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Abstract
Ordinal Embedding is the problem of placing n
objects into Rd to satisfy constraints like “object
a is closer to b than to c.” It can accommodate
data that embeddings from features or distances
cannot, but is a more difficult problem. We pro-
pose a novel landmark-based method as a partial
solution. At small to medium scales, we present a
novel combination of existing methods with some
new theoretical justification. For very large values
of n optimizing over an entire embedding breaks
down, so we propose a novel method which first
embeds a subset of m� n objects and then em-
beds the remaining objects independently and in
parallel. We prove a distance error bound for our
method in terms of m and that it has O(dn logm)
time complexity, and show empirically that it is
able to produce high quality embeddings in a frac-
tion of the time needed for any published method.

1. Introduction
We consider the problem of converting pairwise distance
comparisons of a set of n objects into a d-dimensional Eu-
clidean representation X ∈ Rn×d which preserves the or-
der, particularly in the large n setting. This task is var-
iously known as ordinal embedding or non-metric mul-
tidimensional scaling. Algorithms take as input a set of
triplets (a, b, c) meaning that the embedding should satisfy
‖xa − xb‖ < ‖xa − xc‖ (denoting the ith row of X by xi).
The triplets may be fixed in advance or actively selected by
the embedding algorithm.

In many other embedding tasks, one either has access to
a vector representation of the objects or one can somehow
estimate pairwise distances between the objects. In these
cases, efficient and effective embedding algorithms already
exist. Ordinal embedding addresses embedding when such
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positions and distances are not readily available. It was orig-
inally used with triplets sourced from human comparisons
of phenomena for which answering distance or position
questions is effectively impossible. For example, early ex-
periments in color theory (Borg & Groenen, 2005) asked
human participants to identify the most perceptually-similar
pair of colors from among three examples. Ordinal embed-
ding is also of use when precise distances are very expensive
to compute but comparing distances is more tractable; for
example, one could perform a breadth-first search of a large
graph down to some fixed depth and infer that any nodes
not visited must be more distant from the source than any
node already seen. A third domain of interest involves data
which is highly sparse or noisy, so one would prefer to rely
only on the order of distance estimates rather than their mag-
nitudes. A final possibility is in exploring novel distance
or ranking functions for which deriving distance-based em-
bedding algorithms may be laborious; ordinal embedding
is agnostic about the distances used to derive triplets, and
exploratory embeddings can be produced with out-of-the-
box ordinal methods to compare various distance functions.
High-quality ordinal embeddings of large scale datasets can
also yield interesting new algorithms for important order-
dependent tasks such as similarity search, product recom-
mendation, metric/kernel learning, or information retrieval.

Unfortunately, state-of-the-art ordinal embedding algo-
rithms are unable to handle large datasets. Methods which
optimize over a Gram matrix are inherently quadratic in n,
while current methods which optimize over point positions
are non-convex, so with large enough n and d a random
initialization is highly unlikely to be near the global op-
timum. Improving the scalability of these methods is an
active research topic, but to date the published results show
at most n = 10, 000 points embedded into d = 3 dimen-
sions. Even the recent work of Cucuringu & Woodworth
(2015), designed explicitly for large-n datasets, only shows
results for up to 5, 000 points. See Section 1.1 for a further
discussion.

This work allows ordinal embeddings of much larger
datasets, raising the number of points supported by the
state-of-the-art from tens of thousands to millions or more.
We recommend a novel combination of existing methods
for up to tens of thousands of points, and when n is very
large we provide a fast new landmark-based algorithm with
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guarantees on embedding quality.

Our contributions are two-fold: (1) At small-to-medium
scales, we demonstrate a novel combination of existing
methods which achieves much better performance than
found in current practice. (2) At large scales, we introduce
a new embedding algorithm which permits high-quality em-
beddings at scales of at least two orders of magnitude larger
than any previously published research.

Our Algorithm. Our proposed algorithm 1, Large-scale
Landmark Ordinal Embedding (LLOE), works by: (1) uni-
formly sampling a subset of m � n points, (2) using the
medium-scale algorithm from Section 2 to embed the subset,
and finally (3) using the subset as landmarks to embed the
remaining points.

