
Supplement for
Graph Element Networks: adaptive, structured computation and memory

Ferran Alet 1 Adarsh K. Jeewajee 1 Maria Bauza 2

Alberto Rodriguez 2 Tomás Lozano-Pérez 1 Leslie Pack Kaelbling 1

A. Experimental details
Code can be found at https://github.com/
FerranAlet/graph_element_networks. For
the full paper with supplementary materials, please see
https://arxiv.org/abs/1904.09019.

A.1. Details common to all experiments

Although the experiments are pretty diverse, most of the
code and decisions are shared between them. We first talk
about the details common to all experiments.

We explored two representation functions. The first as-
sumes that nodes are placed in a regular grid and uses the
latent values at the four nodes of the grid cell containing
a point to compute its latent value. So the representation
function r(x,y) = v; letting (i1, i2, i3, i4) be the node indices
of the grid cell containing (x,y), and letting (xij , yij) be
the location of node ij , then vij = |x − xij | · |y − yij | and
v` = 0 for all other indices `. This is a generalization
of barycentric coordinates to the rectangular case. The
second is a “soft” nearest neighbor representation func-
tion r(x,y) = softmax(D((x,y))) where D((x,y)) is a vector
whose i − th entry is −dist((x,y),ni). The grid-based rep-
resentation has the advantage of being sparse while the
soft nearest-neighbor representation can be applied indepen-
dently of the placement or topology of the nodes. Since
they did not have significantly different results in our exper-
iments, we decided to use the “soft” nearest neighbor in all
experiments of the Poisson experiments, since it also works
for non-grid meshes and used the barycentric representation
for the pushing and scene experiments, to show it can also
work with sparse representations.

For our implementation we used PyTorch (?), we used
ReLU non-linearities, trained with Adam (?) with learning

1CSAIL - MIT, Cambridge, MA, USA 2Mechanical Engineer-
ing - MIT, Cambridge, MA, USA. Correspondence to: Ferran Alet
<alet@mit.edu>.

Proceedings of the 36th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

rate 3e-3.

We tried both training independent networks for each mesh
and training a single model for all meshes, with no signif-
icant difference between both. We only put the results of
a single model, since it reinforces our message of a single
model being able to trade off computation and accuracy. We
note that, as the density of the mesh increases, the number
of computations and depth for GENs increases, but since
we are reusing the same weights, the number of weights is
always smaller than those of the baseline. The depth of the
baseline is similar to a GEN of 4x4 nodes and we found that
adding extra depth did not help much.

A.2. Poisson experiments on a square

The GNN within the GEN is specified by: latent space
L = R32; a set of k2 nodes placed on a uniformly-spaced
grid; edges generated by the Delaunay triangulation of the
nodes; encoders e1, e2 and decoder d1 are two-layer neural
networks (with a hidden state of 48 and 32 units respec-
tively); the GNN message size is 16, and both edge and
node modules have one hidden layer of size 48 and 64 re-
spectively; and the diameter of the graph is T = 2(k − 1).

The test set results were averaged over 256 sample points
per scenario, for 32 scenarios of 50 houses. We trained the
baseline for 3000 epochs and GENs for 3000/6=500 epochs
(since we trained on 6 mesh configurations, from 2x2 to
7x7).

A.3. Poisson experiments on a sphere

For the spheres, we generated our own dataset of pairs of
Laplacians and PDE solutions. Similar to the square house
experiments, we had 250 houses with 32 scenarios each;
trained on 200 and tested on 50. We had 128 inputs and
128 queries. In contrast to the square experiments, since we
did not have easy access to a PDE solver for a sphere, we
instead specified the solution of the PDE and numerically
computed the Laplacian. The solution of the PDE was of
the form:

f (x) =
8∑
i=1

ki,s · (x · vi)3

https://github.com/FerranAlet/graph_element_networks
https://github.com/FerranAlet/graph_element_networks
https://arxiv.org/abs/1904.09019

Graph Element Networks

with ki a random gaussian scalar, which also varied with
scenario s and vector directions vi which played the role of
heater/cooler positions. Moreover, since the dot product on
a sphere is symmetric and we raise it to the cube (an odd
function), we know:∫

x∈S2

[
(x · vi)3

]
= 0

this in turn forces:∫
x∈S2

f (x) =
8∑
i=1

ki,s

∫
x∈S2

[
(x · vi)3

]
=

8∑
i=1

0 = 0

This is important because since the sphere has no bound-
ary conditions, solutions to the Poisson equation are only
defined up to a constant. We thus define that the solution
is the unique function which satisfies the equation and has
integral 0.

Computing the Laplacian on a sphere is not trivial to do
analytically since the partial derivatives have to be taken on
the sphere, not on Cartesian space. Since the Laplacian is
related to the difference between f (p) and the mean value
of f (x) in the epsilon ball around p, another interpretation
is to say that the relevant neighbors are only those that lie
on the sphere. We compute the Laplacian numerically by
computing the tangent plane at x by using Gram-Schmidt
to complete an ortonormal basis which includes x: {x,a,b}.
Then, we numerically approximate both second derivatives
by taking ε steps in a,b, projecting back to the sphere and
evaluating there:

∇2f (x) ≈ 1
4ε2

(
f (

x+ εa
|x+ εa|

) + f (
x − εa
|x − εa|

)+

f (
x+ εb
|x+ εb|

) + f (
x − εb
|x − εb|

)− 4f (x)
)

We used ε = 3e − 5, but any ε ∈ [3e − 6,3e − 4] gave essen-
tially the same results.

