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A. Concentration bounds
In this section we include a series of well known concentra-
tion bounds used in the statistical learning literature. In order
to prove this bounds we will use the notion of Rademacher
complexity.
Definition 7. Given a sample z1, . . . , zm 2 Z and a class

of functions G mapping Z to [0, 1], we define the empirical

Rademacher complexity of G as
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where �i are i.i.d. uniform random varialbes over the set

{�1, 1}.

The Rademacher complexity of a class is closely related to
its VC dimension. The following Lemma can be found in
(Mohri et al., 2012).
Lemma 3. Let G be a function class with VC dimension

VCdim(h) = d then
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Lemma 4. Let L be K-Lipchitz and let � > 0. Conditioned

on the choice of users belonging to the sample the following

bound holds with probability at least 1�� for for all h 2 H
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Proof. Relabeling the samples we notice that the left hand
side of the above inequality is given by
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Let HL = {(x, y) 7! L(h(x), y)|h 2 H}, using the fact
that (xi, yi) are independent conditioned on the choice of
users and a standard learning theory bound (Mohri et al.,
2012) we have with probability at least 1� �
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Finally by Talagrand’s contraction lemma (Mohri et al.,
2012) we know that <n⌧ (HL)  K<n⌧ (H) which con-
cludes the proof.

Lemma 1. Conditioned on the outcomes of {Ji}, with prob-

ability at least 1 � � the following holds uniformly over

h 2 H:
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Proof. The proof follows directly from the previous propo-
sition and a standard bound on the Rademacher complexity
by the VC dimension (Mohri et al., 2012).

Lemma 2. Fix � > 0 and let d = VCdim(H). Then with

probability at least 1 � �, the following inequality holds

uniformly for h in H .
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Proof. We begin by decomposing the loss into three parts.

|LS⌧ (h)� L(h)| 
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Eq. (7) is the generalization error of our empirical loss, con-
ditioned on the outcomes of {Ji}. We bound it by applying
Lemma 1 with �

2 .

Eq. (8) is the error attributable to differences between the
original dataset S and the thresholded data set S⌧ ; it appears
directly in the bound.

Finally, Eq. (9) is the finite sample error due to the random-
ness in {Ji}. Observe that
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which is just the difference between the sample mean of
n i.i.d. random variables bounded in [0, 1] and their true

mean. Hoeffding’s inequality thus bounds (9) by
q

log 4
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2n

with probability 1� �

2 .

Combining these results under a union bound completes the
proof.
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B. Bias bounds
Proposition 2. Let rj for j 2 N be such that rj � 0 andP

n

j=1 rj = 1. Let 0  qj  rj , Q =
P

j
qj . Finally let

q0
j
= qj

Q
. If |L(h, z)|  1, then the following bound holds

for all hypotheses h.
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Proof. Using the fact that Lj(h)  1 we have
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Let r and q0 denote the distributions induced by rj and q0
j

respectively. By Pinsker’s inequality we know
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where KL(r||q0) denotes the Kullback-Leibler divergence
between the two distributions. We can bound this divergence
as follows:
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where we have used the fact that qj < rj for the first in-
equality. Substituting this bound back in (10) yields the
statement of the proposition.

We now define a more general version of the variance term
introduced in Section 6.

Definition 8. Given a distribution r over N and a hypoth-

esis h 2 H we define the variance of h with respect to r
as

Var(h, r) =
X
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2.

Proposition 3. Under the notation and assumptions of

Proposition 2, the following bound holds for every h:
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Proof. The proof relies on the simple fact that:
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This is easy to verify using the fact that
P

ri = 1 andP
q0
j
= 1. We can now apply the Cauchy-Schwarz inequal-

ity as follows:
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A simple calculation shows that the first term in the above
expression is in fact equal to 2Var(h, r). Therefore we need
only to prove that the second term is bounded by 1

Q
. We

have
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where we used the fact that qj  rj .

The proof of Proposition 1 is easily derived from Proposi-
tions 2 and 3. Indeed, letting rj = nj

n
and qj = nj⌧

n
we

have qj  rj , and thus the result follows.

C. Additional bounds
Proposition 4. Let ⌧  n be the cap on user contributions.

Then n⌧ > ⌧ .

Proof. There are only two possibilities: either nj < ⌧ for
all j or nj � ⌧ for some j. In the latter case n⌧ � nj = ⌧
by definition. On the other hand, if nj < ⌧ for all j then
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Proposition 5. Let 1 > ⌧0 > 0 and ⌧ = ⌧0n. Let K(⌧0) =
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Proof. Recall that Ji is the random variable that denotes
the user corresponding to example i. We know that
nj =

P
n

i=1 1Ji=j and n⌧ =
P
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� as we perturb a single coordinate:

|�(J1, . . . , Jn)� �(J 0
1, . . . , Jn)|.

If we change only one point in the sample then, clearly,
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The result follows from (12) by setting � = e�2n⌘2

and
solving for ⌘.

Lemma 2. Let Sn =
P

N

i=1 Xi be a sum of i.i.d. Bernoulli

random variables with P (Xi = 1) = p. Then
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Proof. First let us assume that ⌧ < np in that case we have:
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where we used the fact that P (Sn > np) > 1
4 (Greenberg

& Mohri, 2013; Vapnik, 1998).

On the other hand if ⌧ > np then
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Combining the two cases yields the statement of the propo-
sition.

Corollary 2. Let Jk, k = 1, . . . , n be a random variable

in N such that P (Jk = j) = pj . Let nj =
P
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Proof. By Fubini’s theorem,
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On the other hand, nj is a sum of independent Bernoulli
random variables with probability pj . So from the previous
proposition we have

1

n

X

j

E[min(nj , ⌧)] �
1

4n

X

j

min(pjn, ⌧)

=
1

4

X

j

min(pj , ⌧0)


	Introduction
	Related Work

	Preliminaries
	A Simple Example
	Contribution Bounding for Learning
	Setting and Main Results
	Understanding the Bias Term
	Cost of Privacy
	Proofs
	Conclusion
	Concentration bounds
	Bias bounds
	Additional bounds