We thus contribute (1) L-SOE, a medium-scale algorithm
which consists of a novel combination of existing methods
and which reliably handles values of n up to the tens of
thousands (Section 2), and (2) LLOE, a fast ordinal method
for large n, which can embed real-world datasets under
dimensionally-constrained circumstances, preserving order
comparably to distance-based methods. LLOE uses only
O(dn logm) triplets for some m � n, below the lower
bound of Ω(dn log n) for exact embeddings (Section 3).
We analyze LLOE in Section 4, proving an error bound
in terms of m for appropriately “smooth” datasets when
m is sufficiently large and when the subset is accurately
embedded, and show empirical results in Section 5.

LLOE depends critically on first embedding a large enough
subset to act as landmarks; this is difficult for datasets with
large “holes” between dense, disconnected clusters of points
or with high intrinsic dimensionality. We do not solve this
problem, instead relying on the state-of-the-art tools which
can potentially fail and thus lead to poor performance over-
all. However, LLOE can readily take advantage of im-
provements in the state-of-the-art by replacing the subset
embedding method as technology advances.

1.1. Related Work

Many methods are designed to embed ordinal datasets,
e.g., Agarwal et al. (2007); Tamuz et al. (2011); Van der
Maaten & Weinberger (2012); Terada & von Luxburg
(2014); Hashimoto et al. (2015). They typically embed
thousands of data points into five or fewer dimensions, of-
ten for the purpose of visualizing similarity inferred from
human assessments. Many have Ω(n2) or worse objectives,
particularly those which optimize a Gram matrix of point
positions, making them ill-suited to a large n setting.

Cucuringu & Woodworth (2015) present a method designed
for larger n. They use a spectral clustering of the kNN

1 Available at https://github.com/jesand/lloe.

adjacency graph to divide the objects into subsets, embed
each subset using Local Ordinal Embedding (Terada & von
Luxburg, 2014), and align points shared by different subsets
to merge them. Compared to our approach, this method has
two main drawbacks. First, it assumes access to the kNN
adjacency graph for the data. This graph can be costly to
obtain, taking up to O(n2) triplets. Second, it involves var-
ious matrix operations which become expensive for larger
sets. Our approach is simpler and more efficient.

The landmark-based method of Davenport (2013) is similar
to ours; they embed points individually using triplets based
on a set of previously-embedded landmarks. They choose
triplets to embed a new point x by sampling random pairs of
landmarks and comparing their distances to x; in the limit,
this will place x at an arbitrary position within the correct
cell of the Voronoi diagram of landmarks. In contrast, our
method: (1) uses more precise triplets which constrain new
points to lie in an intersection of spherical shells, (2) comes
with theoretical convergence guarantees, (3) empirically
exhibits successful embeddings for much larger datasets in
higher dimensionalities, and (4) even compares tolerably
well to simple distance-based methods, which are trained
on more informative data unavailable to us.

Recent theoretical advances have established that when the
underlying point positions meet certain smoothness guaran-
tees, preserving the distance ordering between sufficiently
many points must also preserve distances. In fact, vari-
ous subsets of triplets also suffice to preserve distances
(Kleindessner & von Luxburg, 2014; Arias-Castro, 2017).
Convergence rates and error bounds have been proven for
embeddings of randomly-selected noisy triplets (Jain et al.,
2016), and it is established that a lower bound of at least
Ω(dn log n) adaptively-selected triplets is needed to recover
the distances between n objects in Rd up to global scaling
(Jamieson & Nowak, 2011). Our method is not exact, but
uses only O(dn logm) triplets for subset size m� n.

Jain et al. (2016) show a convergence result for O(dn log n)
randomly-selected triplets, but for a slightly different prob-
lem. They assume triplets are less predictable when the
compared distances are almost equal, and we do not. In
a noise-free setting, the triplet selection method we use is
more accurate than random triplets (see Figure 2). In fact,
Jamieson & Nowak (2011) proved that Ω(n3) randomly-
selected triplets are needed for the precision we obtain.

Our methods amount to sorting a subset of the objects by
distance to some fixed object, so it is also worth mentioning
the large literature on sorting algorithms for crowdsourcing
(e.g., Marcus et al. (2011); Niu et al. (2015)) and on noise-
tolerant sorting and selection algorithms (e.g., Feige et al.
(1990); Ergün et al. (1998); Alonso et al. (2004); Braverman
& Mossel (2008); Ajtai et al. (2009); Hadjicostas & Lak-
shmanan (2011)), especially as the latter seem somewhat

https://github.com/jesand/lloe
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overlooked by the learning community.

