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Abstract

We propose infinite mixture prototypes to adap-
tively represent both simple and complex data dis-
tributions for few-shot learning. Infinite mixture
prototypes combine deep representation learning
with Bayesian nonparametrics, representing each
class by a set of clusters, unlike existing proto-
typical methods that represent each class by a
single cluster. By inferring the number of clus-
ters, infinite mixture prototypes interpolate be-
tween nearest neighbor and prototypical repre-
sentations in a learned feature space, which im-
proves accuracy and robustness in the few-shot
regime. We show the importance of adaptive ca-
pacity for capturing complex data distributions
such as super-classes (like alphabets in charac-
ter recognition), with 10-25% absolute accuracy
improvements over prototypical networks, while
still maintaining or improving accuracy on stan-
dard few-shot learning benchmarks. By clustering
labeled and unlabeled data with the same rule, in-
finite mixture prototypes achieve state-of-the-art
semi-supervised accuracy, and can perform purely
unsupervised clustering, unlike existing fully- and
semi-supervised prototypical methods.

1. Introduction
Few-shot classification is the problem of learning to recog-
nize new classes from only a few examples of each class
(Lake et al., 2015; Fei-Fei et al., 2006; Miller et al., 2000).
This requires careful attention to generalization, since over-
fitting or underfitting to the sparsely available data is more
likely. Nonparametric methods are well suited to this task,
as they can model decision boundaries that more closely
reflect the data distribution by using the data itself.
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Two popular classes of nonparametric methods are nearest
neighbor methods and prototypical methods. Nearest neigh-
bor methods represent a class by storing all of its examples,
and are high-capacity models that can capture complex dis-
tributions. Prototypical methods, such as Gaussian mixture
models, represent a class by the mean of its examples, and
are low-capacity models that can robustly fit simple distri-
butions. Neighbors and prototypes are thus two ends of a
spectrum from complex to simple decision boundaries, and
the choice of which to apply generally requires knowledge
about the complexity of the distribution.

Recent work has looked at combining nonparametric meth-
ods with deep representation learning, such that the learned
features are directly optimized for nonparametric inference
(Snell et al., 2017; Vinyals et al., 2016). However, these
approaches have fixed model capacity: the complexity of
the task is handled by the representation learning, rather
than the inference procedure, and cannot adapt.

Here we investigate adaptively modulating model capac-
ity during inference. This is especially useful in few-shot
learning where the complexity of individual tasks can differ,
and so should not necessarily be handled by the represen-
tation learning component alone. Several approaches exist
to tackle this, such as choosing k for k-nearest neighbours,
selecting the number of mixture components for Gaussian
mixture models, or adjusting the bandwidth (Jones et al.,
1996) for kernel density estimation (Parzen, 1962).

Infinite mixture modeling (Hjort et al., 2010) represents one
way of unifying these approaches for adaptively setting ca-
pacity. By inferring the number of mixture components for a
given class from the data, it is possible to span the spectrum
from nearest neighbors to prototypical representations.

This is particularly important in few-shot learning, where
both underfitting and overfitting are common problems, be-
cause current models are fixed in their capacity.

To give an example, consider the problems of character
and alphabet recognition. Recognizing characters is fairly
straightforward: each character looks alike, and can be
represented as a single prototype (a uni-modal Gaussian
distribution). Recognizing alphabets is more complex: the
uni-modal distribution assumption could be violated, and a
multi-modal approach could better capture the complexity
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Figure 1. t-SNE visualization of the deep embedding from a pro-
totypical network trained for alphabet recognition on Omniglot.
Each point is a character colored by its alphabet label. The data dis-
tribution of each class is clearly not uni-modal, in violation of the
modeling assumption for existing prototypical methods, causing
errors. Our infinite mixture prototypes represent each class by a set
of clusters, and infer their number, to better fit such distributions.

of the distribution. Figure 1 shows a prototypical network
embedding for alphabets with this very issue. Even though
the embedding was optimized for uni-modality, the uni-
modal assumption is not guaranteed on held-out data.

We therefore propose infinite mixture prototypes (IMP) to
represent a class as a set of clusters, with the number of
clusters determined directly from the data. IMP learns a
deep embedding while also adapting the model capacity
based on the complexity of the embedded data. As a further
benefit, the infinite mixture modeling approach can naturally
incorporate unlabeled data. We accordingly extend IMP
to semi-supervised few-shot learning, and even to fully-
unsupervised clustering inference.

