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Abstract

The problem of estimating causal effects of treat-
ments from observational data falls beyond the
realm of supervised learning — because counter-
factual data is inaccessible, we can never observe
the true causal effects. In the absence of “super-
vision”, how can we evaluate the performance of
causal inference methods?

In this paper, we use influence functions — the
functional derivatives of a loss function — to de-
velop a model validation procedure that estimates
the estimation error of causal inference methods.
Our procedure utilizes a Taylor-like expansion to
approximate the loss function of a method on a
given dataset in terms of the influence functions
of its loss on a “synthesized”, proximal dataset
with known causal effects. Under minimal regu-
larity assumptions, we show that our procedure is
\/n-consistent and efficient. Experiments on 77
benchmark datasets show that using our proce-
dure, we can accurately predict the comparative
performances of state-of-the-art causal inference
methods applied to a given observational study.

1. Introduction

The problem of estimating individualized causal effects of
a treatment from observational data is central in many ap-
plication domains such as healthcare (Foster et al., 2011),
computational advertising (Bottou et al., 2013), and social
sciences (Xie et al., 2012). In the past few years, numerous
machine learning-based models for causal inference were
developed, capitalizing on ideas from representation learn-
ing (Yao et al., 2018), multi-task learning (Alaa & van der
Schaar, 2018) and adversarial training (Yoon et al., 2018).
The literature on machine learning-based causal inference
is constantly growing, with various related workshops and
competitions being held every year (Dorie et al., 2017).
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Figure 1. Pictorial representation of our validation procedure.
To estimate the performances of two competing models (model 1
and model 2), we first estimate their performances with respect to
the plug-in distribution (£; (f) and £ (0)), and then correct for the
plug-in bias using the influence functions £, (A) and £ (6).

The fundamental problem of causal inference is that after a
subject receives a treatment and displays an outcome, it is
impossible to know what the counterfactual outcome would
have been had they received an alternative treatment. Since
causal effects are determined by both factual and counter-
factual outcomes, ground-truth effects can never be mea-
sured in an observational study (Stuart et al., 2013). In the
absence of “labels” for causal effects, how can we evaluate
the performance of causal inference methods?

Addressing this question is an important step for translat-
ing advances in (machine learning-based) causal inference
into practice. This is because the performance of a given
method depends on the dataset at hand, and the comparative
performances of different methods can vary wildly across
datasets (Dorie et al., 2017). With the vast multitude of
methods at their disposal, practitioners need a data-driven
validation procedure — akin to cross-validation — in or-
der to determine which method to use for a given study.
Absent such a procedure, many practitioners would abstain
from using machine learning, and instead resort to familiar
“white-box” models (e.g., linear regression).

In this paper, we develop a model validation procedure that
estimates the performance of causal inference methods ap-
plied to a given observational dataset without the need to
access counterfactual data. To the best of our knowledge,
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ours is the first validation procedure for models of individu-
alized causal effects. Our procedure can be easily extended
to other under-explored problems involving unlabeled data,
such as semi-supervised learning (Oliver et al., 2018).

In the model validation problem, we are given an observa-
tional dataset drawn from an unknown distribution Py (with
a parameter 0), and we want to estimate the model’s loss
function! £(@) when trained on the dataset at hand. Unlike
supervised learning, where we can use cross-validation to
estimate £(0), in causal inference we have no access to the
empirical measure of £(6) because it depends on counter-
factual data that we never observe (Shmueli et al., 2010).

Our validation procedure uses influence functions — a key
technique in robust statistics and efficiency theory (Hampel
et al., 2011; Robins et al., 2008) — to efficiently estimate
the loss function of a causal inference model without the
need to observe the true causal effects. The key insight be-
hind our validation procedure is that an influence function
£(0) of the loss functional £(9) quantifies the “functional
derivative” (i.e., Gateaux derivative) of £(6) with respect to
the data distribution Py (van der Vaart, 2014). Thus, if we
know the model’s loss under some known distribution P
that is close enough to the true distribution Py, then we can
estimate £(6) via a Taylor expansion as follows:

LB) ~ £0) + £0)d6—0)

v v

Plug-in estimate Plug-in bias

Our two-step validation procedure is succinctly described
by the equation above. In the first step, we use the observed
data to synthesize a “plug-in” distribution P, under which
we can calculate the model’s loss £(6). In the second step,
we calculate the influence function £() to correct for the
plug-in bias resulting from evaluating the model’s loss un-
der 6 instead of 6. (A pictorial depiction of our procedure
is provided in Figure 1, where we illustrate its use in vali-
dating two competing models? for the sake of model selec-
tion.) In Section 3, we show that under minimal regularity
conditions, our validation approach is consistent, achieves
the optimal parametric rate Op(n~ z ), and is efficient (min-
imizes the variance of its estimates).