2. Landmark Soft Ordinal Embedding
In this section, we improve the state-of-the-art for small-to-
medium-scale ordinal embeddings with a novel combination
of existing methods that effectively solves the ordinal em-
bedding problem at these scales, backed up by empirical
results substantially stronger than are currently found in the
literature and novel theoretical support for our method.

We call this method Landmark Soft Ordinal Embedding (L-
SOE). L-SOE optimizes the Soft Ordinal Embedding (Ter-
ada & von Luxburg, 2014) objective using L-BFGS (Liu
& Nocedal, 1989), over a set of triplets chosen according
to the LNM-MDS algorithm of Jamieson & Nowak (2011).
The SOE objective,

L(X; T , λ) (1)

=
∑

(a,b,c)∈T

max (0, ‖xa − xb‖ − ‖xa − xc‖+ λ)
2
,

incurs zero loss when points b and c are correctly ordered
with respect to a (where λ sets the scale).

2.1. Triplet Selection.

For ordinal objectives to succeed, it is critical to select the
right set of triplets to adequately constrain the solution.
While there are O(n3) total correct triplets, one can obtain
all triplets with O(n2 log n) adaptive triplets (by sorting
the objects from each member) and represent all triplets
using just O(n2) triplets (by transitivity). However, these
numbers lead to a quadratic cost to compute the objective
or its gradient, which is not practical for large n.

Four selection methods are proposed in the literature: (1)
random triplets (e.g. sample (a, b, c) s.t. ‖xa − xb‖ <
‖xa − xc‖) are easily collected and have error bounds pro-
vided by Jain et al. (2016); (2) Tamuz et al. (2011) offer
an active learning method which iteratively selects triplets
based on embeddings of the triplets gathered so far, but
these embeddings are time-consuming to produce, only
approximately-optimal triplets can be chosen, and it is not
clear how many triplets are needed; (3) Local Ordinal Em-
bedding (Terada & von Luxburg, 2014) derives triplets from
the k-nearest neighbors adjacency matrix and provides the-
oretical convergence guarantees for large n, but implicitly
uses nk(n− k) triplets which is Ω(n2) and O(n3); and (4)
Landmark-based methods use a subset of points as “land-
marks” and orders the set relative to them.

LNM-MDS Triplets. Without loss of generality, let our
set of object identifiers be [n] := {1, . . . , n}. The LNM-
MDS algorithm samples L landmarks L ⊂ [n] and collects
two subsets of triplets: (1) the entire collection is sorted

l1
l2

l3
a

b
c

Figure 1: With landmarks l1, l2, l3 and b placed in shells
centered on the landmarks and with boundary points a and c,
L-SOE constrains b to lie within the intersection of shaded
regions and the correct Voronoi cell of landmarks.

by distance to each landmark, and (2) the landmarks are
sorted by distance to each point in the collection. This
costs O(Ln log n) triplets to find the ordering, and can be
filtered by transitivity to O(Ln) triplets for the objective.
Once obtained, the triplets are embedded using Nonmetric
Multidimensional Scaling (NM-MDS).

LNM-MDS received little empirical support in Jamieson &
Nowak (2011), perhaps due to the limitations of NM-MDS.
The only experiment shown exhibits up to n = 30, d = 2.
We are not aware of any further published use of the algo-
rithm. However, Arias-Castro (2017) proved that when the
collection are n i.i.d. draws from a measure taking support
in a connected union of balls in Rd, any embedding pre-
serving the triplets chosen for LNM-MDS will preserve all
pairwise distances up to a global scaling constant, with error
that drives to zero as n→∞, and as the set of landmarks
grows dense in the background space. This lends L-SOE
some theoretical support, as it uses the same triplets; indeed,
L-SOE empirically outperforms embeddings of an equal
number of randomly-selected triplets.