An alternative approach to IMP would be to learn a paramet-
ric model. The decision boundary would then be linear in
the embedding, which is more complex than uni-modal pro-
totypes, but less complex than nearest neighbors. However,
it may not be possible to find a nonlinear embedding that
yields an effective linear decision boundary. In practice,
either a parametric method or uni-modal mixture model
is sensitive to the choice of model capacity, and may not
successfully learn complex classes such as Omniglot (Lake
et al., 2015) alphabets. Instead, a higher-capacity nonpara-
metric method like nearest neighbors can work better. For
simpler classes such as characters, a parametric model from
a meta-learned initialization (Finn et al., 2017) or a prototyp-
ical network that assumes uni-modal data (Snell et al., 2017)
suffice. Infinite mixture prototypes span these extremes,
learning to adapt to both simple and complex classes.

In this paper, we extend prototypical networks from uni-
modal to multi-modal clustering through infinite mixture
modeling to give 25% improvement in accuracy for alpha-

bet recognition (complex classes) while preserving accuracy
on character recognition (simple classes) on Omniglot. In
the semi-supervised setting infinite mixture prototypes are
more accurate than semi-supervised prototypical networks.
Infinite mixture modeling also allows for fully unsupervised
clustering unlike existing prototypical methods. We demon-
strate that the DP-means algorithm (Kulis & Jordan, 2012) is
suitable for instantiating new clusters and that our novel ex-
tensions are necessary for best results in the few-shot regime.
By end-to-end learning with infinite mixture modeling, IMP
adapts its model capacity to simple or complex data dis-
tributions, shown by equal or better accuracy compared to
neighbors and uni-modal prototypes in all experiments.

2. Background
For nonparametric representation learning methods, the
model parameters are for the embedding function hφ :
RD → RM that map an input point x into a feature. The
embedding of point x is the M -dimensional feature vector
from the embedding function. In deep models the parame-
ters φ are the weights of a deep network, and the embedding
is the output of the last layer of this network. (Such methods
are still nonparametric because they represent decisions by
the embedding of the data, and not parameters alone.)

2.1. Few-shot Classification

In few-shot classification we are given a support set S =
{(x1, y1), . . . , (xK , yK)} of K labeled points and a query
set Q = {(x′1, y′1), . . . , (x′K′ , y′K′)} of K ′ labeled points
where each xi, x′i ∈ RD is a D-dimensional feature vector
and yi, y′i ∈ {1, . . . , N} is the corresponding label. In the
semi-supervised setting, yi may not be provided for every
point xi. The support set is for learning while the query set
is for inference: the few-shot classification problem is to
recognize the class of the queries given the labeled supports.

Few-shot classification is commonly learned by construct-
ing few-shot tasks from a large dataset and optimizing the
model parameters on these tasks. Each task, comprised of
the support and query sets, is called an episode. Episodes
are drawn from a dataset by randomly sampling a subset of
classes, sampling points from these classes, and then par-
titioning the points into supports and queries. The number
of classes in the support is referred to as the “way” of the
episode, and the number of examples of each class is re-
ferred to as the “shot” of the episode. Episodic optimization
(Vinyals et al., 2016) iteratively trains the model by making
one episode and taking one update at a time. The update to
the model parameters is defined by the task loss, which for
classification could be the softmax cross-entropy loss.
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Figure 2. Our infinite mixture prototypes (IMP) method combines deep representation learning with nonparametric clustering to represent
each class by a set of clusters in a learned feature embedding. The number of clusters is inferred from the data to adjust modeling capacity.
IMP is optimized end-to-end to cluster labeled and unlabeled data into multi-modal prototypes.

2.2. Neighbors & Prototypes

Neighbors Nearest neighbors classification (Cover & Hart,
1967) assigns each query the label of the closest support.
Neighbor methods are extremely simple but remarkably
effective, because the classification is local and so they can
fit complex data distributions. This generality comes at a
computational cost, as the entire training set has to be stored
and searched for inference. More fundamentally, there is a
modeling issue: how should the distance metric to determine
the “nearest” neighbor be defined?

Neighborhood component analysis (Goldberger et al., 2004)
learns the distance metric by defining stochastic neighbors to
make the classification decision differentiable. The metric is
parameterized as a linear embedding A, and the probability
of a point xi having neighbor xj is given by the softmax
over Euclidean distances in the embedding:

pij =
exp(‖Axi −Axj‖2)∑
k 6=j exp(‖Axi −Axk‖2)

. (1)

The probability that a point xi is in class n is given by the
sum of probabilities of neighbors in the class:

pA(y = n |xi) =
∑
j:yj=n

pij . (2)

Stochastic neighbors naturally extend to a non-linear em-
bedding trained by episodic optimization. Deep nearest
neighbors classification therefore serves as a high-capacity
nonparametric method for few-shot learning.

