
Supplementary Material for Learning to Generalize from Sparse and
Underspecified Rewards

1. Semantic Parsing
Our implementation is based on the open source implemen-
tation of MAPO (Liang et al., 2018) in Tensorflow (Abadi
et al., 2016). We use the same model architecture as MAPO
which combines a seq2seq model augmented by a key-
variable memory (Liang et al., 2017) with a domain specific
language interpreter. We utilized the hyperparameter tuning
service (Golovin et al., 2017) provided by Google Cloud for
BoRL.

1.1. Datasets

WIKITABLEQUESTIONS (Pasupat & Liang, 2015) con-
tains tables extracted from Wikipedia and question-answer
pairs about the tables. There are 2,108 tables and 18,496
question-answer pairs splitted into train/dev/test set. We
follow the construction in (Pasupat & Liang, 2015) for con-
verting a table into a directed graph that can be queried,
where rows and cells are converted to graph nodes while
column names become labeled directed edges. For the ques-
tions, we use string match to identify phrases that appear
in the table. We also identify numbers and dates using the
CoreNLP annotation released with the dataset.

The task is challenging in several aspects. First, the tables
are taken from Wikipedia and cover a wide range of top-
ics. Second, at test time, new tables that contain unseen
column names appear. Third, the table contents are not
normalized as in knowledge-bases like Freebase, so there
are noises and ambiguities in the table annotation. Last,
the semantics are more complex comparing to previous
datasets like WEBQUESTIONSSP (Yih et al., 2016). It re-
quires multiple-step reasoning using a large set of functions,
including comparisons, superlatives, aggregations, and arith-
metic operations (Pasupat & Liang, 2015).

Figure 1 shows some natural language queries in WIK-
ITABLEQUESTIONS for which both the models trained us-
ing MAPO and MeRL generated the correct answers despite
generating different programs.

WIKISQL (Zhong et al., 2017) is a recent large scale
dataset on learning natural language interfaces for databases.
It also uses tables extracted from Wikipedia, but is much
larger and is annotated with programs (SQL). There are
24,241 tables and 80,654 question-program pairs splitted
into train/dev/test set. Comparing to WIKITABLEQUES-

TIONS, the semantics are simpler because SQL use fewer
operators (column selection, aggregation, and conditions).
We perform similar preprocessing as for WIKITABLEQUES-
TIONS. We don’t use the annotated programs in our experi-
ments.

1.2. Auxiliary Reward Features

In our semantic parsing experiments, we used the same pre-
processing as implemented in MAPO. The natural language
queries are preprocessed to identify numbers and date-time
entities. In addition, phrases in the query that appear in the
table entries are converted to string entities and the columns
in the table that have a phrase match are assigned a column
feature weight based on the match.

We used the following features for our auxiliary reward for
both WIKITABLEQUESTIONS and WIKISQL:

• f1: Fraction of total entities in the program weighted
by the entity length

• f2, f3, f4: Fraction of date-time, string and number
entities in the program weighted by the entity length
respectively

• f5: Fraction of total entities in the program

• f6: Fraction of longest entities in the program

• f7: Fraction of columns in the program weighted by
the column weight

• f8: Fraction of total columns in the program with non-
zero column weight

• f9: Fraction of columns used in the program with the
highest column column weight

• f10: Fractional number of expressions in the program

• f11: Sum of entities and columns weighted by their
length and column weight respectively divided by the
number of expressions in the program

1.3. Training Details

We used the optimal hyperparameter settings for training
the vanilla IML and MAPO provided in the open source
implementation of MAPO. One major difference was that
we used a single actor for our policy gradient implementa-
tion as opposed to the distributed sampling implemented in
Memory Augmented Program Synthesis.



Supplementary Material for Learning to Generalize from Sparse and Underspecified Rewards

Example Comment

Query nu-1167: Who was the first oldest living president?
MAPO: v0 = (first all rows); vans = (hop v0 r.president)
MeRL: v0 = (argmin all rows r.became oldest living president-
date); vans = (hop v0 r.president)

Both programs generate the correct answer despite MAPO’s pro-
gram being spurious since it assumes the database table to be
sorted based on the became oldest living president-date column.

