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Appendices

A. The KL-divergence between induced
distributions

We consider the words found by minimising the difference
KL-divergences considered in Section 5. Specifically:

w(1)

∗ = argmin
wi∈E

DKL[ p(cj |W) || p(cj |wi) ]

w(2)

∗ = argmin
wi∈E

DKL[ p(cj |wi) || p(cj |W) ]

Minimising DKL[ p(cj |W) || p(cj |wi) ] identifies the word
that induces a probability distribution over context words
closest to that induced byW , in which probability mass is
assigned to cj wherever it is forW . Intuitively, w(1)

∗ is the
word that most closely reflects all aspects ofW , and may
occur in contexts where no word wi∈W does.

Minimising DKL[ p(cj |wi) || p(cj |W) ] finds the word that
induces a distribution over context words that is closest to
that induced byW , in which probability mass is assigned as
broadly as possible but only to those cj to which probability
mass is assigned forW . Intuitively, w(2)

∗ is the word that
reflects as many aspects ofW as possible, as closely as pos-
sible, but nothing additional, e.g. by having other meaning
thatW does not.

A.1. Weakening the paraphrase assumption

For a given word set W , we consider the relationship be-
tween embedding sum wW and embedding w∗ for the word
w∗ ∈ E that minimises the KL-divergence (we illustrate
with ∆W,w∗

KL ). Exploring a weaker assumption than D1, tests
whether D1 might exceed requirement, and explores the rela-
tionship between w∗ and wW as paraphrase error increases.

Theorem 4 (Weak paraphrasing). For w∗ ∈ E ,W ⊆ E , if
w∗ minimises ∆W,w∗

KL

.
=DKL[ p(cj |W) || p(cj |w∗) ], then:

w∗
>ĉ = wW

>ĉ−∆W,w∗
KL + σ̂W − τW (17)

where ĉ =Ej|W [cj ], σ̂W =Ej|W [σWj ] and Ej|W [·] denotes
expectation under p(cj |W).

Proof.

∆W,w∗
KL =

∑
jp(cj |W) log

p(cj |W)
p(cj |w∗)

(5)
= Ej|W [

∑
iPMI(wi, cj)

− PMI(w∗, cj) + σWj − τW ]

= Ej|W [wW
>cj −w∗

>cj ] + σ̂W − τW

Thus, the weaker paraphrase relationship specifies a hyper-
plane containing w∗ and so does not uniquely define w∗

(as under D1) and cannot explain the observation of embed-
ding addition for paraphrases (as suggested by Gittens et al.
(2017)). A similar result holds for ∆w∗,W

KL . In principle,
Thm 4 could help locate embeddings of words that more
loosely paraphraseW , i.e. with increased paraphrase error.

B. Proof of Lemma 1
Lemma 1. For any word w∗ ∈ E and word set W ⊆ E ,
|W|<l:

PMI∗ =
∑
wi∈W

PMIi + ρW,w∗ + σW − τW1 , (5)

where PMI• is the column of PMI corresponding to
w• ∈ E , 1 ∈ Rn is a vector of 1s, and error terms
σWj =log

p(W|cj)∏
i p(wi|cj) and τW=log p(W)∏

i p(wi)
.

Proof.

PMI(w∗, cj)−
∑
wi∈W

PMI(wi,cj)

= log
p(w∗|cj)
p(w∗)

− log
∏

wi∈W

p(wi|cj)
p(wi)

= log
p(w∗|cj)∏
W p(wi|cj)

− log
p(w∗)∏
W p(wi)

+ log
p(W|cj)
p(W|cj)

+ log
p(W)

p(W)

= log
p(w∗|cj)
p(W|cj)

− log
p(w∗)

p(W)

+ log
p(W|cj)∏
W p(wi|cj)

− log
p(W)∏
W p(wi)

= log
p(cj |w∗)
p(cj |W)

+ log
p(W|cj)∏
W p(wi|cj)

− log
p(W)∏
W p(wi)

= ρW,w∗
j + σWj − τW ,

where, unless stated explicitly, products are with respect to
all wi in the set indicated.