Prototypes Prototypical networks (Snell et al., 2017) form
prototypes as the mean of the embedded support points in
each class:

µn =
1

|Sn|
∑

(xi,yi)∈Sn

hφ(xi), (3)

with Sn denoting the set of support points in class n. Paired
with a distance d(xi, xj), the prototypes classify a query
point x′ by the softmax over distances to the prototypes:

pφ(y
′ = n |x′) = exp(−d(hφ(x′), µn))∑

n′ exp(−d(hφ(x′), µn′))
. (4)

For the standard choice of the Euclidean distance function,
the prototypes are equivalent to a Gaussian mixture model
in the embedding with an identity covariance matrix.

φ is optimized by minimizing the negative log-probability
of the true class of each query point by stochastic gradi-
ent descent over episodes. Prototypical networks therefore
learn to create uni-modal class distributions for fully-labeled
supports by representing each class by one cluster.

2.3. Infinite Mixture Modeling

Infinite mixture models (Hjort et al., 2010) do not require
the number of mixture components to be known and finite.
Instead, the number of components is inferred from data
through Bayesian nonparametric methods (West et al., 1994;
Rasmussen, 2000). In this way infinite mixture models
adapt their capacity to steer between overfitting with high
capacity and underfitting with low capacity.

The advantage of adaptivity is countered by the implemen-
tation and computational difficulties of Gibbs sampling and
variational inference for infinite mixtures. To ease these
issues, DP-means (Kulis & Jordan, 2012) is a deterministic,
hard clustering algorithm derived via Bayesian nonparamet-
rics for the Dirichlet process. DP-means iterates over the
data points, computing each point’s minimum distance to
all existing cluster means. If this distance is greater than a
threshold λ, a new cluster is created with mean equal to the
point. It optimizes a k-means-like objective for reconstruc-
tion error plus a penalty for making clusters.

λ, the distance threshold for creating a new cluster, is the
sole hyperparameter for the algorithm. In deriving DP-
means, Kulis & Jordan (2012) relate α, the concentration
parameter for the Chinese restaurant process (CRP) (Aldous,
1985), to λ:

λ = 2σ log(
α

(1 + ρ
σ )
d/2

) (5)

where ρ is a measure of the standard deviation for the base
distribution from which clusters are assumed to be drawn
in the CRP. They then derive DP-means by connection to a
Gibbs sampling procedure in the limit as σ approaches 0.
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3. Infinite Mixture Prototypes (IMP)
Our infinite mixture prototypes (IMP) method pursues two
approaches for adapting capacity: learning cluster variance
to scale assignments, and multi-modal clustering to interpo-
late between neighbor and prototypical representations. This
capability lets our model adapt its capacity to avoid underfit-
ting, unlike existing prototypical models with fixed capacity.
Figure 2 gives a schematic view of our multi-modal rep-
resentation and how it differs from existing prototype and
neighbor representations. Algorithm 1 expresses infinite
mixture prototypes inference in pseudocode.

Within an episode, we initially cluster the support into class-
wise means. Inference proceeds by iterating through all
support points and computing their minimum distance to
all existing clusters. If this distance exceeds a threshold λ,
a new cluster is made with mean equal to that point. IMP
then updates soft cluster assignments zi,c as the normalized
Gaussian density for cluster membership. Finally, cluster
means µc are computed by the weighted mean of their mem-
bers. Since each class can have multiple clusters, we classify
a query point x′ by the softmax over distances to the closest
cluster in each class n:

pφ(y
′ = n |x′) =

exp(−d(hφ(x′), µc∗n))∑
n′ exp(−d(hφ(x′), µc∗n′ ))

(6)

with c∗n = argminc:lc=n d(hφ(x
′), µc) indexing the clus-

ters, where each cluster c has label lc.

IMP optimizes the embedding parameters φ and cluster
variances σ by stochastic gradient descent across episodes,
using the loss J (equation 7).

3.1. Adapting capacity by learning cluster variance σ

We learn the cluster variance σ to scale the assignment of
support points to clusters. When σ is small, the effective
distance is large and the closest points dominate, and when
σ is large, the effective distance is small so farther points
are more included. σ is differentiable, and therefore learned
jointly with the embedding parameters φ. In practice, learn-
ing σ can improve the accuracy of prototypical networks,
which we demonstrate by ablation in Table 1. For IMP, σ
has a further role in creating new clusters.

