Deep Approximate Shapley Propagation
Supplementary Material

A Proof of Proposition 1

Proposition Occlusion, Gradient x Input, Integrated Gradients and DeepLIFT produce
exact Shapley values when applied to a linear model and a zero baseline is used.

Proof The proof follows directly from the observation that all the aforementioned methods
are equivalent for a linear model [1]. In this case, we can write the model function as
f(x) = ZZ x;w; + b, where w; is a fixed weight associated with each input z;, and b is a
constant. The marginal effect of each feature i is (z;w;) which is the attribution produced
by Gradient x Input. As the marginal effect does not depend on the chosen coalition,
all elements in the sum of the Shapley values definition are equal (=(z;w;)), meaning the
Shapley value for unit ¢ is also (x;w;). Given the equivalence of the methods, they all
compute Shapley values.

B Proof of Proposition 2

Proposition Shapley values is the only possible attribution method that satisfies Axioms
1-5.

Proof Integrated Gradients and Shapley values are the only attribution methods that
always satisfy Axioms 1-4, as shown in a previous work [12]. We can show that Integrated
Gradients does not satisfy Continuity by taking the function f(x1,z2) = min(z1,z2) and
evaluating attributions generated with the two nearly identical inputs x; = (2,2 + €) and
x; = (2,2 —¢€), using (0,0) as baseline in both cases. Notice that f is a continuous function
and that the output with the two inputs only differs by a factor e. The attributions
produced by Integrated Gradients concentrate on the minimum of the two values resulting
in R aa = (2,0), RS 00 = (0,2 — €), thus violating Continuity. Conversely, Shapley
values satisfies Continuity because, by definition, the values are a weighted sum of several
evaluations of a continuous function.

The counterexample illustrated above highlights the importance of Continuity. By
following the gradient, Integrated Gradients propagates the relevance only to the minimum
between x1 and xo, ignoring the fact that, if the second value were zero, the output would
have also been zero. On the other hand, Shapley values distribute the relevance to the

two inputs equally by considering all possible coalitions, resulting in Rf;mpl ey = (1,1) =
(1 —0.5¢,1 —0.5¢) = R:fzm.pley

C About the need for a baseline

A feature with an attribution value different than zero is expected to play some role in
determining the model outcome. This also implies that without such feature the outcome
would be different. As pointed out by [12], humans also assign blame to a cause by comparing
the outcomes of a process when including that cause, with when not including it. However,
this requires the ability to test a process with and without a specific feature, which is
problematic with current neural network architectures that do not allow us to explicitly
remove them without retraining.

The usual approach to simulate the absence of a feature consists of defining a baseline x’,
for example the black image or the zero input, that will represent the absence of information.
On some domains, it is also possible to marginalize over the features to be removed in
order to simulate their absence. For example, local coherence of images can be exploited to
marginalize over image patches [16]. Unfortunately, this approach is extremely slow. What is
more, it can only be applied to images, where contiguous features have a strong correlation,
or to other domains where some prior knowledge exists.

In other previous works, the baseline value is sampled from the training set or a prior
distribution [11, 2, 8]. This approach can be applied to any dataset but the number of
necessary samples (i.e. model evaluations) increases.

Instead, most literature on attribution methods for DNNs suggests the use a fixed baseline
value. In this case, zero is the canonical choice [12, 15, 9]. Notice that Gradient x Input and
LRP can also be interpreted as using a zero baseline implicitly. One possible justification
relies on the observation that in network that implements a chain of operations of the
form x§-1) = o(>,(wsjz;) + b;), the all-zero input is somehow neutral to the output (ie.
Ve e C: R.(0) = 0). In fact, if all additive biases b; in the network are zero and we only
allow nonlinearities that cross the origin (e.g. ReLU or Tanh), the output for a zero input
is exactly zero for all classes. Empirically, the output is often near zero even when biases
have different values, which makes the choice of zero for the baseline reasonable, although
arbitrary.

D Stochastic input distributions

As a first step to apply DASP, input distributions to the units of the first hidden layers
have to be estimated. We assume a univariate Gaussian distribution and estimate mean and
variance of these random variables using sample theory. Fig. 1 shows a numerical comparison
between empirical and estimated distributions, computed using the MNIST dataset. Even
though MNIST input pixels are not normally distributed, the Gaussian approximation for
the distribution of a random coalition after the multiplication with the first layer weights
seems reasonable, especially for values of k far from the extremes.

Unit 1253 (k=49) Unit 220 (k=147) Unit 658 (k=245) Unit 1111 (k=343)

~ pu=0.053 0=0.112 == u=-0.110 0=0.291 ~—— u=0.6750=0.329 ~—= u=0.073 0=0.472
BN 1=0.054 0=0.142 B)=-0.109 0=0.316 B ,=0.671 0=0.350 BN ,=0.073 0=0.463

-0.25 0.00 0.25 0.50 0.75 -1 0 -1 0 1
Unit 1601 (k=441) Unit 739 (k=539) Unit 1415 (k=637) Unit 1670 (k=735)
]
~—— pu=0.480 0=0.313 ~—— u=0.125 0=0.445 ——— u=0.724 0=0.246 ~—— u=0.323 0=0.112
| 1=0.487 0=0.320 B 1=0.130 0=0.441 | 1=0.723 0=0.253 | 1=0.322 0=0.114

0.0 0.5 1.0 15 -0.25 0.00 0.25 0.50 0.75

Figure 1: Comparison of numerically estimated distributions (blue) and their approximation
using Gaussian distributions (orange) over random hidden units and for different coalition
sizes k. We report the mean and standard deviation for both. For each value of k, empirical
distributions are computed sampling 10000 random coalitions of the corresponding size
from input pixel of a random MNIST image. Moments of the approximate distribution are
computed using the method described in Section 4 of the paper.