2.2. Geometric Insights

We will now provide some intuition on why L-SOE can
be expected to perform well. An ordinal triplet (a, b, c)
constrains a to lie in the same halfspace as b, on the same
side of the hyperplane supported by the vector halfway from
b to c. The d-dimensional intersection of such halfspaces
arising from a set of triplets is commonly called a d-cell.
Each point a ∈ [n] is thus constrained to lie in the d-cell
corresponding to some set of triplets {(a, bi, ci)}i for each
bi, ci ∈ L. This d-cell is a subset of the cell of the Voronoi
diagram of landmarks. Meanwhile, point b is constrained
to lie within B (a, c), while c is constrained to lie outside
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B (a, b). See Figure 1 for an illustration.

More subtly, preserving distance order from each landmark
preserves a partial ordering of the orthogonal projections
of the points along the vectors between pairs of landmarks.
This is proven in the appendix as the following lemma.

Lemma 1 (Vector Projection Order). For distinct
p, q, x, y ∈ Rd, let x′ and y′ be the magnitudes of the pro-
jections of x and y, respectively, onto ~pq. If ‖xp − xx‖ <
‖xp − xy‖ and ‖xq − xx‖ > ‖xq − xy‖ then x′ < y′.

In other words, the triplets (p, x, y) and (q, y, x) constrain x
and y so the order of their orthogonal projections onto ~pq is
preserved. Thus, for any of the

(
L
2

)
vectors between pairs of

landmarks, large subsets of points must be well-ordered by
projection onto those vectors. If the landmarks are in general
position, then any d + 1 landmarks create a set of (more
than) d linearly-independent vectors establishing a basis
of Rd onto which the points must be well-ordered in each
dimension. Finally, by enforcing the total distance ordering
of points w.r.t. each landmark a ∈ L we impose the same
scale onto corresponding distances for each vector ~ab, b ∈
L \ {a}, as long as there are points near each vector at the
required distances. We thus make the following conjecture.

Conjecture 1 (L-SOE Convergence). Let Y ∈ Rn×d be
n i.i.d. draws from a Lipschitz measure over a bounded,
connected subset of Rd. For any ε, δ > 0 there is n0 such
that with probability at least 1 − δ, if n > n0 any embed-
ding X satisfying L-SOE for L = O(d) landmarks satisfies
‖xi − yi‖ < ε,∀i ∈ [n] after an appropriate similarity
transformation.

If true, this would confirm that the triplet cost of ordinal
embedding is indeed Θ(dn log n) as proposed by Jamieson
& Nowak (2011).

2.3. Empirical Results

We will now present some empirical results for L-SOE, with
further results in the Appendix. Recall that our primary
aim here is to show that L-SOE can produce embeddings of
adequate quality to serve as a reference for LLOE.

Figure 2 exhibits L-SOE for a variety of values of n and d,
on two simulated datasets—a set of points sampled from a
uniform ball, and a set of points sampled from a Gaussian
Mixture Model (GMM) with 10 components 2. The uniform
ball represents the simplest type of data for ordinal embed-
ding, with uniform density throughout the convex hull of
the set and no large gaps in the data. The GMM is more real-
istic, and presents more of a challenge for ordinal methods.
On each dataset, we compare L-SOE using L = 100 land-
marks and O(Ln) triplets as described above to an equal

2 Generated with sklearn.datasets.make blobs()
(Pedregosa et al., 2011)
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Figure 2: L-SOE Performance in R30. A diamond marks an
embedding with SOE loss < 1, and an X marks embeddings
further from a global minimum.

number of correct triplets selected uniformly at random. We
also compare against t-STE (Van der Maaten & Weinberger,
2012) run with the same two sets of triplets. Triplets are
embedded into a space of the correct dimensionality. Each
embedding proceeds for up to 1,000 rounds of L-BFGS,
with early termination if no loss decrease is observed. We
report the best embedding from 20 random initializations,
and the minimum CPU time for any of these embeddings 3.