3.2. Adapting capacity by multi-modal clustering

To create multi-modal prototypes, we extend the clustering
algorithm DP-means (Kulis & Jordan, 2012) for compati-
bility with classification and end-to-end optimization. For
classification, we distinguish labeled and unlabeled clus-
ters, and incorporate labels into the point-cluster distance
calculation. For end-to-end optimization, we soften cluster
assignment, propose a scheme to select λ, and mask the
classification loss to encourage multi-modality.

Algorithm 1 IMP: support prototypes and query inference
Require: supports (x1, y1)..., (xK , yK) and queries x′1, ..., x′K′
Return: clusters (µc, lc, σc) and query classifications p(y′|x′)

1. Init. each cluster µc with label lc and σc = σl as class-
wise means of the supports, and C as the number of classes

2. Estimate λ as in Equation 5
3. Infer the number of clusters
for each point xi do

for c in {1, ..., C} do

di,c =


‖hφ(xi)− µc‖2 if (xi is labeled and lc = yi)

or xi is unlabeled
+∞ otherwise

end for
If minc dic > λ: set C = C + 1, µC = hφ(xi), lC = yi,
σC = {σl if xi labeled, σu otherwise}.

end for
4. Assign supports to clusters by zi,c =

N (hφ(xi);µc,σc)∑
cN (hφ(xi);µc,σc)

5. For each cluster c, compute mean µc =
∑
i zi,chφ(xi)∑

i zi,c

6. Classify queries by Equation 6

Indirect optimization of λ While λ is non-differentiable,
we propose an indirect optimization of the effective thresh-
old for creating a new cluster. Based on Equation 5, λ
depends on the concentration hyperparameter α, a measure
of standard deviation in the prior ρ, and the cluster variance
σ. α remains a hyperparameter, but with lessened effect.
We estimate ρ as the variance between prototypes in each
episode. As noted, σ is differentiable, so we learn it.

We model separate variances for labeled and unlabeled clus-
ters, σl and σu respectively, in order to capture differences
in uncertainty between labeled and unlabeled data. In the
fully-supervised setting, λ is estimated from σl, and in the
semi-supervised setting λ is estimated from the mean of σl
and σu. In summary, learning the cluster variances σ affects
IMP by scaling the distances between points and clusters,
and through its role in our episodic estimation of λ.

Multi-modal loss We optimize all models with the cross-
entropy loss. For the multi-modal methods (nearest neigh-
bors and IMP), we mask the loss to only include the closest
neighbor/cluster for each class, in the same manner as infer-
ence. That is, for a class n, we find the most likely cluster
c∗n ← argmaxc:lc=n log p(hφ(x)|µc, σc) and then take the
loss over the queries in the class (Qn):

J =
1

|Qn|
∑
x∈Qn

[
− log p(hφ(x) | µc∗n , σc∗n) +

log
∑
n′ 6=n

p(hφ(x) | µc∗
n′
, σc∗

n′
)

]
.

(7)

Taking the loss for the closest clusters avoids over-
penalizing multi-modality in the embedding. We found that
masking improves the few-shot accuracy of these methods
over other losses that incorporate all clusters.
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Table 1. Multi-modal clustering and learning cluster variances on
fully-supervised 10-way, 10-shot Omniglot alphabet recognition
and 5-way, 5-shot mini-ImageNet. Scaling distances with the
learned variance gives a small improvement and multi-modal clus-
tering gives a further improvement.

METHOD σ
MULTI-
MODAL

ALPH. ACC. MINI. ACC.

PROTOTYPES - - 65.2 ± 0.6 66.1 ± 0.6
PROTOTYPES X - 65.2 ± 0.6 67.2 ± 0.5
IMP (OURS) X X 92.0 ± 0.1 68.1 ± 0.8

Table 2. Learning labeled cluster variance σl and unlabeled cluster
variance σu on semi-supervised 5-way, 1-shot Omniglot and mini-
ImageNet with 5 unlabeled points per class and 5 distractors (see
Section 4). Learning σl, σu is better than learning a tied σ for
labeled and unlabeled clusters.

METHOD σ OMNI. ACC. MINI. ACC.

TIED σ 93.5±0.3 48.6±0.4
IMP (OURS) σl, σu 98.9±0.1 49.6±0.8

3.3. Ablations and Alternatives

We ablate our episodic and end-to-end extensions of DP-
means to validate their importance for few-shot learning.
Learning and performing inference with IMP is more ro-
bust to different choices of λ than simply using DP-means
during inference (Figure 3). Multi-modality and learned
variance make their own contributions to accuracy (Table 1).
Learning separate σl, σu, for labeled and unlabeled clusters
respectively, is more accurate than learning a shared σ for
all clusters (Table 2). For full details of the datasets and
settings in these ablations, refer to Section 4.