Query nu-346: What tree is the most dense in India?
MAPO: v0 = (argmax all rows r.density); vans = (hop v0
r.common name)
MeRL: v0 = (filter str contain any all rows [u‘india’] r.location);
v1 = (argmax v0 r.density); vans = (hop v1 r.common name)

MAPO’s program generates the correct answer by chance since it
finds the tree with most density which also happens to be in India
in this specific example.

Query nu-2113: How many languages has at least 20,000 speak-
ers as of the year 2001?
MeRL: v0 = (filter ge all rows [20000] r.2001 . . . -number); vans
= (count v0)
MAPO: v0 = (filter greater all rows [20000] r.2001 . . . -number);
vans = (count v0)

Since the query uses “at least”, MeRL uses the correct func-
tion token filter ge (i.e ≥ operator) while MAPO uses fil-
ter greater (i.e. > operator) which accidentally gives the right
answer in this case. For brevity, r.2001 . . . -number refers to
r.2001 census 1 total population 1 004 59 million-number.

Figure 1. Example of generated programs from models trained using MAPO and MeRL on WIKITABLEQUESTIONS. Here, vi correponds
to the intermediate variables computed by the generated program while vans corresponds to the variable containing the executed result of
the generated program.

Table 1. MAPOX hyperparameters used for experiments in Table
2.

Hyperparameter Value

Entropy Regularization 9.86 x 10−2

Learning Rate 4 x 10−4

Dropout 2.5 x 10−1

Table 2. BoRL hyperparameters used in experiments in Table 2.

Hyperparameter Value

Entropy Regularization 5 x 10−2

Learning Rate 5 x 10−3

Dropout 3 x 10−1

Table 3. MeRL hyperparameters used in experiments in Table 2.

Hyperparameter Value

Entropy Regularization 4.63 x 10−2

Learning Rate 2.58 x 10−2

Dropout 2.5 x 10−1

Meta-Learning Rate 2.5 x 10−3

For our WIKITABLEQUESTIONS experiments reported in
Table 2, we initialized our policy from a pretrained MAPO
checkpoint (except for vanilla IML and MAPO) while for
all our WIKISQL experiments, we trained the agent’s policy
starting from random initialization.

For the methods which optimize the validation accuracy us-
ing the auxiliary reward, we trained the auxiliary reward pa-
rameters for a fixed policy initialization and then evaluated
the top K hyperparameter settings 5 times (starting from

Table 4. MAPOX hyperparameters used for experiments in Table
3.

Hyperparameter Value

Entropy Regularization 5.1 x 10−3

Learning Rate 1.1 x 10−3

Table 5. BoRL hyperparameters used in experiments in Table 3.

Hyperparameter Value

Entropy Regularization 2 x 10−3

Learning Rate 1 x 10−3

Table 6. MeRL hyperparameters used in experiments in Table 3.

Hyperparameter Value

Entropy Regularization 6.9 x 10−3

Learning Rate 1.5 x 10−3

Meta-Learning Rate 6.4 x 10−4

random initialization for WIKISQL or on 5 different pre-
trained MAPO checkpoints for WIKITABLEQUESTIONS)
and picked the hyperparameter setting with the best average
validation accuracy on the 5 runs to avoid the danger of
overfitting on the validation set.

We only used a single run of IML for both WIKISQL and
WIKITABLEQUESTIONS for collecting the exploration tra-
jectories. For WikiSQL, we used greedy exploration with
one exploration sample per context during training. We
run the best hyperparameter setting for 10k epochs for both
WIKISQL and WIKITABLEQUESTIONS. Similar to MAPO,
the ensembling results reported in Table 4, used 10 different



Supplementary Material for Learning to Generalize from Sparse and Underspecified Rewards

training/validation splits of the WIKITABLEQUESTIONS
dataset. This required training different IML models on
each split to collect the exploration trajectories.