We present four standard evaluation measures used for or-
dinal embedding methods. Distance error (denoted derr)
presents the distribution over distances (min, max, and me-
dian) between points in the true configuration and the em-

3Embeddings run on a late 2013 15” quad core MacBook Pro
with 2 GHz Intel Core i7 CPU and 16GB of RAM.
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bedding, after a Procrustes transform (which minimizes
derr) and with the matrices scaled so the sum of squared
vector norms equals one. We also estimate the probability
perr that a random triplet is incorrect in the embedding;
note that the average Kendall’s τ across all points satisfies
τ̄ = 2E[1− perr]− 1. Finally, we estimate a top-heavy ver-
sion of this, related to Average Precision and to the average
kNN score across all values of k, in which a and c are sam-
pled and then b is sampled s.t. ‖xa−xb‖ < ‖xa−xc‖ in the
true configuration; we present the probability pAP that this
order is violated in the embedding. The τAP measure (Yil-
maz et al. (2008); commonly used in Information Retrieval)
corresponds to τAP = 2E[1 − pAP ] − 1. Each of these
probabilities is estimated from 100,000 triplets. Finally, we
present nearest-neighbor error, the fraction of points for
which the nearest neighbor in the embedding matches the
nearest neighbor in the true configuration.

Random triplets are known to perform well overall, and in
our experiments they consistently converge in under 1,000
rounds. This leads to faster embeddings than with L-SOE
triplets. However, embeddings satisfying the L-SOE triplets
exhibit nearly perfect performance. Even L-SOE embed-
dings which violate many triplets, leading to relatively high
SOE loss, often perform better than optimal embeddings of
random triplets. This empirically supports the theoretical
convergence guarantees for L-SOE and suggests a gener-
ous rate of convergence; already by n = 1, 000 excellent
embeddings are observed. We also tried in preliminary ex-
periments adding random triplets to L-SOE triplets, but did
not observe a decrease in embedding time. This seems to
merit further study.

3. Large-Scale Ordinal Embedding
At very large scales, it is not practical to find an embedding
satisfying the SOE objective. Embeddings become increas-
ingly time-consuming to produce as n increases, and the
local optima obtained violate so many triplets that the out-
put is not useful. To address this, we present our algorithm,
Large-scale Landmark Ordinal Embedding (LLOE). LLOE
produces ordinal embeddings at arbitrarily large scales us-
ing time linear in n and d. We are thus able to present
the first ordinal embeddings of truly large-scale datasets
(i.e. where n2 runtime is too expensive). We also provide
theoretical embedding quality guarantees, and justify our
method with empirical performance of comparable scale to
distance-based embedding methods (which are not available
in general for ordinal datasets).

LLOE (Alg 1) proceeds in two phases, first identifying the
largest number m of points which can be accurately embed-
ded with L-SOE by a successive doubling strategy, and then
embedding a subset of m items with L-SOE and then us-
ing a fast landmark approach for embedding the remaining

Algorithm 1 LLOE(n, d, L, o)

input: object number n, landmark number L, dimension
d, triplet oracle o
output: ordinal embedding X ∈ Rn×d
{L-SOE Phase}
randomly permute object identifiers
m← 50L
repeat
m← min(2m,n)
[x1, . . . , xm], loss← L-SOE(m,L, d,≺)

until loss > 1 or m = n
m← m/2
[x1, . . . , xm]← last successful embedding of m points
{LLOE Phase}
for q ← m+ 1, . . . , n (in parallel) do
{Pick anchors for xi}
shells← empty list
for a← 1, . . . ,m in FFT order do
p← arg max{i∈[m]:o(a,i,q)=−1} ‖xa − xi‖
r ← arg min{i∈[m]:o(a,q,i)=−1} ‖xa − xi‖
if p and r were both found then
shells.append(xa, ‖xa − xp‖, ‖xa − xr‖)
if |shells| = 2(d+ 1) then
xq ← minimum of Eq. 2 for shells
break

return [x1, . . . , xn]

n − m items. It receives a collection of n items, w.l.o.g.
only as a list of identifiers [n] := {1, . . . , n}, a target di-
mensionality d, the number L of landmarks for the first
(L-SOE) phase, and a triplet oracle o : [n]2 → {−1,+1, λ}.
The triplet oracle answers distance comparisons (a, b, c),
answering with −1 if ‖xa − xb‖ < ‖xa − xc‖, with +1 if
‖xa − xb‖ > ‖xa − xc‖, and with λ if the answer can not
be determined (e.g. due to data sparsity).