Introduced terms are highlighted to show their evolution
within the proof. At the step where terms are introduced,
the existing error terms have no statistical meaning. This is
resolved by introducing terms to which both error terms can
be meaningfully related, through paraphrasing and indepen-
dence.
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C. Proof of Lemma 2
Lemma 2. For any word setsW ,W∗⊆E , |W|, |W∗|<l:∑

wi∈W∗

PMIi =
∑
wi∈W

PMIi + ρW,W∗ + σW − σW∗

− (τW − τW∗)1 . (10)

Proof.∑
wi∈W∗

PMI(wi,cj)−
∑

wi∈W
PMI(wi,cj)

= log
∏

wi∈W∗

p(wi|cj)
p(wi)

− log
∏

wi∈W

p(wi|cj)
p(wi)

= log
∏
W∗p(wi|cj)∏
W p(wi|cj)

− log
∏
W∗p(wi)∏
W p(wi)

+ log
p(W∗|cj)
p(W∗|cj)

+ log
p(W∗)
p(W∗)

+ log
p(W|cj)
p(W|cj)

+ log
p(W)

p(W)

= + log
p(W∗|cj)
p(W|cj)

− log
p(W∗)
p(W)

+ log
∏
W∗p(wi|cj)
p(W∗|cj)

− log
∏
W∗p(wi)

p(W∗)

+ log
p(W|cj)∏
Wp(wi|cj)

− log
p(W)∏
Wp(wi)

= + log
p(cj |W∗)
p(cj |W)

+ log
p(W|cj)∏
Wp(wi|cj)

− log
p(W∗|cj)∏
W∗p(wi|cj)

− log
p(W)∏
Wp(wi)

+ log
p(W∗)∏
W∗p(wi)

= ρW,W∗
j + σWj − σW∗j − (τW − τW∗) ,

where, unless stated explicitly, products are with respect to
all wi in the set indicated.

The proof is analogous to that of Lem 1, with more terms
added (as highlighted) to an equivalent effect. A key differ-
ence to single-word (or direct) paraphrases (D1) is that the
paraphrase is between two word setsW andW∗ that need
not correspond to any single word. The paraphrase error
ρW,W∗ compares the induced distributions of the two sets,
following the same principles as direct paraphrasing, but
with perhaps less interpretatability.

D. Alternate Proof of Corollary 2.1
Corollary 2.1. For any words wx, wx∗ ∈E and word sets
W+,W−⊆E , |W+|, |W−| < l − 1:

wx∗ = wx + wW+ −wW− + C†(ρW,W∗ + σW − σW∗

− (τW − τW∗)1),
(11)

whereW={wx} ∪W+,W∗={wx∗} ∪W−.

Proof.

PMI(wx∗ ,cj)− PMI(wx, cj)

= log
p(cj |wx∗)

p(cj |wx)
+ log

∏
wi∈W+

p(cj |wi)

p(cj |wi)

+ log
∏

wi∈W−

p(cj |wi)

p(cj |wi)

=
∑

wi∈W+

log p(cj |wi) −
∑

wi∈W−
log p(cj |wi)

+ log
∏
W∗p(cj |wi)∏
W p(cj |wi)

=
∑

wi∈W+

PMI(wi, cj) −
∑

wi∈W−
PMI(wi, cj)

+ log
∏
W∗ p(wi|cj)

∏
W p(wi)∏

W p(wi|cj)
∏
W∗ p(wi)

=
∑

wi∈W+

PMI(wi, cj) −
∑

wi∈W−
PMI(wi, cj)

+ log
p(cj |wx∗,W

−)

p(cj |wx, W+)

+ log
∏
W∗p(wi|cj)

p(wx∗ ,W−|cj)
p(wx,W

+|cj)∏
Wp(wi|cj)

− log
∏
W∗p(wi)

p(wx∗ ,W−)

p(wx,W
+)∏

Wp(wi)

=
∑

wi∈W+

PMI(wi, cj) −
∑

wi∈W−
PMI(wi, cj)

+ ρW,W∗
j + σWj − σW∗j − (τW − τW∗) ,

where, unless stated explicitly, products are with respect
to all wi in the set indicated; and W = {wx} ∪ W+,
W∗ = {wx∗} ∪ W− to lighten notation. Multiplying by
C† completes the proof.


