
regularization has been relatively unexplored. This is due
to the prohibitive computational cost associated with full-
matrix operations: full AdaGrad requires taking the inverse
square root of a large matrix.

In this paper, we present GGT, a practical solution to
the computational problems plaguing full-matrix adaptive
regularization, making this technique scalable for modern
deep models. At the heart of our method is a simple, GPU-
friendly way to apply the inverse square root of the low-
rank second-moment matrix of recent gradients; see Fig-
ure 1. GGT’s running time is comparable to state-of-the-art
optimizers.

We proceed to show that full-matrix preconditioning al-
lows for much better exploitation of anisotropic curvature
in loss landscapes. First, we show synthetic experiments
which demonstate clear benefits of GGT over baselines, es-
pecially when the problem is ill-conditioned. Then, we im-
plement GGT at scale, and show that the benefits translate
to faster training on standard deep learning benchmarks.
Our improvement is most salient in complicated landscapes
like RNN training.

Our algorithm comes with theoretical guarantees. We give
the first proof of convergence to first-order critical points
for an algorithm with adaptive regularization in a stochastic
non-convex setting, featuring a rate which is dependent on
an adaptive ratio. We show examples where our bound
is stronger than that for SGD, providing some theoretical
basis for our empirical findings.

1.1. Related work

Since the introduction of AdaGrad (Duchi et al., 2011), di-
agonal adaptive regularization has been a mainstay in the
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machine learning practitioner’s toolbox. A quick perusal
of the literature shows that these methods have continued
to thrive in the deep learning era, and appear in all major
frameworks (Abadi et al., 2016; Paszke et al., 2017; Chen
et al., 2015). By citation count (or GitHub search hits),
Adam (Kingma & Ba, 2014) is by far the most popular
adaptive optimizer for training a variety of modern deep
models. For this reason, this paper’s exposition is targeted
towards a full-matrix drop-in replacement for Adam; how-
ever, our techniques extend straightforwardly to a plethora
of variants, like RMSprop (Tieleman & Hinton, 2012),
Adadelta (Zeiler, 2012), Nadam (Dozat, 2016), etc.

Full-matrix adaptive regularization has existed alongside
the more commonly used diagonal-matrix manifestation
since their common inception in (Duchi et al., 2011); how-
ever, a major obstacle to the scalability of these methods is
the need for the storage and inversion of square matrices in
the model dimension. This becomes prohibitively expen-
sive in dimension greater than 104, while state-of-the-art
models regularly exceed 107 parameters.

Matrix sketching has been employed to approximate the
AdaGrad preconditioner (Krummenacher et al., 2016;
Mehta et al., 2016); however, the sketched estimate for the
matrix inverse can be sensitive to noise. Furthermore, there
is a sizeable performance gap which renders these meth-
ods unsuitable for large-scale implementation. For exam-
ple, in the former reference, the authors report a 5-10x
overhead over AdaGrad, even with < 10° model parame-
ters; we could not find a usable GPU implementation for
their requisite rank-1 QR update. Rather than sketching the
preconditioner, our computations are exact, and efficient in
practice.

(Gupta et al., 2018) propose a way to do AdaGrad with
Kronecker products of full-matrix preconditioners, a more
limited setting which requires knowledge of the model’s
structure. Finally, as we argue in Section 3.1, there is in-
trinsic value of “forgetting” past curvature using an expo-
nential window. With this, a low-rank preconditioning ma-
trix naturally arises, allowing us to bypass the computa-
tional need for matrix sketching in the model dimension or
architecture-dependent restriction of the preconditioner.

Our algorithm bears a superficial resemblance to L-BFGS
(Liu & Nocedal, 1989): both compute a preconditioner
using a sliding window of gradient history. However, L-
BFGS uses differences of gradients to estimate the Hes-
sian, while we use the gradients to keep an exact (expo-
nentially decayed) gradient Gram matrix. In the former,
estimating the Hessian with stochastic gradients is very un-
stable. In a similar vein, stochastic second-order methods
(e.g. Erdogdu & Montanari, 2015; Agarwal et al., 2017b;
Luo et al., 2016; Hazan et al., 2007; Agarwal et al., 2017a;
Carmon et al., 2017) have seen limited adoption in deep
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Figure 1. Sketch of how GGT performs fast full-matrix precondi-
tioning. Note that the inverse matrices are understood here to be
Moore-Penrose pseudoinverses; see Section 2.1 for a full treat-
ment.

learning. This is partly due to prohibitive overhead costs
(despite asymptotic efficiency); however, more fundamen-
tally, they exhibit very different training dynamics than the
typical family of optimizers in deep learning.