Fast Landmark Embedding (LLOE Phase). In the sec-
ond phase of LLOE, our goal is to choose positions
X = {xm+1, . . . , xn} of all remaining objects so that
o(a, b, c) = −1 ⇒ ‖xa − xb‖ < ‖xa − xc‖ while using
time subquadratic in n. We embed each point j ∈ [n] \ [m]
independently and in parallel. A standard landmark embed-
ding approach would sort the members of [m] by distance
to j and then use a modified form of a standard ordinal
embedding method to position xj within Rd. However, this
would consume O(nm logm) total triplets, above the lower
bound on the problem, and most of these triplets are redun-
dant (Jamieson & Nowak, 2011). We take a more efficient
approach, using O(nd logm) total triplets and thus beating
the lower bound for “exact” embeddings (i.e. embeddings
which preserve all O(n3) true triplets). For example, we
will show results on n = 1, 000, 000 points embedded into
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R30 with high accuracy and taking time growing linearly
with n. In any case, obtaining an exact embedding likely
involves fine-tuning the positions of the points in the subset,
which makes embedding the remaining points dependent
on each other through the subset. This dependency of each
coordinate on all the others is part of what makes Ordinal
Embedding difficult, and we wish to avoid it.

Our approach is to choose widely-separated points in [m]
to serve as “anchors,” and to insert j into the ranking of
[m] for each anchor using binary search. This constrains
xj to lie inside a spherical shell centered on each anchor.
That is, suppose that for some anchor a ∈ [m] we find
that j lies just beyond b ∈ [m] but just before c ∈ [m].
Then xj should be embedded inside B (xa, xc) but outside
B (xa, xb), where B (i, j) denotes the set of points with
distance at most ‖xi − xj‖ from xi. We will henceforth
denote this difference of balls as Shell (a, b, c), which means
that ‖xa − xb‖ < ‖xa − xi‖ < ‖xa − xc‖. We will need
at least d+ 1 anchors for the intersection of their shells to
hope to constrain xj to a small, simply-connected region,
and we also need m large enough that the thickness of
each of these shells (= dyayb+1

− dyayb) is small. We will
later show in Section 4 that m need not be very large for
x to be well-constrained. This is further validated by our
empirical results in Section 5. In practice, we will choose
2(d+1) anchors to provide redundancy to deal with possible
measurement error and unfortunate subset sampling.

To select anchors to embed a new point, we need to account
for the possibility that comparisons can not be determined
for any particular member of [m]. We choose a farthest-first
traversal order of [m]; this tends to pick points as far apart as
possible, but gradually closes in on the position of the new
point. We will choose the first 2(d+ 1) points in this order
which can be compared to the new point. This ordering is
re-used for all future points, so it is a one-time cost.

1. Choose as the first item the farthest-ranked point from
an arbitrary member of [m]. (This point will lie on the
convex hull of [m].)

2. Given points a1, . . . , ai−1 already chosen and set
T ⊂ [m] not yet chosen, choose point ai having
maxk∈T minj<i ‖xk − xj‖.

We relabel the set so that [m] is in this order, and thus any
prefix x1, . . . , xk, k < m forms an ε-net of {x1, . . . , xm}.
That is, there is some constant εk such that all points
x1, . . . , xk have distance at least εk from each other, and all
points xk+1, . . . , xm have distance at most εk to the nearest
point in x1, . . . , xk.

We embed xj to lie as close as possible to the intersection
of the 2(d+ 1) spherical shells we have obtained. We can
think of Shell (a, b, c) as the points within distance (‖xa −
xc‖−‖xa−xb‖)/2 of the sphere with radius (‖xa−xc‖+

‖xa−xb‖)/2 centered on a. Thus, we use a margin-relaxed
version of the sphere intersection objective suggested by
Coope (2000). Given a set of shells Shell (ai, bi, ci), we
define radius ri := (‖xai − xbi‖ + ‖xai − xci‖)/2 and
margin mi := |‖xai − xbi‖ − ‖xai − xci‖|/2 and seek the
position xj within margin mi of each Sphere (ai, ri), using
L-BFGS to optimize our objective,

L(y) =

2(d+1)∑
i=1

max(0, (‖y − ai‖ − ri)2 −m2
i ). (2)

This objective is quite similar to Figure 2, except there is
no Voronoi cell constraint and the landmarks are in fixed
positions.

4. Convergence of LLOE
We now provide results showing an error bound for our
method. Section 5 demonstrates the method on a variety
of generated and real datasets, to show how it behaves in
practice.