In principle, IMP’s clustering can be iterated multiple times
during training and inference. However, we found that one
clustering iteration suffices. Two iterations during training
had no effect on accuracy, and even 100 iterations during
inference still had no effect on accuracy, showing that the
clustering is stable.

Alternative Algorithms DP-means was derived through
the limit of a Gibbs sampler as the variance approaches 0,
and so it does hard assignment of points to clusters. With
hard assignment, it is still possible to learn the embedding
parameters φ end-to-end by differentiating through the soft-
max over distances between query points and support clus-
ters as in Equation 4. However, hard assignment of labeled
and unlabeled data is harmful in our experiments, especially
early on in training (see supplement).

When reintroducing variance into multi-modal clustering as
we do, a natural approach would be to reconsider the Gibbs
sampler for the CRP (West et al., 1994; Neal, 2000) from
which DP-means was derived, or other Dirichlet process in-
ference methods such as expectation maximization (Kimura

Figure 3. Learning and inference with IMP is more accurate and
robust than DP-means inference on a prototypical network em-
bedding alone. This plot shows the accuracy for the standard
benchmark of semi-supervised 5-way, 1-shot Omniglot for differ-
ent choices of the distance threshold λ for creating a new cluster.

et al., 2013). These alternatives are less accurate in our
experiments, mainly as a result of the CRP prior’s “rich get
richer” dynamics, which prefers clusters with more assign-
ments (leading to accuracy drops of 5–10%). This is espe-
cially problematic early in training, when unlabeled points
are often incorrectly assigned. The supplement includes
derivations and experiments regarding these multi-modal
clustering alternatives.

4. Experiments
We experimentally show that infinite mixture prototypes are
more accurate and more general than uni-modal prototypes.
We compare to a nearest neighbors baseline, which uses the
same loss as IMP, but makes each data point its own cluster.

We control for architecture and optimization by comparing
methods with the same base architecture of Vinyals et al.
(2016) and same episodic optimization settings of Snell
et al. (2017). For further details see Appendix A.1 of the
supplement. All code for our method and baselines will
be released at https://github.com/k-r-allen/
imp.

We consider three datasets for few-shot learning:

Omniglot (Lake et al., 2015) is a dataset of 1,623 handwrit-
ten characters from 50 alphabets. There are 20 examples of
each character, where the images are resized to 28x28 pixels
and each image is rotated by multiples of 90◦. This gives
6,492 classes in total, which are then split into 4,112 training
classes, 688 validation classes, and 1,692 test classes.

mini-ImageNet (Vinyals et al., 2016) is a reduced ver-
sion of the ILSVRC’12 dataset (Russakovsky et al., 2015),
which contains 600 84x84 images for 100 classes randomly
selected from the full dataset. We use the split from Ravi &
Larochelle (2017) with 64/16/20 classes for train/val/test.

tiered-ImageNet (Ren et al., 2018) is a reduced version
of the ILSVRC’12 dataset (Russakovsky et al., 2015), with
84x84 images of 608 classes from 34 super-classes. These

https://github.com/k-r-allen/imp
https://github.com/k-r-allen/imp
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Table 3. Super and sub-class recognition accuracy. Super-classes have complex, multi-modal data distributions while sub-classes have
simpler, uni-modal data distributions. IMP improves accuracy for super-classes, preserves accuracy for sub-classes, and generalizes better
from super-classes to sub-classes. For Omniglot, super-class (alphabet) episodes are 10-way 10-shot; sub-class (character) episodes are
20-way 1-shot. For tiered-ImageNet, super-class episodes are 5-way 10-shot; sub-class episodes are 5-way 1-shot.

(A) OMNIGLOT

TRAIN TEST PROTOS IMP NEIGHBORS

SUPER SUPER 65.6±0.4 92.0±0.1 92.4±0.2
SUPER SUB 82.1±0.4 95.4±0.2 95.4±0.2
SUB SUB 94.9±0.2 95.1±0.1 95.1±0.1

(B) TIERED-IMAGENET

TRAIN TEST PROTOS IMP NEIGHBORS

SUPER SUPER 37.7±0.4 37.9±0.4 38.1±0.4
SUPER SUB 40.1±0.4 53.3±1.0 52.4±1.1
SUB SUB 52.0±1.1 52.5±1.0 52.8±1.0

are split into 20/6/8 super-classes for train/val/test.