Natural gradient descent (Amari, 1998) and K-FAC (e.g.
Martens & Grosse, 2015; Martens et al., 2018) precondi-
tion the gradient by the inverse (rather than inverse square
root) of the gradient Gram matrix, or an efficiently invert-
ible approximation thereof. Like in the above discussion,
the training dynamics arising from these methods diverge
from those of standard adaptive optimizers, as well as the
underlying theoretical motivations.

Several recent works (Li & Orabona, 2018; Zou & Shen,
2018; Ward et al., 2018; Chen et al., 2018a;b; Zhou et al.,
2018) have studied the convergence of adaptive methods
for non-convex optimization, matching the asymptotic it-
eration complexity of SGD. (Staib et al., 2019) show that
adaptive methods escape saddle points. Apart from our al-
gorithmic contribution, our work is (to our knowledge) the
first attempt to characterize the advantage of adaptivity in
terms of the dimension and geometry of the optimization
problem.

2. The GGT algorithm

Our main algorithmic contribution is GGT, an efficient
first-order algorithm for full-matrix adaptive precondition-
ing. In brief, GGT uses the preconditioner from full-matrix
AdaGrad, with gradient history attenuated exponentially as
in Adam, and truncated to a window parameter r. The
name GGT acts as a convenient mnemonic for the gradient
second-moment matrix GG " maintained by full-matrix
AdaGrad, even though we never compute this matrix.

The mathematical specification of GGT is given in Al-
gorithm 1, in the usual model of stochastic optimization
(see Section 4), with gradients Vf(x). Notice that the
coordinate-wise scaling of Adam is recovered by zeroing
out the off-diagonal entries of GG .

GGT provides the power of full-matrix adaptive regular-
ization at a cost not much larger than SGD. This crucially
exploits the fact only a small window of historical gradi-



Efficient Full-Matrix Adaptive Regularization

Algorithm 1 GGT adaptive optimizer

1: Input: initializer z;, window size r, learning rate
schedule {n;}, B2 < 1, > 0.

2. fort=1,...,T do _
3: Receive stochastic gradient V f (x;).
4: Let Gf, = [gt gt—1 .- gt—T+1]7 where gi—k —

BEVf (z—1), or 0if k > t. N
Tip1 < 2 — - (GG Y2 + eI~ Vf (24).
6: end for

b

ents are used for preconditioning. The intuition for using
a small window, as opposed to the entire history, is clear
(and time-tested, by the ubiquity of Adam): the curvature
of the loss surface changes, rendering previous gradient in-
formation obsolete. We expand on the benefits of forgetting
gradients in section 3.1.

The fact that the preconditioning matrix is based on a small
window of gradients implies that it has low rank. GGT ex-
ploits this fact by computing the inverse square root of the
empirical covariance matrix indirectly, as outlined in Fig-
ure 1. In effect, instead of inverting a full matrix in the
dimension of parameters, using the special matrix struc-
ture GGT inverts a matrix of dimension window-size. The
remainder of this section will discuss efficient implementa-
tion and some heuristics.

GGT has provable guarantees even for non-convex opti-
mization: it is guaranteed to converge to a first-order crit-
ical point. Its rate of convergence is never significantly
slower than that of SGD, and in some favorable geomet-
ric conditions, can be significantly faster. These theoretical
bounds are made precise in Section 4.

2.1. Fast low-rank preconditioning

The window parameter 7 should be roughly the number of
copies of the model that fit in RAM; in our large-scale ex-
periments, we use r = 200. A pessimistic but principled
choice is r = ©(1/(1 — B2)), which truncates on the time
scale of the exponential attenuation. Our key observation,
highlighted in Figure 1, is that the inversion of the large
low-rank matrix GG can be performed by diagonalizing
the small matrix GT G, along with some extremely GPU-
friendly matrix-vector operations.