To demonstrate the practical significance of our model val-
idation procedure, we collected all causal inference meth-
ods published at ICML, NeurIPS and ICLR between 2016
and 2018, and used our procedure to predict their compara-
tive performances on 77 benchmark datasets from a recent
causal inference competition (Dorie et al., 2017). We show
that using our procedure, practitioners can accurately pre-
dict the comparative performances of state-of-the-art meth-

"We use simplified notation in this Section for ease of exposi-
tion. Precise notational definitions are provided in Section 2.
*In Figure 1, we do not show £ (6) to avoid clutter.

ods applied to a given observational study. Thus, epidemi-
ologists and applied statistician can use our procedure to
select the right model for the observational study at hand.

Related Work

In the past few years, there has been a notable growth in re-
search developing machine learning methods for estimat-
ing individualized causal effects (Zhao et al., 2019; Sub-
baswamy & Saria, 2018; Johansson et al., 2018; Atan et al.,
2018; Yao et al., 2018; Chernozhukov et al., 2018; Ray &
van der Vaart, 2018; Kiinzel et al., 2017; Li & Fu, 2017,
Hahn et al., 2017; Powers et al., 2018; Kallus, 2017; Jo-
hansson et al., 2016; Shalit et al., 2017). The modeling
approaches used in those works were vastly diverse, rang-
ing from Gaussian processes (e.g., (Alaa & van der Schaar,
2017)), to causal random forests (e.g., (Wager & Athey,
2017)) to generative adversarial networks (e.g., GAN-ITE
(Yoon et al., 2018)). We present a detailed survey of exist-
ing methods in the Supplementary material.

Researchers developing new methods for causal inference
validate their models using synthetic data-generating dis-
tributions that encode pre-specified causal effects — e.g.,
(Hill, 2011; Wager & Athey, 2017; Powers et al., 2018).
However, such synthetic distributions bear very little re-
semblance to real-world data, and hence are not informa-
tive of what methods would actually work best on a given
real-world observational study (Setoguchi et al., 2008). Be-
cause no single model will be superior on all observational
studies (Dorie et al., 2017), model selection must be guided
by a data-driven validation procedure.

While the literature is rich with causal inference models,
it falls short of rigorous methods for validating those mod-
els on real-world data. Applied researchers currently rely
on simple heuristics to predict a model’s performance on a
given dataset (Schuler et al., 2017; Rolling & Yang, 2014;
Van der Laan et al., 2003), but such heuristics do not pro-
vide any theoretical guarantees, and can fail badly in cer-
tain scenarios (Schuler et al., 2018). In Section 5, we con-
duct empirical comparisons between our procedure and
various commonly-used heuristics.

Despite their popularity in statistics, influence functions
are seldom used in machine learning. Recently in (Koh &
Liang, 2017), influence functions were used for interpret-
ing black-box models by tracing the impact of data points
on a model’s predictions. Our usage of influence functions
differs from (Koh & Liang, 2017) in that we use them to
construct efficient estimators of a model’s loss and not to
explain the inner workings of a learning algorithm. In that
sense, our work is more connected to the literature on plug-
in estimation and nonparametric efficiency theory (Gold-
stein & Messer, 1992; Robins et al., 2008; 2017; van der
Vaart, 2014).
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2. Problem Setup
2.1. Causal Inference from Observational Data

We consider the standard potential outcomes framework for
modeling causal effects in observational and experimental
studies (Rubin, 1974; 2005). In this framework, a “subject”
is associated with a feature X € X, a treatment assignment
indicator W € {0, 1}, and an outcome Y € R. The outcome
variable Y takes on the value of either of the two “potential
outcomes” Y@ and YV, where ¥ = Y if the subject
received the treatment (W = 1), and Y = Y© otherwise,
ie, Y=WYW 4+ (1 -W)Y©, The causal effect of the
treatment on the subject is thus given by Y(!) — y'(©),

m Observational data. In a typical observational study, we
are given n samples of the tuple Z = (X, W, Y") drawn from
a probability distribution with a parameter 6, i.e.,