Bounding shell thickness. As a first step, we want to
show that the shells we use for phase two of our algorithm
are not too thick. We will begin by showing that the number
of points from the full set which lie within each shell is
close to uniform. Intuitively speaking, this happens because
choosing our subset uniformly at random produces i.i.d.
draws from the underlying density. Since the underlying
density is Lipschitz smooth (by assumption), the distances
between pairs of points is similarly smooth. We formalize
this as follows.

Let a ∈ Rd and {x1, . . . , xm} ⊂ Rd be i.i.d. draws from a
Lipschitz-smooth density over a bounded, connected sub-
space of Rd. Now let d1, . . . , dm be the Euclidean distance
from a to each of the xi, sorted in increasing order. These
distances represent the radii to the shell boundaries one can
use to position new points with respect to anchor a. Since
the underlying density over points is Lipschitz smooth with
constant LX (by assumption), the induced density over dis-
tances is also Lipschitz smooth with some related constant
LD. We prove the following theorem in the appendix.

Theorem 1 (Anchor distance representation). Let distances
d1 < · · · < dm be i.i.d. draws from a Lipschitz smooth
measure over the positive reals having Lipschitz constant
LD. Then with probability of at least 1 − δ for any δ ∈
(0, 1), the largest gap di− di−1 written as εdmLD, satisfies
ε < 2

m ln m
δ .

Theorem 1 tells us that the size of the thickest shell for
any given anchor scales like (lnm)/m as the subset size
m grows. Doubling the subset size causes the largest shell
thickness to be reduced by roughly 1/3. However, as the
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probability of drawing a point from a shell increases with
the shell volume the shells will tend not to be evenly-spaced
— most shells will be much thinner than this, especially in
high-dimensional spaces. Critically, the shells will tend to
be thinner in areas of higher point concentration, where
more precision is needed for accurate distance recovery.

Bounding embedding quality. In the appendix we prove
the following upper bound on the distance of any point
embedded in phase two from its correct position, provided
that phase one recovered exact point positions.
Theorem 2 (Embedding accuracy). Let X ⊂ Rd be n i.i.d.
draws from a Lipschitz-smooth measure over a bounded,
connected subspace of Rd. Let S ⊂ X be a uniformly-
sampled subset of size m � d with known positions, and
let A ⊂ S be a set of at least d + 1 anchors chosen by
farthest-first traversal. For any x ∈ X , let x̂ ∈ Rd be any
point satisfying the distance constraints to the members of
A imposed by the order of S ∪{x}. Then there is a constant
c ∈ R such that with probability at least 1−δ for δ ∈ (0, 1),

‖x− x̂‖ < cd

m
ln
m

δ
.

The proof employs our Vector Projection Order lemma
(Lemma 1), using the known explicit distances to derive
a range of possible projections for a given point onto each
vector between pairs of anchors. This range depends on the
inter-anchor distances; using the fact that they form an ε-net
lets us tighten the projection interval. Finally, we use that we
have small projection intervals onto d linearly independent
vectors to derive a distance bound within Rd.

On Noisy Triplets. When only noisy triplets are available,
e.g. when triplets are obtained from human assessments
or behavior, a slight variation of our distance bound can
be proven to hold. LLOE should be modified by using a
noise-tolerant sorting algorithm (such as those listed in Sec-
tion 1.1) to insert each point x into the anchors’ rankings
with a high probability bound on the number of inversions.
The lower and upper distance bounds from x to each anchor
can be expanded using this bounded number of inversions,
producing a confidence interval over the distance to each
anchor and expanding the bound in Theorem 2 by a corre-
sponding constant factor.

5. Empirical Results for LLOE
A natural baseline for LLOE would use the same ordinal in-
put, but no known ordinal method can handle such large col-
lections. There are no published results at such scales, and
no appropriate public datasets of triplets. Instead, we com-
pare to LSA (Deerwester et al., 1990), which uses strictly
more information about the data (as it has access to the orig-
inal distance matrix). One would expect LSA to strongly

outperform our method, as it has access to this additional
information which is typically not available for ordinal prob-
lems, and as our ordinal embeddings are approximate (re-
lying on reference embeddings of very small sizes m). We
nonetheless produce embeddings of comparable quality to
LSA.