The basic intuition is contained in Figure 1, but it re-
mains to include the €I term. We derive the full update
here. Let G € R¥*" v € R? be arbitrary, with r < d.
Write the singular value decomposition G = UXV T, with
U € R¥*4 3 € RX" 'V € R™", Let ¥y € R¥X4 .=
[¥ 0], and let X, € R™ " be its top left block. Let
U =: [U, Ug_,], so that the columns of U, € R*"
are an orthonormal basis for the column space of G, and

Uy, € R¥(4=7) jts orthogonal component, noting that
U, U] +U,;_, U], =1, Then, we have

-1
[(GGT)/2 4el] 'y = [(UEEZUT)W + eUUT} v
=U(Z;+e)'UTw
= [U. (=, +eL,)'U} + Uy (elay) UG, |0
1
=U,(, +eL,) U v+ (I, - U, U v
e

1 1
v U, {(z,. +el)7t = EIT} U v.

The first term is none other than an SGD update step. The
rest can be computed by taking the eigendecomposition
GTG = VX2V, giving U, = GVVE,'. We prefer
this to taking the direct SVD of G, which is > 10 times
slower on GPU.

Using a cyclic buffer to store and update Gy, the algo-
rithm takes O(dr? +13) (sequential) time per iteration, and
O(dr) memory in total. Iterating over the model parame-
ters to update G incurs the same overhead cost as usual
adaptive optimizers. The r X d matrix multiplication and
r X r SVD operations benefit from decades of extensive
hardware-level optimizations.

In the experiments in Section 3, we observed a ~ 1.3%
(CNN) and ~2x (RNN) running-time overhead compared
to SGD; we note that this ratio could be even smaller in
reinforcement learning (where the environment causes the
time bottleneck), or universally with a more optimized im-
plementation.

2.2. Tweaks for GGT on deep models

Below, we list some practical suggestions for applying
GGT to training large-scale models.

Momentum. In order to bring GGT closer to a drop-in
replacement for Adam, we can add momentum to the gra-
dient steps: let v; <— B1v4—1 + Vf(z:), and apply the pre-
conditioner to v; to compute the update step. We use mo-
mentum in all large-scale experiments, with the standard
B1 = 0.9. We also get a small performance boost by us-
ing v, instead of the gradients to update G;. On the other
hand, as long as r < T, it makes little difference to choose
B2 = 1, letting the window (rather than exponential atten-
uation) forget stale gradient information.

Interpolation with SGD. We note the possibility of decou-
pling the scalars € and 1/e which appear in the efficient up-
date step. Appealingly, this allows the user to tune GGT’s
behavior to be arbitrarily close to that of SGD.

Numerical concerns. For greater numerical stability, it is
possible to add a small multiple of the identity matrix (we
suggest 107%) to G T G before computing its eigendecom-
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position, without noticeable differences in training.

3. Experiments

In this section, we present an empirical study of GGT. We
begin with some simple experiments, showing that adaptive
methods help in the presence of ill-conditioned optimiza-
tion problems, as well as the value of limited gradient mem-
ory. Next, we evaluate the performance of GGT on larger-
scale deep learning tasks (and provide some additional such
experiments in Appendix B). Finally, we present some
interesting empirical insights on the training dynamics in
deep learning models. Our visualizations of gradient spec-
tra suggest that adaptive optimizers are indeed correcting
for changing anisotropic curvature in the loss landscape.

3.1. Synthetic data: when do adaptivity and
forgetfulness help?

The original theorems on the behavior of adaptive first-
order methods are established from the perspective of on-
line convex optimization (Duchi et al., 2011). The dy-
namics are less understood on realistic loss landscapes in
stochastic optimization. For this reason, we begin our ex-
perimental section with some simple empirical compar-
isons between full- and diagonal-matrix adaptive optimiz-
ers and SGD. Figure 2 summarizes our findings.

In each synthetic experiment, we generated an ill-
conditioned landscape, and compared SGD with adaptive
optimizers, excluding the typical accompanying heuristics
(i.e. no momentum, regularization, or learning rate sched-
ule). We tested diagonal-matrix preconditioners with and
without exponential gradient attenuation (like Adam and
AdaGrad, respectively), and their full-matrix analogues.
The experiments were robust with respect to the choice of
¢ (we used 10™%) and batch size.