Zla"'7ZYLN]P>97 (1)

where Py belongs to the family P = {Py. : 6’ € O}, and O is
the parameter space. We break down the parameter 6 into a
collection of nuisance parameters 6 = {uo, u1, 7, n}, where
1o and p; are the conditional potential outcomes, i.e.,

fw(z) =Eo[Y™ | X = z], w € {0,1}, 2)
and 7 is the treatment assignment mechanism, i.e.
m(z) =Po(W =1]X = z), 3)

whereas n(z) = Po(X = z). To ensure the generality of our
analysis, we assume that P is a nonparametric family of
distributions. That is, © is an infinite-dimensional parame-
ter space, with the nuisance parameters {0, i1, 7, n} being
specified only through mild smoothness conditions.

m The causal inference task. The goal of causal inference
is to use the samples {Z;};—; in order to infer the causal
effect of the treatment on individual subjects based on their
features, i.e., the estimand is a function 7 : X — R, where

T(z) =Eo[ YW - YD | X =2z]. “)

The function T'(z) in (4) is commonly known as the con-
ditional average treatment effect (CATE)’. Its importance
resides in the fact that it can guide individualized decision-
making policies (e.g., patient-specific treatment plans or
personalized advertising policies (Bottou et al., 2013)). For
this reason, the CATE function is the estimand of interest
for almost all modern machine learning-based causal infer-
ence methods (e.g., (Alaa & van der Schaar, 2018; Wager
& Athey, 2017; Yoon et al., 2018; Yao et al., 2018)).

3To ensure the identification of the CATE, we assume that Py
satisfies the standard “unconfoundedness” and “overlap” condi-
tions in (Pearl, 2009; Rubin, 2005).
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Figure 2. Schematic of the causal inference model validation and
selection procedure. In this example, M* = GAN-ITE, hence the
procedure succeeds if M, = GAN-ITE.

m Accuracy of causal inference. A causal inference model
M maps a dataset {Z;}7_, to an estimate 7'(.) of the CATE.
The accuracy of a model is typically characterized by the
squared-L? loss incurred by its estimate, i.e.,

6(T) 2 || T(X) - T(X) ||, (5)

where || f(X)||3 = Eo[f?(X)]. The performance evaluation
metric in (5) was dubbed the precision of estimating hetero-
geneous effects (PEHE) in (Hill, 2011) — it quantifies the
ability of a model to capture the heterogeneity of the causal
effects of a treatment among individuals in a population.

2.2. Model Validation & Selection

V_V)e now consider a set of candidate causal inference models
M ={Mai, ..., Mu}. These may include, for example,
different machine learning methods (e.g., Causal Gaussian
processes, GAN-ITE, causal forests, etc.), different hyper-
parameter settings of one method, etc. Our goal is to select
the best model M™* € M that incurs the minimum PEHE
for a given dataset. A schematic depiction of our model
selection framework is provided in Figure 2.

m Beyond cross-validation. Evidently, reliable model se-
lection requires a model validation proced_u>re that estimates
the PEHE accuracy of each model in M. Unlike stan-
dard supervised learning in which all data points are def-
initely “labeled”, in the causal inference setting we do not
have access to the ground-truth causal effect YY) — y'(©),
This is because in an observational dataset, we can only
observe the factual outcome Y™, but not the counter-
factual Y* ~"). This renders the empirical measure of
PEHE, ie., 1 Y7 (T(X:) — (V" = V?))2, incalculable
from the samples {Z; = (X;, W, Y:)}i—, and hence stan-
dard cross-validation techniques cannot be used to evaluate
the performance of a given causal inference model®.

“In Appendix B, we analyze a number of naive alternatives to
cross-validation that were used in previous works to tune the hy-
perparameter of causal inference models (Shalit et al., 2017; Shi-
modaira, 2000), etc.). We show that all such alternatives provide
either inconsistent or inefficient estimates of the PEHE.
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3. Model Validation via Influence Functions

How can we test the PEHE performance of a causal infer-
ence model without observing a test label Y V) — Y (©) 2

To answer this question, we develop a consistent and effi-
cient validation procedure that estimates the PEHE of any
causal inference model via a statistic that does not depend
on the counterfactual data Y* — ") Using this proce-
dure, practitioners can evaluate, compare and select causal
inference models as envisioned in Section 2.2.

Our validation procedure adopts a plug-in estimation prin-
ciple (Wright et al., 2011), whereby the true (unobserved)
causal effect T is replaced with an estimate T'. The key idea
of our procedure is that — since PEHE is a functional of
distributions spanned by © — if we know a model’s PEHE
under a proximal plug-in distribution P; =~ Py, then we can
approximate its true PEHE under Py using a (generalized)
Taylor expansion. In such an expansion, the influence func-
tions of the PEHE functional are analogous to derivatives
of a function in standard calculus.