4.1. Accuracy and Generality of Multi-modal
Clustering by Infinite Mixture Prototypes

Our experiments on Omniglot alphabets and tiered-
ImageNet super-classes show that multi-modal prototypes
are significantly more accurate than uni-modal prototypes
for recognizing complex classes (alphabets and super-
classes) and recover uni-modal prototypes as a special case
for recognizing simple classes (characters and sub-classes).
Multi-modal prototypes generalize better for super-class to
sub-class transfer learning, improving accuracy when train-
ing on super-classes but testing on sub-classes. By unifying
the clustering of labeled and unlabeled data alike, our multi-
modal prototypes also address fully unsupervised clustering,
unlike prior prototypical network models that are undefined
without labels.

We first show the importance of multi-modality for learning
representations of multi-modal classes: Omniglot alphabets
and tiered-ImageNet super-classes. For these experiments,
we train for super-class classification, using only the super-
class labels. Episodes are constructed by sampling s super-
classes, n sub-classes within each super-class, and k images
of each sub-class. For Omniglot, we construct episodes with
s = 10, n = 10 and k = 1. For tiered-ImageNet, episodes
have s = 5, n = 5 and k = 2.

For sub-class testing, episodes are constructed with n ran-
domly sampled sub-classes, and k examples of each class.
Note that both super-class and sub-class testing are on held-
out super-classes and sub-classes respectively.

As seen in Table 3, IMP substantially outperforms pro-
totypical networks for sub-class recognition from super-
class training. On 20-way 1-shot character recognition,
IMP achieves 95.4% from alphabet supervision alone,
slightly out-performing prototypical networks trained di-
rectly on character recognition (94.9%). Likewise, for
tiered-ImageNet, IMP achieves 53.3% on 5-way 1-shot sub-
class recognition from only super-class training, substan-
tially outperforming prototypical networks. By clustering
each super-class into multiple modes, IMP is better able to
generalize to sub-classes.

For a parametric alternative, we trained MAML (Finn et al.,
2017) on alphabet recognition, with the same episode com-
position as IMP. In our experiments, MAML achieved only
61.9% accuracy on 10-way 10-shot alphabet recognition.
This demonstrates that a parametric classifier of this ca-
pacity, with decisions that are linear in the embedding, is
not enough to solve alphabet recognition—instead, multi-
modality is necessary.

Table 4. Generalization to held-out characters on 10-way, 5-shot
Omniglot alphabet recognition. 40% of the characters are kept for
training and 60% held out for testing. IMP maintains accuracy on
held-out characters, suggesting that multi-modal clustering is more
robust to new and different sub-classes from the same super-class.

METHOD TRAINING
MODES

TESTING
MODES

BOTH
MODES

IMP (OURS) 99.0±0.1 94.9±0.2 96.6± 0.2
PROTOTYPES 92.4±0.3 77.7±0.4 82.9±0.4

To further examine generalization, we consider holding out
character sub-classes during alphabet super-class training
for Omniglot. In this experiment the training and testing
alphabets are the same, but the characters within each alpha-
bet are divided into training (40%) and testing (60%) splits.
We compare alphabet recognition accuracy using training
characters, testing characters, and all characters to measure
generalization to held-out modes in Table 4. While proto-
typical networks achieve good accuracy on training modes,
their accuracy drops 15% relative on testing modes, and
still drops 10% relative on the combination of both modes.
The reduced accuracy of prototypical networks on held-out
modes indicates that uni-modality is not maintained on un-
seen characters even when they are from the same alphabets.
IMP accuracy drops less than 5% relative from training to
testing modes and both modes, showing that multi-modal
clustering generalizes better to unseen data.

Fully Unsupervised Clustering IMP is able to do fully
unsupervised clustering via multi-modality. Prototypical
networks (Snell et al., 2017) and semi-supervised proto-
typical networks (Ren et al., 2018) are undefined without
labeled data during testing because the number of clusters
is defined by the number of classes.
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Table 5. Unsupervised clustering of unseen Omniglot characters
by IMP. Learning with IMP makes substantially purer clusters
than DP-means inference on a prototypical network embedding,
showing that the full method is necessary for best results.

METHOD METRIC 10-WAY 100-WAY 200-WAY

IMP PURITY 0.97 0.90 0.91
DP-MEANS 0.91 0.73 0.71
IMP NMI 0.97 0.95 0.94
DP-MEANS 0.89 0.88 0.87
IMP AMI 0.92 0.81 0.70
DP-MEANS 0.76 0.58 0.51

For this unsupervised clustering setting, we use the models
that were optimized for alphabet recognition. For testing,
we randomly sample 5 examples of n character classes from
the test set without labels.