In the first synthetic experiment (left), we exhibit an
instance of logistic regression in dimension 10, with
10 samples generated from an extremely anisotropic
(02,../02., ~ 10%) Gaussian distribution, and binary la-
bels determined by a random hyperplane. SGD converges
the slowest, and diagonal AdaGrad consistently accelerates
optimization. Finally, full-matrix preconditioning (using
cubic-time matrix inversion) converges the fastest. In this
setting, adding a window improved convergence, but not
drastically; we elaborate below.

Next, we show an optimization problem (right) which
accentuates the utility of exponentially decaying gradi-
ent memory. We consider the problem of minimizing
the logarithmic barrier function of a randomly generated
anisotropic polytope, otherwise known as finding its an-
alytic center: this replaces the logistic loss terms with
fi(w) = —log(w z; + ¢;), with x; generated the same

Landscape 1: logistic loss Landscape 2: barrier loss

—— sGD
diag 1.10
0.68 diag+window

full 1.08
— fullswindow (GGT)

—— SGD
diag
diag+window
ull
—— fullswindow (GGT)

\

0 200 400 600 800 1000 0 500 1000 1500 2000
iteration iteration

Figure 2. Synthetic experiments on convex loss functions, demon-
strating the value of adaptive regularization and attenuation of
gradient history. Left: An ill-conditioned instance of logistic re-
gression. Adaptive regularization finds a good preconditioner, ac-
celerating optimization. Right: Minimizing a barrier function, an
example where the curvature changes with position. Optimization
is further accelerated by forgetting outdated gradient information.

way as above, and ¢; generated uniformly from [0, 1]. We
observed the same ranking of convergence rates as in the
first experiment, but the improvement afforded by the win-
dow was much clearer.

The primary conclusion of our synthetic experiments is to
demonstrate some small-scale settings in which adaptive
regularization ameliorates anisotropy in the optimization
landscape. A subtler point is that the windowed variants
can help with changing curvature, even for convex losses.
Note that the curvature of the former landscape is constant
(in that its Hessian matrix at different locations w only
changes by a scalar factor). The latter setting, in contrast,
features a changing curvature (its Hessians do not commute
in general), necessitating “forgetfulness” in adaptive curva-
ture estimation.

In Section 3.4, we will return to these proof-of-concept op-
timization instances, connecting them to an empirical study
of curvature in more realistic landscapes.

3.2. GGT on deep convolutional models

We investigated the training dynamics of GGT on a typical
deep architecture for computer vision. For this, we used
a 26-layer 3-branch residual network with Shake-Shake
regularization (Gastaldi, 2017). Aside from its ability to
reach state-of-the-art classification accuracy, this architec-
ture also features a relatively low parameter count (~ 3M),
enabling the use of a large window parameter (r = 200).

In each experiment, we kept the cosine learning rate
annealing schedule used in the paper, originally from
(Loshchilov & Hutter, 2016); performance degraded con-
sistently and significantly with a fixed learning rate. For
both Adam and GGT, we chose the commonly used pa-
rameters 5, = 0.9, 82 = 0.999,¢ = 10~8; for SGD, we
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used momentum with parameter 0.9. With correctly tuned
RMSprop and Adadelta, with the same window parameters,
training curves were virtually identical to those for Adam.
We used a batch size of 128, and the standard data aug-
mentation techniques of 4-pixel padding + random crop-
ping and horizontal flipping.

Our results are shown in Figure 3 (top). In terms of training
loss, GGT consistently dominated existing optimizers. We
corroborate a number of observations from previous em-
pirical studies of the generalization of optimizers. Most
prominently, we found that SGD generalized slightly bet-
ter than all others (Wilson et al., 2017; Keskar & Socher,
2017) towards the end of training, including ours. The
gap (< 0.2%) is less dramatic than that seen in (Wilson
et al., 2017) for two reasons: we only show curves with a
tuned and annealed learning rate; also, we use an architec-
ture with powerful explicit regularization techniques which
have gained attention since their publication. Our prelimi-
nary observation is that GGT shrinks this gap slightly (cor-
roborated by another experiment in Appendix B), and ex-
pect that there is vastly more empirical work to be done
concerning architectures synergistically tuned to existing
optimizers.

We also verify the long-held empirical observation that the
learning rate decay of AdaGrad is too aggressive (e.g. in
(Zeiler, 2012)), resulting in convergence to a poor solution.
Finally, in agreement with (Wilson et al., 2017), we find
that using a sufficiently low learning rate for any optimizer
can result in a better training loss curve, but not without
significantly degrading generalization (> 3% worse).