A high-level description of our procedure is given below.

Input: Observational data, a model M.

1. Step 1: Plug-in estimation

« Fit a plug-in model § = {jio, fi1, %, 7]}
« Compute a plug-in estimate £; of the PEHE.

2. Step 2: Unplugged validation

« Use the influence functions of £; to predict £g.

Output: An estimate of the PEHE for model M.

In what follows, we provide a detailed explanation of the
two-step procedure above.

3.1. Step 1: Plug-in Estimation

In Step 1, we obtain an initial guess of a model’s PEHE by
evaluating the PEHE functional at an estimated parameter
0 instead of the true parameter 6, i.e.,

6(T) = | T(x) - T(X) |3, (©)

where 7 is the CATE estimate of the model M being vali-
dated, 0 = {jio, fi1, 7,7} is a plug-in model that is obtained
from the observational data, and 7'(z) = fu1(x) — fio(z).

The plug-in model 6 = {jio, ji1, 7,7} is estimated from the
observational data {Z;}7_, as follows:

® ji,, w € {0,1}, is obtained by fitting a supervised re-

gression model to the sub-dataset {(X;,Y;) | W; = w}.

e 7 is obtained using a supervised classification model
fit to the sub-dataset {(X;, W;)}i—;.

The feature distribution component of 6, 7j(z), can be ob-
tained by estimating the density of X using the feature sam-
ples {X;}i—;. (We defer the implementation details of the
plug-in model 4 till Section 5.) Once we have obtained 6,
the plug-in PEHE estimate in (6) can be easily evaluated.

The plug-in approach in (6) solves the problem of the inac-
cessibility of the label YV — Y by “synthesizing” such
label through the plug-in model 6, and testing a model’s
inferences against the synthesized CATE function 7. This
idea is the basis for recent model selection schemes, such as
Synth-Validation (Schuler et al., 2017) and Plasmode simu-
lations (Franklin et al., 2014), which propose similar plug-
in approaches for validating causal inference models.

m Plug-in estimation is not sufficient. The plug-in esti-
mate in (6) exhibits a model-dependent plug-in bias £y — £;
that makes it of little use for model selection. This is be-
cause Zé(f) measures how well 7' approximates the syn-
thesized causal effect 7 and not the true effect 7. Thus,
comparing plug-in PEHE estimates of different models can
reveal their true comparative performances only if the plug-
in bias is small®, i.e., | T — T'||2 ~ 0. However, if ||T — T|
is large, then plug-in PEHE:s tell us nothing about how dif-
ferent models compare on the true distribution Py.

3.2. Step 2: Unplugged Validation

How can we get the plug-in bias “unplugged”? We begin by
noting that the plug-in PEHE and the true PEHE are two
evaluations of the same functional at § and 6, respectively.
Therefore, we can write £y in terms of £; via a von Mises
expansion as follows (Fernholz, 2012):

(k) (o,

~ ~ e 0. (z;
€o(T) = £;(T) + > / Wd(%l%@ﬂ ()
k=1 ’

where £ (z;T) = £ (21, ..., 2; T) is a k*" order influ-
ence function of the PEHE functional at ¢ (indexed by f),
with z being a realization of the variable Z in (1), and P§*
is the k-fold product measure of Py.

m Influence functions. The von Mises expansion gener-
alizes Taylor expansion to functionals — it recovers the
PEHE at 6 based solely on its (higher order) influence func-
tions at 0. In this sense, the influence functions of function-
als are analogous to the derivatives of (analytic) functions.
Influence functions may not be unique: any set of unbiased
k-input functions — i.e., Eg [éék) (z; f)} = 0 — that satisfy
(7) are valid influence functions. We discuss how to calcu-
late the influence functions of £; in Section 4.

SParadoxically enough, if T is a perfect estimate of T' (i.e.,
|T — T||2 = 0), then the model selection task itself becomes ob-
solete, because the plug-in model would already be better than any
model being evaluated. With the plug-in approach, however, we

can never know how accurate T is, since £;(T) = 0 by definition.