IMP handles labeled and unlabeled data by the same clus-
tering rule, infers the number of clusters as needed, and
achieves good results under the standard clustering met-
rics of purity, and normalized/adjusted mutual information
(NMI/AMI). We examine IMP’s clustering quality on purely
unlabeled data in Table 5. IMP maintains strong perfor-
mance across a large number of unlabeled clusters, without
knowing the number of classes in advance, and without
having seen any examples from the classes during training.

As a baseline, we evaluate multi-modal inference by DP-
means (Kulis & Jordan, 2012) on the embedding from a
prototypical network with the same architecture and training
data as IMP. We cross-validate the cluster threshold λ on
validation episodes for each setting, choosing by AMI.

4.2. Few-Shot Classification Benchmarks

We evaluate IMP on the standard few-shot classification
benchmarks of Omniglot and mini-ImageNet in the fully-
supervised and semi-supervised regimes.

We consider five strong fully-supervised baselines trained on
100% of the data. We compare to three parametric methods,
MAML (Finn et al., 2017), Reptile (Nichol & Schulman,
2018), and few-shot graph networks (Garcia & Bruna, 2018),
as well as three nonparametric methods, nearest neighbors,
prototypical networks (Snell et al., 2017), and the memory-
based model of Kaiser et al. (2017).

Fully-supervised results are reported in Table 6. In this set-
ting, we evaluate IMP in the standard episodic protocol of
few-shot learning: shot and way are fixed and classes are bal-
anced within an episode. IMP learns to recover uni-modal
clustering as a special case, matching or out-performing
prototypical networks when the classes are uni-modal.

In the semi-supervised setting of labeled and unlabeled ex-
amples we follow Ren et al. (2018). We take only 40%

of the data as labeled for both supports and queries while
the rest of the data is included as unlabeled examples. The
unlabeled data is then incorporated into episodes as (1)
within-support examples that allow for semi-supervised re-
finement of the support classes or (2) distractors which lie
in the complement of the support classes. Semi-supervised
episodes augment the fully supervised n-way, k-shot sup-
port with 5 unlabeled examples for each of the n classes and
include 5 more distractor classes with 5 unlabeled instances
each. The query set still contains only support classes.

Semi-supervised results are reported in Table 7. We train
and test IMP, existing prototypical methods, and nearest
neighbors in this setting. Semi-supervised prototypical net-
works (Ren et al., 2018) incorporate unlabeled data by soft
k-means clustering (of their three comparable variants, we
report “Soft k-Means+Cluster” results). Prototypical net-
works (Snell et al., 2017) and neighbors are simply trained
on the 40% of the data with labels.

Through multi-modality, IMP clusters labeled and unla-
beled data by a single rule. In particular this helps with
the distractor distribution, which is in fact more diffuse and
multi-modal by comprising several different classes.

The results reported on these benchmarks are for models
trained and tested with n-way episodes. This is to equalize
comparison across methods1.

5. Related Work
Prototypes Prototypical networks (Snell et al., 2017) and
semi-supervised prototypical networks (Ren et al., 2018) are
the most closely related to our work. Prototypical networks
simply and efficiently represent each class by its mean in
a learned embedding. They assume that the data is fully
labeled and uni-modal in the embedding. Ren et al. (2018)
extend prototypes to the semi-supervised setting by refining
prototypes through soft k-means clustering of the unlabeled
data. They assume that the data is at least partially labeled
and retain the uni-modality assumption. Both Snell et al.
(2017) and Ren et al. (2018) are limited to one cluster per
class. Mensink et al. (2013) represent classes by the mean
of their examples in a linear embedding to incorporate new
classes into large-scale classifiers without re-training. They
extend their approach to represent classes by multiple pro-
totypes, but the number of prototypes per class is fixed and
hand-tuned, and their approach does not incorporate unla-
beled data. We define a more general and adaptive approach

1 Snell et al. (2017) train at higher way than testing and report
a boost in accuracy. We find that this boost is somewhat illusory,
and at least partially explained away by controlling for the number
of gradients per update. We show this by experiment through
the use of gradient accumulation in Appendix A.2 of the supple-
ment. (For completeness, we confirmed that our implementation of
prototypical networks reproduces reported results at higher way.)
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Table 6. Fully-supervised few-shot accuracy using 100% of the labeled data. IMP performs equal to or better than prototypical networks
(Snell et al., 2017). Although IMP is more general, it can still recover uni-modal clustering as a special case.