We exhibit LLOE on a variety of datasets, showing the first
published high-quality ordinal embeddings of large datasets
in high dimensionality, competitive with a LSA baseline.
Additional results are in the appendix. Please refer to Sec-
tion 2.3 for descriptions of our synthetic datasets and eval-
uation measures. These results (Figure 3) are largely what
one would expect from an embedding method which pre-
serves distances to at least d+1 points to within some small
error. Regardless of the size of n embedded we observe a
roughly constant distance error and a duration linear in n.
The maximum distance error is well above the median error;
over 990,000 points for the Uniform Ball and over 920,000
points for the GMM had distance error below 0.003. On the
test hardware used, and with d = 5, LLOE embedded about
1,100 points per second, while SOE embeds about 16 points
per second with L-SOE triplets and about 670 points per
second with random triplets4.

We also tested LLOE on two real datasets. We embed 20
Newsgroups (n = 18, 846, d = 101, 631 TF-IDF scores)
and MNIST Digits (n = 70, 000, d = 784 pixels), and
compare the results to LSA in Figure 4. These datasets pose
challenges that the synthetic data does not; namely, (1) the
distributions are naturally occurring and may violate our
modeling assumptions (e.g. containing large gaps between
dense clusters of points), and (2) we embed into fewer di-
mensions than are required to fully preserve distances, so a
perfect embedding is not possible. As a consequence, our
reference embeddings tend to be relatively imprecise. Re-
call that LSA is a strong baseline, as it uses exact distances
between points which are typically not available for ordinal
datasets. We do not quite match its performance, but we
argue that our results are of comparable quality for many
practical uses. It is worth pointing out that for some lower
dimensionalities LLOE preserves order better than LSA; see
the appendix for those results. Our takeaway is that LLOE
is particularly useful when exact distances are not available,
and methods like LSA can not be used, though it may out-
perform LSA on a given dataset in a given dimensionality.
It would be interesting to compare to other algorithms such
as word2vec, but we do not do so here. Further work would
need to be done to build an ordinal oracle which corresponds
to the distance function which word2vec seeks to preserve,
and perhaps to deal with the special sparsity structure of
word embeddings. We leave the design of ordinal word

4 SOE typically used 1,000 rounds for L-SOE, while for ran-
dom triplets it converged in far fewer rounds; its performance per
round depends on d and on the number of triplets.
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Figure 3: LLOE on synthetic data in R30; m = 1, 000. PCA
not shown, as original positions are already in R30.

embedding algorithms to future work.

Interestingly, performance on held-out triplets tends to im-
prove on the real datasets as the number of points embedded
increases. We believe this is due to the relatively poor qual-
ity of reference embeddings used. The reference embedding
quality dominates performance as the first few points are
embedded. As the embedding progresses, however, since
the reference embedding causes the space to be warped con-
sistently for all new points, performance on held-out triplets
(which relies on order rather than distance) improves until
the points embedded by LLOE dominate the order rather
than the points in the reference embedding.

These experiments show that our method can handle large
n and d. We believe that our method can produce em-
beddings of much larger dimensionality (e.g. hundreds of
dimensions) once research advances to the point that such
a high-dimensional reference embedding can be obtained.
Such an advance will be valuable, as many natural ordi-
nal datasets (e.g. document and word embeddings) seem
to require such high dimensionality for acceptable repre-
sentations. In the meantime, this method competes with
distance-based methods at moderately-high dimension.
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Figure 4: LLOE on real data in R30; m = 1, 000.

6. Final Thoughts
Based both on our results and the existing theoretical sup-
port, we would recommend the use of L-SOE for any ordi-
nal embedding of up to tens of thousands of points. While
the embeddings are somewhat slow compared to random
triplets, the process might be sped by injecting a small
number of random triplets to a L-SOE set. When L-SOE
succeeds in finding a good embedding, the result is a nearly-
perfect recovery of the original configuration.

For larger values of n, we have shown that LLOE exhibits
excellent performance and produces strong embeddings,
even recovering somewhat from poor reference embedding
performance. The main missing pieces, given this work,
are in extending our ability to embed higher-dimensional
datasets (d = 300 is common for PCA/word2vec) and solv-
ing the distributional challenges of ordinal embedding (e.g.
when large gaps exist between dense clusters of points).
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