3.3. GGT on recurrent models

Next, we move to recurrent architectures for language mod-
eling. We train a 3-layer LSTM (Hochreiter & Schmidhu-
ber, 1997) with ~ 5M parameters for character-level mod-
eling of the Penn Treebank dataset (Marcus et al., 1994).
This is the setting in which we observe the most striking
improvement over baselines. The particularities of this op-
timization task, and why it might be especially amenable
to full-matrix regularization, remain a fruitful research di-
rection (Pascanu et al., 2013). Figure 3 (bottom) shows
training and validation perplexities for the first 50 epochs;
no optimizer makes significant progress afterwards.

The state of the art for character-level language modeling
is less thoroughly documented than its word-level coun-
terpart, though we note that our end-to-end result (valida-
tion perplexity 2.42 after 500 epochs) is competitive with
those reported for recurrent models, like by (Krueger et al.,
2016). In contrast, Adam, AdaGrad, and SGD reach 2.51,
2.65, and 2.76, respectively. Note that Adam is the de facto
standard optimizer for language modeling (Melis et al.,
2017). Even with iterations taking twice the time, we out-
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Figure 3. Results of CNN and RNN experiments. GGT dominates
in training loss across both tasks, and generalizes better on the
RNN task. Top: CIFAR-10 classification with a 3-branch ResNet.
Bottom: PTB character-level language modeling with a 3-layer
LSTM.

perform all baselines in wall-clock time throughout train-
ing.

We also tried using GGT as a drop-in replacement for
Adam in the state-of-the-art word-level language modeling
code accompanying (Merity et al., 2017; 2018). Although
we were competitive with Adam, we only observed an im-
provement in the first ~ 20 epochs. We hypothesize that
the advantage of full-matrix regularization in this setting is
more marginal, as the gradients in the embedding layers are
naturally sparse in the vocabulary (“one-hot”) basis. On a
similar note, we found that Adam outperformed GGT on
attention-based architectures for NLP; refer to Appendix B
for an experiment and discussion.

3.3.1. WALL CLOCK TIME COMPARISONS

For those interested in end-to-end performance in terms of
model training speed, we provide in Figure 4 an alternate
visualization for the large-scale experiments, replacing the
epoch count with total cumulative training time on the hori-
zontal axis. On the LSTM task, GGT outperforms the base-
lines throughout training (and converges upon a better so-
lution), even with the additional overhead running time.

The same unconditional improvement was not observed in
the vision task, for training convergence nor generalization.
We believe this is due to the interactions between modern
convolutional architectures and the epoch-dependent learn-
ing rate schedule, which we have not attempted to re-tune.
Indeed, recent state-of-the-art work in rapid training of con-
volutional neural nets is centered on a selection of learning
rate and momentum schedules, rather than step directions.
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Figure 4. Alternate presentation of Figure 3, with wall clock time
on the horizontal axis. Top: CIFAR-10 classification with a 3-
branch ResNet. Bottom: PTB character-level language modeling
with a 3-layer LSTM.

3.4. Empirical insights on the spectral decay

In this section, we unify the insights gleaned from the syn-
thetic experiments and deep learning benchmarks. Along
the way, we provide some interesting anecdotal observa-
tions on the evolution of the preconditioner matrices’ sin-
gular values.

We plot the density of the spectrum of the low-rank precon-
ditioner G;G] as training progresses. Since the fast imple-
mentation of GGT takes an eigendecomposition of G|Gy,
we can read off the distribution of eigenvalues during train-
ing at no additional computational cost. Figure 5 visualizes
the result of this experiment for the CNN and RNN training
settings from the previous two sections. In each case, we
observe that G;'—Gt has a condition number of ~ 103, not-
ing that this can be visualized as the vertical range in the
logarithmic plot.

This visualization affords a new way to see how CNN and
RNN landscapes are fundamentally different: their gradi-
ent spectra evolve in very distinct ways over the course of
training. Interestingly, the condition number of the CNN
landscape surges near the end, which may be related to
the the low-rank structure of well-trained nets noted by
(Arora et al., 2018), who derive rank-dependent general-
ization bounds for neural networks. On recurrent models,
the rapidly evolving spectral structure at the early stage of
training indicates a possibly more complex landscape. In-
triguingly, the enormous condition number (~ 10°) corre-
lates with the massive lead of GGT over the others, con-
firming our intuition that full-matrix preconditioning ame-
liorates anisotropy.