To make it as similar as possible to the experiments on
a square, node positions also followed a grid in spherical
coordinates:

x = sinθ cosφ

y = sinθ sinφ

z = cosθ

The mesh of order k θ ∈ {0,π/(k−1),2π/(k−1), . . . ,π} and
φ ∈ {0,π/(k − 1),2π/(k − 1), . . . ,2π} and then removing
points that were duplicates in Cartesian space; resulting in k
longitudes of 1,2k−1,2k−1, . . . ,2k−1,1 nodes. Note that,
for the sphere, the soft nearest neighbor distance function is
not Euclidean, but the distance on the sphere surface (the arc-
cosine of the dot product, since we are on the unit sphere).
We trained both the baseline for 10000 epochs and GENs
for and GENs for 10000/6=1666 (6 mesh configurations,
with sizes randing from 2 to 7).

A.4. Optimizing node positions

We trained the GEN with optimizable positions for
10000/12=833 epochs (we trained with 12 mesh config-
urations). The optimization of the node positions used learn-
ing rate 3e-4, while the weights still used learning rate 3e-3.
This came out of an informal search where we wanted nodes
positions to not prematurely converge, yet also be able to go
to any possible configuration. Smarter ways to perform this
optimization (potentially including non-local optimization)
are an interesting avenue for future work.

For each mesh size we initialize two random positions,
which tend to converge to similar but different final po-
sitions, as seen in figure 2. The initial positions of the nodes
were generated using the ghalton python library (?), which
uses Generalized Halton Sequences to create points that
are random but well spread out along a region. This is be-
cause uniformly random points tend to get clustered by pure
chance.

The connectivity was the Delaunay triangulation, which has
many desirable properties for our purposes: it has low graph
diameter (?), it is very stable (small perturbations tend to
produce little or no changes) and changes are local (moving
a point can only affect edges nearby). Moreover it can be
computed efficiently and it is the dual of Voronoi diagrams,
which map each point to its nearest neighbor in space, thus
being linked to a good representation function. After each
gradient step, we recomputed the connectivity. Note that
these changes are non-differentiable; we considered smooth-
ing the connectivity by weighting each edge proportionally
to the angle it represents in the Voronoi diagram, but per-
formance was great without it and we preferred to keep it
simple. Pure back-propagation would move some points
outside the [0,1]2 region; therefore, after back-propagation
we clamp points back inside the region.

A.5. Scene representation experiments

Our GEN model treats the (x,y) coordinates of the camera
pose as the space X and the image and camera roll and pitch
angles as the input space I. Because we have an image
classification task, it is possible to interpret the output space
O as an output distribution over the candidate images. This
is not entirely correct, however, because the set of candi-
date images varies during training, so this is not precisely a
fixed output space. The encoder of our GEN model is the
same as the one used by the original NP: it uses a CNN to
map input images and camera poses into a 256-dimensional
latent space. Once an (image, pose) pair is encoded, it is
stored into the latent state of the nodes in the GEN using
the representation function. Given a query camera pose,
the latent representation z is determined based on the (x,y)
coordinates. This z ∈ L is concatenated with the camera
pose and decoded to an embedding space Z′ . The candidate

Graph Element Networks

images are also mapped into Z′ , allowing us to compute a
vector of squared Euclidean distances betweeen the query
output and the candidate images in Z′ . This vector is fed
through a softmax to generate the final vector of output
values. For the GEN structure, the edge set is composed
of the all the bi-directional edges between pairs of adja-
cent nodes on the grid described in 4.3. The rectangular
generalization of barycentric coordinates, described in A.1
was used to compute the latent value of any query position
(x,y). When obtaining the encoding of input images (with
their camera pose coordinates) with the GEN, the GNN
messages used have 256 dimensions, and both the node and
edge neural networks are 2-layer feedforward networks with
a hidden layer of 512 units. To compensate for the these
GNN computations, the NP capacity is increased by always
concatenating 32 copies of input query coordinates to their
corresponding embeddings. For the GEN we only provide
8 copies, and we experimentally observed that these copies
slightly benefit the GEN and strongly benefit the neural
process. We believe that, without copies, the signal from
the query pose is drowned by the embedding, which has
many more dimensions. We did not notice further benefits
beyond 32 copies, which makes sense since 32 ·7 is already
of the same order of magnitude as 512. For both the GEN
and baseline experiments the encodings are post-processed
through feed-forward networks, which have depth 2 and
width 256 for the GEN and depth 4 and width 512 for the
NP, respectively.

When running the scene experiments for many epochs, with-
out batch normalization (not added in other experiments)
the performance of both GENs and the baseline smoothly
increased until 80% accuracy on 1x1, but then weights ex-
ploded and performance plummeted for both models. Batch
normalization solved this issue for both models.

Figure 1. Comparison betweeen original GENs and two other rea-
sonable approaches. We see that a GEN using the same weights for
all mesh sizes (green) can do as well as using a custom GEN for
each mesh size. However, the same weights do not generalize to
much bigger meshes (cyan, trained only on 2x2..5x5). Contrary to
other GNN-based systems that generalize to bigger input sizes than
those seen at test time, we do increase the number of propagation
steps and graph size increases quadratically; both things can make
propagation unstable. This is an interesting point to address in
future work.

Graph Element Networks

Figure 2. One room with all the optimized meshes. We notice that each size makes the most of its amount of nodes by focusing on the
most complex parts of the space. For each size, the pair of meshes resembles each other, but (except for the 2x2) are qualitatively different.

Graph Element Networks

Figure 3. Test accuracy plotted against number of mini-batch gradient descent steps, for Graph Element Networks experiments (left) and
the baseline Neural Processes experiments (right). The graphs from top to bottom show performance on supermazes of increasing sizes
(1x1 to 5x5).