E Distribution filtering

In this section, we report mean and variance of the filtered distribution of some common
DNN operations.

E.1 ReLU activation

The output of a ReLU activation that receives a Gaussian input Z ~ N (u, 0?) is a rectified
Gaussian distribution [10] with mean and variance [3]:

o) o 1)

o =t e () oo (L) - (1b)

where ® and ¢ are the cumulative distribution function (CFD) and the PDF of the standard
normal distribution, respectively.

E.2 Max Pooling

Max pooling can be seen as returning the maximum response of n random variables 71, ...Z,.
For two independent inputs A ~ N(pa,0%), B ~ N (up,0%), the maximum is not normally

distributed anymore. Nevertheless, it has been shown that the univariate normal is an
effective approximation [4] and the first and second moments can be derived analytically [5]:

ftmaz = \/0% + 0% - d(@) + (na — pp) - P(a) + pp (2)
Prae = (4 +)0 + 0% - dla) + (42 +0%) - B(a)

+(np +0op) - (1= () = fiaa

where v = (ua—pp)/\/0% + 0%. When the pooling occurs with more than two inputs, we
apply this filtering recursively. The recursion order does not affect the resulting performance
significantly [4].

(3)

F Experimental setup

We report here the details of the architectures used in our experiments.

As a general remark, we always consider the network output before the last layer non-
linearity, if any. This is to avoid cross-influence of different output units (in case of a
softmaz) or output shrinking (in case of sigmoid or tanh). We also use a zero baseline in all
experiments and for all attribution methods.

F.1 Parkinsons disability assessment

We trained a multilayer perceptron on the Parkinsons Telemonitoring Data Set [13]. Each
input dimension was first normalized in the range [—1;1]. We used Adam [6] and early
stopping to train the network, achieving a 4.0 test error (MSE). The following is the
architecture.

MNIST CNN
Dense (128)
Activation (ReLU)
Dropout (0.2)
Dense (64)
Activation (ReLU)
Dropout (0.2)
Dense (1)

F.2 Classifying regulatory DNA sequences

The details for this architecture and its training can be found on the original paper [9)].

F.3 Digit classification (MNIST)

The MNIST dataset [7] was pre-processed to normalize the input images between -1 (back-
ground) and 1 (digit stroke). We trained a convolutional neural network, using Adadelta
[14], obtaining a 98.7% test accuracy. The list of layers is listed below.

MNIST CNN
Conv 2D (5x5, 6 kernels)
Activation (ReLU)
Max-pooling (2x2)
Conv 2D (5x5, 32 kernels)
Activation (ReLU)
Max-pooling (2x2)
Dense (120)
Activation (ReLU)
Dense (84)
Activation (ReLU)
Dense (10)
Activation (Softmax)

References

[1]

M. Ancona, E. Ceolini, C. Oztireli, and M. Gross. Towards better understanding of
gradient-based attribution methods for deep neural networks. In 6th International
Conference on Learning Representations (ICLR 2018), 2018.

A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In IFEEE Symposium on Security and
Privacy (SP), pages 598-617. IEEE, 2016.

B. J. Frey and G. E. Hinton. Variational learning in nonlinear gaussian belief networks.
Neural Comput., 11(1):193-213, Jan. 1999.

J. Gast and S. Roth. Lightweight probabilistic deep networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3369-3378, 2018.

E. T. A. F. Jacobs and M. R. C. M. Berkelaar. Gate sizing using a statistical delay model.
In Proceedings Design, Automation and Test in Europe Conference and Exhibition 2000
(Cat. No. PR00537), pages 283-290, March 2000.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiw:1412.6980, 2014.

Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
4765-4774. Curran Associates, Inc., 2017.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through
propagating activation differences. In D. Precup and Y. W. Teh, editors, Proceedings of
the 84th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 3145-3153, International Convention Centre, Sydney,
Australia, 06-11 Aug 2017. PMLR.

[10]

[11]

[12]

[15]

[16]

N. D. Socci, D. D. Lee, and H. S. Seung. The rectified gaussian distribution. In Advances
in neural information processing systems, pages 350-356, 1998.

E. Strumbelj and I. Kononenko. An efficient explanation of individual classifications
using game theory. The Journal of Machine Learning Research, 11:1-18, 2010.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
3319-3328, International Convention Centre, Sydney, Australia, 06-11 Aug 2017. PMLR.

A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig. Accurate telemonitoring
of parkinson’s disease progression by noninvasive speech tests. IEEE Transactions on
Biomedical Engineering, 57(4):884-893, April 2010.

M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXw:1212.5701, 2012.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818-833. Springer, 2014.

L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural network
decisions: Prediction difference analysis. 2017.