To our knowledge, this is the first empirical study of this

Figure 5. Evolution of the spectrum of the gradient matrix during
training. Each vertical slice is a density heatmap of the eigenval-
ues of GIGt. The black lines indicate the minimum and max-
imum eigenvalues, smoothed in time by a median filter. Top:
CNN training. Approaching the end of training, the gradients be-
come more anisotropic. Bottom: RNN training. Within the first
few epochs, the gradients become more isotropic, then stabilize.
(Truncated to 5 epochs; the density was visually stable for the
remainder of training.)

kind, using the covariance matrix of recent gradients as a
surrogate to examining the changing curvature of the loss
landscape. In the spirit of recent empirical lenses of this
flavor (Raghu et al., 2017; Li et al., 2017), we leave this
as a way to visualize deep learning dynamics, possibly of
independent exploratory interest.

4. A convergence rate analysis with adaptivity

In this section we outline our analysis of GGT, for which
we show convergence to an approximate first-order criti-
cal point, in some settings faster than SGD. To obtain the
strongest theory, we analyze GGT with a “hard window”
instead of exponentially decaying gradient memory, ex-
plained in Section A.2.

We work in the usual theoretical framework of stochas-
tic optimization of a differentiable non-convex function
f (), equipped with an unbiased variance-bounded stochas-
tic gradient oracle \% f(-). The objective, as is standard in
the literature (see, e.g. (Ghadimi & Lan, 2013; Allen-Zhu
& Hazan, 2016)), is to find an e-approximate stationary
point z; that is, |V f(z)| < e.

4.1. The adaptive ratio

We quantify the improvement of adaptive regularization by
its advantage over the usual worst-case bound of SGD. To
this end, we define the adaptive ratio 11 of an algorithm A
as

def f(za)— f(z¥)

e P

3
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where x4 is the output of the A, and z* is a compara-
tor. For convex optimization problems z* is naturally the
global minimum. For non-convex optimization it is a sub-
tler choice, which we detail in Appendix A.

This ratio for the AdaGrad algorithm was shown in (Duchi
et al., 2011) to be always bounded by a quantity indepen-
dent of T', and potentially much smaller. Specifically, it
was shown to be inversely proportional to the dimension
in certain convex optimization problems, providing a theo-
retical justification for the speedup of adaptive optimizers.
In Section A.4, we show a new, simple, and natural set-
ting illustrating adaptive speedup, even for a strongly con-
vex function f.

4.2. Adaptive convergence rate guarantee

We informally state the main theorem below. We defer
the full bound without suppressed smoothness constants,
as well as all technical proofs, to Appendix A.

Theorem 4.1. Let f : RY — R be a bounded, Lips-
chitz, and smooth function with stochastic gradient oracle
V f(-), whose variance is at most . In expectation, Algo-
rithm 2 outputs an e-approximate critical point of f, with

9] (“202> calls 1o V f ().

4

This theorem matches and potentially improves the known
analysis for stochastic gradient descent with the intro-
duction of the data-dependent adaptivity constant y into
the leading-order term governing the rate of convergence.
Since (Duchi et al., 2011) bounded p by a quantity indepen-
dent of T, our theorem matches the classic O (5_4) rate of
convergence.

5. Conclusion

This work investigates full-matrix adaptive regularization:
our main contribution is to make this technique viable for
large-scale optimization, by a method for efficient multipli-
cation by the inverse square root of a full second-moment
matrix over a short window of gradients. This leads to a
new algorithm, GGT, a truly scalable optimization algo-
rithm with full-matrix adaptive preconditioning.

Through synthetic experiments, we have shown that GGT
accelerates optimization in ill-conditioned loss landscapes;
this is supported by accompanying adaptive convergence
guarantees. Preliminary experiments show accelerated
convergence on standard deep learning benchmarks, with
very different training dynamics from existing diagonal
adaptive methods. We accompany our algorithm and ex-
periments with the first theoretical characterization of the
benefits of adaptive regularization in a non-convex setting.
We hope that GGT will be the first of a new class of al-
gorithms for the modern large-scale optimization toolbox,

and to foster new discussion towards an ever-elusive under-
standing of loss landscapes in deep learning.
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