We ran BoRL for 384 trials for WIKISQL and 512 trials
for WIKITABLEQUESTIONS respectively. We used random
search with 30 different settings to obtain the optimal hy-
perparameter values for all our experiments. The detailed
hyperparameter settings for WIKITABLEQUESTIONS and
WIKISQL experiments are listed in Table 1 to Table 3 and
Table 4 to Table 6 respectively. Note that we used a dropout
value of 0.1 for all our experiments on WIKISQL except
MAPO which used the optimal hyperparameters reported
by Liang et al. (2018).

2. Instruction Following Task
2.1. Auxiliary Reward Features

In the instruction following task, the auxiliary reward func-
tion was computed using the single and pairwise compari-
son of counts of symbols and actions in the language com-
mand x and agent’s trajectory a respectively. Specifically,
we created a feature vector fof size 272 containing bi-
nary features of the form f(a, c) = #a(x) == #c(a)
and f(ab, cd) = #ab(x) == #cd(a) where a, b ∈ {Left,
Right, Up, Down} and c, d ∈ {0, 1, 2, 3} and #i(j) rep-
resents the count of element i in the vector j. We learn
one weight parameter for each single count comparison
feature. The weights for the pairwise features are repre-
sented using the weights for single comparison features
w(ab,cd) = α ∗wac ∗wbd + β ∗wad ∗wbc using the addi-
tional weights α and β.

The auxiliary reward is a linear function of the weight pa-
rameters (see equation 7). However, in case of MeRL, we
also used a softmax transformation of the linear auxiliary
reward computed over all the possible trajectories (at most
10) for a given language instruction.

2.2. Training Details

We used the Adam Optimizer (Kingma & Ba, 2014) for all
the setups with a replay buffer memory weight clipping of
0.1 and full-batch training. We performed hyperparameter
sweeps via random search over the interval (10−4, 10−2) for
learning rate and meta-learning rate and the interval (10−4,
10−1) for entropy regularization. For our MeRL setup with
auxiliary + underspecified rewards, we initialize the policy
network using the MAPO baseline trained with the under-
specified rewards. The hyperparameter settings are listed
in Table 7 to Table 9. MeRL was trained for 5000 epochs
while other setups were trained for 8000 epochs. We used
2064 trials for our BoRL setup which was approximately
20x the number of trials we used to tune hyperparameters
for other setups.

Table 7. MAPO hyperparameters used for the setup with Oracle
rewards in Table 1.

Hyperparameter Value

Entropy Regularization 3.39 x 10−2

Learning Rate 5.4 x 10−3

Table 8. MAPO hyperparameters used for the setup with under-
specified rewards in Table 1.

Hyperparameter Value

Entropy Regularization 1.32 x 10−2

Learning Rate 9.3 x 10−3

Table 9. MeRL hyperparameters used for the setup with underspec-
ified + auxiliary rewards in Table 1.

Hyperparameter Value

Entropy Regularization 2 x 10−4

Learning Rate 4.2 x 10−2

Meta-Learning Rate 1.5 x 10−4

Gradient Clipping 1 x 10−2

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G.,
Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D. G., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke,
V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. Ten-
sorflow: Large-scale machine learning on heterogeneous
distributed systems. ArXiv:1603.04467, 2016.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro,
J., and Sculley, D. Google vizier: A service for black-box
optimization. Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N.
Neural symbolic machines: Learning semantic parsers on
freebase with weak supervision. ACL, 2017.

Liang, C., Norouzi, M., Berant, J., Le, Q. V., and Lao,
N. Memory augmented policy optimization for program
synthesis and semantic parsing. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and



Supplementary Material for Learning to Generalize from Sparse and Underspecified Rewards

Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 31, pp. 9994–10006. 2018.

Pasupat, P. and Liang, P. Compositional semantic parsing
on semi-structured tables. ACL, 2015.

Yih, W.-t., Richardson, M., Meek, C., Chang, M.-W., and
Suh, J. The value of semantic parse labeling for knowl-
edge base question answering. ACL, 2016.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. arXiv:1709.00103, 2017.