Validating Causal Inference Models via Influence Functions

(a) L S(e|T) (b)
Predicted

(c)

== Model 1
== Model 2

Score function
Score function
Score function

Figure 3. Validating causal inference models via influence functions. Panels (a)-(c) depict exemplary MLE estimating equations for
the PEHE as explained in Section 3.3. The x-axis corresponds to PEHE values (£), and the y-axis corresponds to the score function
S(£|T). The true PEHE £y (T) solves the estimating equation S(£|T) = 0. Solid lines (—) correspond to S(£| T'), whereas dashed
lines (===== ) depict the derivative of the score at the plug-in PEHE. (a) The unplugged validation step is analogous to the first iteration
of Fisher scoring via Newton-Raphson method. The predicted PEHE is obtained by correcting for the plug-in bias, which is inversely
propomonal to the Fisher information metric Z(£ | T) (b) Comparison between two plug-in estimates ¢, and 05 for a score function

S(e| T) (=—). The better plug-in estimate conveys more (Fisher) information on the true PEHE, i.e., slope of (===== ) is steeper than that
Of (====- ), and hence it provides a better PEHE prediction. (c) Selecting between two models 7" and 7 with score functions S(£|7")
and Sg (€| T?), respectively. While 7" has a smaller plug-in PEHE than 72, predicted PEHEs flip after correcting for plug-in bias.

An influence function ég“) (21,...,zx;T) can be interpreted
as a “measure of the dependence of £; on the value of k data
points in the observational data”, i.e., its value reflects the
sensitivity of the plug-in PEHE estimate to perturbations
in the data. Marginalizing out the data (z1, ..., zx) with re-
spect to d(Ps — P5) results in a functional derivative of £;
in the “direction” (Py — P5) (Robins et al., 2017).

The expansion in (7) represents the plug-in bias £y — £; in
terms of functional derivatives of £;. To see how the bias is
captured, consider the first-order von Mises expansion, i.e.,

£o(T) =~ £5(T) + / 09 (T)d(Py — Pp). (8
Thus, the plug-in bias will be large if the functional deriva-
tive of £; is large, i.e., the PEHE estimate is sensitive to
changes in the plug-in model 4. This derivative will be large
if many data points have large influence, and for each such
data point, the plug-in distribution is not a good represen-
tative of the true distribution, i.e., d(Py — Pj) is large.

m Dispensing with the counterfactuals. Note that the ex-
pansion in (7) quantifies the plug-in bias in terms of fixed
functions of “factual” observations Z = (X, W, Y ")) only.
Thus, the true PEHE can be estimated without knowledge
of the counterfactual outcome Y* =) by calculating the
sample average of the first m terms of (7) as follows:

m

1
+Zk'U

where U, is the empirical U-statistic, i.e., the sample aver-
age of a multi-input function (see Appendix B). (9) follows
directly from (7) by capitalizing on the unbiasedness of in-
fluence functions, i.e., Egl€S"” (Z;T)] = 0, Vk.

&m(T) [&Pz:1)], ©

3.3. Relation to Maximum Likelihood Estimation

In Section 3.2, we used functional calculus to construct a
mathematical approximation of a model’s PEHE that does
not depend on counterfactual data. But is this approxima-
tion also a statistically efficient PEHE estimate?

Recall that in (parametric) maximum likelihood estimation
(MLE), a parameter estimate 6* is obtained by solving the
estimating equation S(0) = 0, where S(6) is the score func-
tion — i.e., the derivative of the log-likelihood function.
For estimating equations that cannot be solved analytically,
the classical Fisher scoring procedure (Longford, 1987) is
used to obtain a numerical solution for the MLE.

Our two-step validation procedure® is equivalent to find-
ing the MLE of a model’s PEHE using the classical Fisher
scoring procedure. To illustrate this equivalence, we cap-
ture the structural resemblance between the two procedures
in Figure 3 as well as the tabulated comparison below.

Estimating equation
(Parametric MLE)
S(0%) =

Fisher scoring

0 ~ 0o+ Z~*(6o) S(6o)

(Our procedure)

SEIT) =0 | £o(T) ~ £5(T) +| Eg[€S" (2 T)]

Fisher scoring implements the Newton-Raphson numerical
method to solve S(#) = 0. It utilizes the Taylor approxima-
tion of S(#) around an initial 6y to formulate an iterative
equation Oy 41 = 0 +Z1(0x) S(0x) — where Z(0) is the
Fisher information — that eventually converges to 6*.

SHere we consider a first-order von Mises approximation.
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From the tabulated comparison above, we can see that our
procedure is analogous to the first Newton-Raphson itera-
tion of Fisher scoring. That is, the plug-in estimation step is
similar to finding an initial estimate 6y, and the unplugged
validation step is similar to updating the initial estimate.