Omniglot mini-ImageNet
5-WAY 20-WAY 5-WAY

Method 1-SHOT 5-SHOT 1-SHOT 5-SHOT 1-SHOT 5-SHOT

IMP (OURS) 98.4±0.3 99.5±0.1 95.0±0.1 98.6±0.1 49.6±0.8 68.1±0.8
NEIGHBORS 98.4±0.3 99.4±0.1 95.0±0.1 98.3±0.1 49.6±0.8 59.4±1.0
SNELL ET AL. (2017) 98.2±0.3 99.6±0.1 94.9±0.2 98.6±0.1 47.0±0.8 66.1±0.7
FINN ET AL. (2017) 98.7±0.4 99.9±0.3 95.8±0.3 98.9±0.2 48.7±1.84 63.1±0.92
GARCIA & BRUNA (2018) 99.2 99.7 97.4 99 50.3 66.41
KAISER ET AL. (2017) 98.4 99.6 95 98.6 - -

Table 7. Semi-supervised few-shot accuracy on 40% of the labeled data with 5 unlabeled examples per class and 5 distractor classes. The
distractor classes are drawn from the complement of the support classes and are only included unlabeled. IMP achieves equal or better
accuracy than semi-supervised prototypical networks (Ren et al., 2018).

Omniglot mini-ImageNet
5-WAY 20-WAY 5-WAY

Method 1-SHOT 5-SHOT 1-SHOT 5-SHOT 1-SHOT 5-SHOT

IMP (OURS) 98.9 ± 0.1 99.4 ± 0.1 96.9 ± 0.2 98.3 ± 0.1 49.2 ± 0.7 64.7 ± 0.7
REN ET AL. (2018) 98.0 ± 0.1 99.3 ± 0.1 96.2 ± 0.1 98.2 ± 0.1 48.6 ± 0.6 63.0 ± 0.8

NEIGHBORS 97.9 ± 0.2 99.1 ± 0.1 93.8 ± 0.2 97.5 ± 0.1 47.9 ± 0.7 57.3 ± 0.8
SNELL ET AL. (2017) 97.8 ± 0.1 99.2 ± 0.1 93.4 ± 0.1 98.1 ± 0.1 45.1 ± 1.0 62.5 ± 0.5

through infinite mixture modeling that extends prototypi-
cal networks to multi-modal clustering, with one or many
clusters per class, of labeled and unlabeled data alike.

Metric Learning Learning a metric to measure a given no-
tion of distance/similarity addresses recognition by retrieval:
given an unlabeled example, find the closest labeled exam-
ple. Kulis (2013) gives a general survey. The contrastive
loss and siamese network architecture (Chopra et al., 2005;
Hadsell et al., 2006) optimize an embedding for metric learn-
ing by pushing similar pairs together and pulling dissimilar
pairs apart. Of particular note is research in face recognition,
where a same/different retrieval metric is used for many-way
classification (Schroff et al., 2015). Our approach is more
aligned with metric learning by meta-learning (Koch, 2015;
Vinyals et al., 2016; Snell et al., 2017; Garcia & Bruna,
2018). These approaches learn a distance function by di-
rectly optimizing the task loss, such as cross-entropy for
classification, through episodic optimization (Vinyals et al.,
2016) for each setting of way and shot. Unlike metric learn-
ing on either neighbors (Goldberger et al., 2004; Schroff
et al., 2015) or prototypes (Snell et al., 2017; Ren et al.,
2018), our method adaptively interpolates between neigh-
bor and uni-modal prototype representation by deciding the
number of modes during clustering.

Cognitive Theories of Categorization Our approach is in-
spired by the study of categorization in cognitive science.
Exemplar theory (Nosofsky, 1986) represents a category
by storing its examples. Prototype theory (Reed, 1972)

represents a category by summarizing its examples, by for
instance taking their mean. Vanpaemel et al. (2005) recog-
nize that exemplars and prototypes are two extremes, and
define intermediate models that represent a category by sev-
eral clusters in their varying abstraction model. However,
they do not define how to choose the clusters or their num-
ber, nor do they consider representation learning. Griffiths
et al. (2007) unify exemplar and prototype categorization
through the hierarchical Dirichlet process to model the tran-
sition from prototypes to exemplars as more data is collected.
They obtain good fits for human data, but do not consider
representation learning.

6. Conclusion
We made a case for the importance of considering the com-
plexity of the data distribution in the regime of few-shot
learning. By incorporating infinite mixture modeling with
deep metric learning, we developed infinite mixture proto-
types, a method capable of learning end-to-end and adapting
its model capacity to the given data. Our multi-modal exten-
sion of prototypical networks additionally allows for fully
unsupervised inference, and the natural incorporation of
semi-supervised data during learning. As few-shot learning
is applied to increasingly challenging tasks, models with
adaptive complexity will become more important. Adaptive,
multi-modal representation is likely to prove important for
life-long learning settings, as well as for integrating multiple
input modalities such as joint visual/auditory signals.
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