This analogy suggests that our procedure is statistically
sound. Similar to cross-validation in supervised learning
(Dudoit & van der Laan, 2005), our procedure is a de facto
MLE algorithm that computes the “most likely PEHE of a
model given observational data”. As shown in Figure 3-(a),
it does so by searching for the root of the score S(£|T) via
a one-shot Newton-Raphson procedure.

The juxtaposition of our procedure and Fisher scoring — in
the tabulated comparison above — suggests an operational
definition for Fisher information Z(¢|T) as the ratio be-
tween the score function and influence function. (This re-
lation also holds in parametric models (Basu et al., 1998).)
The expression of the plug-in bias in terms of the Fisher
metric provides an information-geometric interpretation of
our validation procedure. That is, the Fisher information
content of the plug-in model § determines how much the
final PEHE estimate will deviate from the initial plug-in
estimate (see Figures 3-(b) and 3-(c) for depictions).

3.4. Consistency and Efficiency

In the following Theorem’, we establish the conditions un-
der which our validation procedure is statistically efficient.

Theorem 1. Let po, p1, and © be bounded Holder func-
tions with Holder exponents oo, a1 and 3, respectively, and
X €[0,1]% If (i) T and 6 are fit using a separate sample
than that used to compute a&m (T, and (ii) T is a minimax
optimal estimate of T, then we have that:

H(m) (7 ~ 1 —(2gnag)(m+1)
8(T) — (T) = Op Gz v TR ).

If m> [W‘Aalﬂ, then the following is satisfied:

(Consistency) /n (£ (T)) — £4(T)) LN N(0,0?%),
(Efficiency) Var[60™) (T)] < Var[#'(T)],
for some constant o > 0, and any estimator £ (T). a

This result gives a cut-off value on the minimum number of
influence terms m needed for the PEHE estimator 5™ (T)
to be statistically efficient. This cut-off value depends on
the dimensionality and smoothness of the CATE function.

Theorem 1 also says that the plug-in model 6 needs to be
good enough for our procedure to work, i.e., 7 must be a
minimax optimal approximation of 7. This is a viable re-
quirement: it is satisfied by models such as Gaussian pro-
cesses and regression trees (Alaa & van der Schaar, 2018).

7 All proofs are provided in the Appendix.

Finally, Theorem 1 also says that our procedure yields
the minimum variance estimator of a model’s PEHE. This
can be understood in the light of the analogy with MLE
(Section 3.3): since influence functions are proportional to
Fisher information, the PEHE estimate in (9) satisfies the
Cramér-Rao lower bound on estimation variance.

4. Calculating Influence Functions

Recall that influence functions operationalize the deriva-
tives of £y (.) with respect to distributions induced by 6. But
since Py is nonparametric — i.e., 6 is infinite-dimensional
— how can we compute such derivatives?

A common approach for computing the influence functions
of a functional of a nonparametric family P is to define
a smooth parametric submodel of P, and then differenti-
ate the functional with respect to the submodel’s (scalar)
parameter (van der Vaart, 2014; Kennedy, 2018). A para-
metric submodel P, = {P. : ¢ € R} C P is a subset of mod-
els in P that coincides with Py at e = 0. In this paper, we
choose to work with the following parametric submodel:
dP.(z) = (1 + eh(z)) dP¢(z), for a bounded function h(z).

Given the submodel P, it can be shown (by manipulating
the von Mises series in (7) — see Appendix G) that the first
order influence function satisfies the following condition:

94.(T)
Oe  le=0

where S.(z) = dlog(dP.(z))/0e is the score function of the
parametric submodel, and £. is the PEHE functional evalu-
ated at P.. In the next Theorem, we use (10) to derive the
closed-form expression for éél) (z;7T).

Theorem 2. The first order influence function of the PEHE

-~

functional €4(T) is unique, and is given by:

= Eo[£)(:T) - Se(2)]e=0],  (10)

6P(2;T) = (1- B)T*(X) + BY (T(X) - T(X)) -
A(T(X) = T(X))? + T*(X) — £o(T),

where A = (W — (X)), and B = 2W (W — (X)) -C~*
for C = 7(X)(1 - 7(X)). O

This result implies that the influence functions of £4(7) do
not depend on n(x). Thus, the plug-in model § does not
need to be generative. This is a great relief since estimating
(high-dimensional) feature distributions can be daunting.

m Influence functions of influence functions. Unfortu-
nately, higher order influence functions of PEHE are in-
tractable, hence closed-form expressions akin to Theorem 2
are not feasible. In Appendix D, we propose a recursive fi-
nite difference algorithm to approximate higher order influ-
ence using the fact that influence functions are derivatives,
hence higher order influence is obtained by calculating first
order influence of lower order influence functions.
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5. Automated Causal Inference: A Case Study

As envisioned in Figure 2, practitioners can use our vali-
dation procedure to select the best causal inference method
for a given dataset. Unlike pervasive “expert-driven” mod-
eling practices (Rubin, 2010), this automated and data-
driven approach to model selection enables confident de-
ployment of (black-box) machine learning-based methods,
and safeguards against naive modeling choices.

In this Section, we demonstrate the practical significance of
influence function-based validation by assessing its utility
in model selection. In particular, we assemble a pool of
models — comprising all methods published recently in
ICML, NeurIPS and ICLR — and use our validation proce-
dure to predict the best performing model on 77 benchmark
datasets from a recent causal inference competition.

5.1. Experimental Setup

m Influence function-based validation. We implement a
stratified P-fold version of our validation procedure as fol-
lows. First, we randomly split the training data into P mu-
tually exclusive subsets, with Z, being the set of indexes
of data points in the p'" subset, and Z_, its complement.
In the p*" fold, the model being evaluated is trained on the
data in Z_,, and issues a CATE estimate 7__,. For valida-
tion, we execute our two-step procedure as follows:

‘ Step 1: Plug-in estimation (Section 3.1)

Using the dataset indexed by Z_,,, we fit the plug-in model
0_p = {fi—p,0, fi—p,1,7—p} as explained in Section 3.1. We
use two XGBoost regression models for i_, 0 and ji—p 1,
and then calculate T_, = ji_p1 — fi_po. For #_,, we use
an XGBoost classifier. Our choice of XGBoost is motivated
by its minimax optimality (Linero & Yang, 2018), which is
required by Theorem 1.

Step 2: Unplugged validation (Section 3.2) ‘

Given é,p, we estimate the model’s PEHE on the held-out
sample Z, using the estimator in (9) with m = 1, i.e.,

8 = ez, [(Tp(X0) = Top(X0))? + £ (257,)]

-P

where £ (.) is given by Theorem 2. (Here, the first order
U-statistic U; in (9) reduces to a sample average.)

The final PEHE estimate is given by the average PEHE es-
timates over the P validation folds, i.e., £" = n~1 >, NS
In all experiments, we set m = 1 since higher order influ-
ence terms did not improve the results. This may be either
because the condition m > d/2(ao A 1) (Theorem 1) is
satisfied with m = 1, or because we use approximate higher
order influence (Appendix G). We defer investigations into
the utility of higher order influence terms to future work.

Method name Reference % Winner
BNN* Johansson et al. (2016) 3%
CMGP? Alaa et al. (2017) 12%
TARNet* Shalit et al. (2017) 8 %
CFR Wass. ¥ Shalit et al. (2017) 12 %
CFR MMD* Shalit et al. (2017) 9%
NSGP* Alaa et al. (2018) 17%
GAN-ITE Yoon et al. (2018) 7%
SITE? Yao et al. (2018) 7%
BART Hill (2011) 15 %
Causal Forest Wager et al. (2017) 10 %
Factual — 53%
IPTW — 54 %
Plug-in — 65 %
IF-based — 72 %
Random — 10 %
Supervised — 84 %

Table 1. Comparison of baselines over all datasets.
Refer to Appendix H for description of each method. (¥ ICML, ¥NeurIPS, ICLR.)

m Automated causal inference. Using our validation pro-
cedure, we validate a set of candidate models for a given
dataset, and then pick the model with smallest 5. Our
candidate models include all methods published in ICML,
NeurIPS and ICLR conferences from 2016 to 2018. This
comprises a pool of 8 models, with modeling approaches
ranging from Gaussian processes to generative adversarial
networks. In addition, we included two other key models
developed in the statistics community (BART and causal
forests). All candidate models are presented in Table 1.

m Data description. We conducted extensive experiments
on benchmark datasets released by the “Atlantic Causal In-
ference Competition” (Hill, 2016), a data analysis compe-
tition that compared models of treatment effects. The com-
petition involved 77 semi-synthetic datasets: all datasets
shared the same data on features X, but each dataset had
its own simulated outcomes and assignments (W,Y"). Fea-
tures were extracted from a real-world observational study,
whereas outcomes and assignments were simulated via
data generating processes that were carefully designed to
mimic real data. Each of the 77 datasets had a unique data
generating process encoding varying properties (e.g., levels
of treatment effect heterogeneity, dimensionality of the rel-
evant feature space, etc.) Detailed explanation of the data
generating processes was published by the organizers of the
competition in (Dorie et al., 2017).

The feature data shared by all datasets was extracted from
the Collaborative Perinatal Project (Niswander, 1972), a
study conducted on a cohort of pregnant women to identify
causes of infants’ developmental disorders. The treatment
was a child’s birth weight (W = 1 if weight < 2.5 kg), and
outcome was the child’s IQ after a given follow-up period.
The study contained 4,802 data points with 55 features (5
are binary, 27 are count data, and 23 are continuous).
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Figure 4. Demonstration of the inner workings of influence function-based validation. (Left) Frequency of selection of each model.
(Middle) Box-plots for the errors in PEHE estimates for each model. (Right) Sensitivity to changes in the plug-in model.

m Performance evaluation. We applied automated causal
inference on 10 realizations of the simulated outcomes for
each of the 77 datasets, i.e., a total of 770 replications.
(Those realizations were generated by the competition or-
ganizers and are publicly accessible (Hill, 2016).) For each
realization, we divide the data into 80/20 train/test splits,
and use training data to predict the PEHE of the 10 candi-
date models via 5-fold influence function-based validation.
Then, we select the model with smallest estimated PEHE,
and evaluate its PEHE on the out-of-sample testing data.

m Baselines. We compare influence function-based valida-
tion with 3 heuristics commonly used in the epidemiologi-
cal and statistical literature (Schuler et al., 2018):

Baseline PEHE estimator

Factual validation | 2, (T) = 1 3" (aw, (X;) — v,")?

(i, (x)—v(Vi))2

IPTW validation | £,(T) = 2 3, v —sx7)

Plug-in validation | 2,(7) = 1 3" (T(X;) — T(X;))?

Factual validation evaluates the error in the potential out-
comes (o, p1) using factual samples only. Inverse propen-
sity weighted (IPTW) validation is similar, but weights
each sample with its (estimated) “propensity score” 7 (z)
to obtain unbiased estimates (Van der Laan et al., 2003).
Plug-in validation is identical to Step 1 of our procedure:
it obtains a plug-in PEHE estimate (Rolling & Yang, 2014;
Schuler et al., 2017). To ensure fair comparisons, we model
T and 7 in the heuristics above using XGBoost models sim-
ilar to the ones used in Step 1 of our procedure.

5.2. Results and Discussion

Table 1 summarizes the fraction of datasets for which each
baseline comes out as winner across all datasets®. As we
can see, our influence function-based (IF-based) approach

8The magnitudes of causal effects were not consistent across
datasets, hence PEHE values were in different numerical ranges.

that automatically picks the best model for every dataset
outperforms any single model applied repeatedly to all
datasets. This is because the 77 datasets encode different
data generating processes, and hence no single model is ex-
pected to be a good fit for all datasets. The gains achieved
by automation are substantial — the PEHE of the auto-
mated approach was (on average) 47% smaller than that
of the best performing single model.

It comes as no surprise that our procedure outperforms the
factual, IPWT and plug-in validation heuristics. This is be-
cause, as we have shown in Theorem 1, the IF-based ap-
proach is the most efficient estimator of PEHE. We also
compare our validation procedure with the “supervised”
cross-validation procedure that is allowd to observe the
counterfactual data in the training set. As we can see, de-
spite having access to less information, our IF-based ap-
proach comes closer to the supervised approach (as com-
pared to the competing validation methods).

In Figure 4, we trace the inner workings of our procedure
by comparing the plug-in PEHE estimate £; obtained in
Step 1 with the corrected estimate £5 obtained in Step 2,
in terms of the frequency of selection of each model, the
error in PEHE estimates per model, and the probability of
successfully selecting the best model across the 77 datasets.

As we can see in Figure 4 (left), validation with the plug-in
estimate £; selects models almost arbitrarily (with nearly
equal probabilities), but the corrected estimate £ is able
to select well-performing ones more frequently. This is be-
cause, as shown in Figure 4 (middle), £5" reduces the bias
and variance incurred by the initial plug-in estimate, hence
increasing the chance of distinguishing good models from
bad ones. Figure 4 (right) shows that our procedure is ro-
bust to changes in the plug-in model — as we span the
number of trees of the XGBoost-based plug-in model, we
see little effect on the chance of selecting the best model.
These results suggest that influence function-based valida-
tion can help practitioners leverage machine learning to en-
hance current practices in observational research.
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