Sorting Out Lipschitz Function Approximation

Appendices

A. GroupSort Activation

In this section, we provide visualizations to shed light on
how GroupSort networks compute simple 1D functions,
explain how GroupSort compares with other activations,
analyze the effect of the grouping size on its expressivity
and discuss its computational complexity of GroupSort.

A.1. Visualizing GroupSort Networks

In Figures 10 and 11, we visualize the hidden layer activa-
tions of GroupSort networks as the input to the network is
varied. The networks are approximating the absolute value
function and a curve resembling the letter "W”, with a slope
of 1 almost everywhere.

Network Input

100 —075 050 —0.25 000 025 050 075 100
network input

First Layer Preactivations (Before GroupSort) First Layer Activations (After GroupSort)

100 075 050 025 000 025 030 075 100 100 075 050 —0.25 000 025 030 075 100
network input network input

Network Output

~100 -075 -050 -0.25 000 025 030 075 100
network input

Figure 10: Visualization of the pre-activations and acti-
vations of a one hidden layer GroupSort network that is
approximating the absolute value function. The network has
two units in its hidden layer.

A.2. GroupSort and other activations

Here we show that GroupSort can recover ReLU, Leaky
ReLU, concatenated ReLU, and maxout activation func-
tions. We first show that MaxMin can recover ReLU and its
variants. Note that,

MaxMin({ 0 }) = [_gzﬁgg‘?@ } 5)

Network Input

First Layer Preactivations (Before Groupsort) First Layer Activations (After GroupSort)

activations

Second Layer Preactivations (Before GroupSort)

network output

00 ¥

20 -15 -lo —05 oo 05 10 15 20
network input

Figure 11: Visualization of the pre-activations and acti-
vations of a two hidden layer GroupSort network that is
approximating a curve resembling the letter "W” with a
slope of 1 almost everywhere. The network has four units
in its hidden layers.

By inserting 0 elements into the pre-activations and then
applying another linear transformation after MaxMin we
can output either ReLU or concatenated ReLU. Explicitly,

1 0 MaxMin(["g]) = ReLU(x) (6)

(b0 e 2] = [B T

If instead of adding O to the preactivations we added ax we
could recover Leaky ReLLU by using a linear transformation
to select max(x, ax) (similarly to Equation 6).

To recover maxout with groups of size k, we perform Group-
Sort with groups of size k and use the next linear transfor-
mation to select the first element of each group after sorting.

Sorting Out Lipschitz Function Approximation

A.3. Expressivity of GroupSort

We show that GroupSort activation with different group-
ing sizes have the same expressive power. We also show
that neural networks built with GroupSort activation and
absolute value activation have the same expressive power.

Expressivity of Different Grouping Sizes FullSort can im-
plement MaxMin by “chunking” the biases in pairs. To
be more precise, let Ty = SUPyey ||X||coc Where X
represents the domain, and b = [by,bo, ..., b,]T where
Tmar < b1 = by Kb =y <€ - K€ b1 = by, (<
denotes differing by at least x,,4,). We can write:

MaxMin(x) = FullSort(Ix + b) — b,

where I denotes the identity matrix.

Expressivity of GroupSort and Absolute Value Net-
works Under the matrix 2-norm constraint, neural neural
networks built with GroupSort activation and absolute value
activation have the same expressive power. The two opera-
tions can be written in terms of each other, as can be seen
below:

g e 3 [

min(y)

1
abs(z) = [% - %] MaxMin(| Y2 |)
V2
In Equation A.3, the value of B is chosen such that 2x +
V2B > 0 for all x in the domain. Note that all the matrices
in these constructions satisfy the matrix 2-norm constraint.

A 4. Computational Considerations

Let n be the total number of pre-activations and k be the size
of the groups used in GroupSort. Then, a naive CPU imple-
mentation of GroupSort has a complexity of 7 O(klogk).
However, this operation can be parallelized on GPU. We use
the built-in GPU accelerated sorting implementation in Py-
Torch (Paszke et al., 2017) in our experiments. We find that
the additional computational cost added by the GroupSort
activation is dwarfed by the other components of network
training and inference.

Note that MaxMin (GroupSort with a group size of 2) can be
implemented either by concatenating the results of a Maxout
and Minout operations (in which case it is roughly twice
as costly as a single MaxOut operation), or as in its own
custom CUDA kernel (Nvidia, 2010), in which case it can
be as efficient as the ReLU operation.

B. Implementing norm constraints
B.1. Comparing Bjorck and Parseval

In Cisse et al. (2017), the authors motivate an update to the
weight matrices by considering the gradient of a regulariza-
tion term, 2||[WTW — I||%. By subtracting this gradient
from the weight matrices they push them closer to the Stiefel
manifold. The final update is given by,

W« W(I+B) - WWiw (8)

Note that when 5 = 0.5 this update is exactly the first order
(p = 1) update from Equation 2, with a single iteration.
Compared to our approach, the key difference in Parseval
networks is that the weight matrix update is applied after
the primary gradient update. Instead, we utilize Equation 2
during forward pass to optimize directly on the Stiefel man-
ifold. This is more expensive but guarantees that the weight
matrices are close to orthonormal during training.

Choice of 5 We can relate the first order Bjorck algorithm
to the Parseval update by setting § = 0.5. However, in prac-
tice Parseval networks are trained with very small choices
of 3, for example 5 = 0.0003. When /3 is small the algo-
rithm still converges to an orthonormal matrix but much
more slowly. Figure 13 shows the maximum and minimum
singular values of matrices which have undergone 50 iter-
ations of the first order Bjorck scheme for varying choices
of B < 0.5. When 3 is much smaller than 0.5 the matrices
may be far from orthonormal. We also show how the maxi-
mum and minimum singular values vary over the number of
iterations when 5 = 0.0003 (a common choice for Parseval
networks) in Figure 12. This has practical implications for
Parseval training, particularly when using early stopping,
as the weight matrices may be far from orthonormal if the
gradients are relatively large compared to the update pro-
duced by the Bjorck algorithm. We observed this effect
empirically in our MNIST classification experiments but
found that Parseval networks were still able to achieve a
meaningful regularization effect.

B.2. Comparing Bjorck and Spectral Normalization

Spectral Normalization (Miyato et al., 2018) enforces the
largest singular value of each weight matrix to be less than 1
by estimating the largest singular value and left/right singu-
lar vectors using power iteration, and normalizing the weight
matrix using these during each forward pass. While this con-
straint does allow all singular values of the weight matrix
to be 1, we have found that this rarely happens in practice.
Hence, enforcing the 1-Lipschitz constraint via spectral nor-
malization doesn’t guarantee gradient norm preservation.

We demonstrate the practical consequences of the inability
of spectral normalization to preserve gradient norm on the
task of approximating high dimensional cones. In order

Sorting Out Lipschitz Function Approximation

Singular values from orthonormalization for varying iterations and 8 =0.0003

— Max singular
Min singular

o 2000 000 8000 10000

000
Rterations

Figure 12: Convergence of the Bjorck algorithm for increas-
ing iterations with 5 = 0.0003. The largest and smallest
singular values are shown after each iteration.

Singular values from orthonormalization with varying A

Figure 13: Convergence of the Bjorck algorithm for differ-
ent choices of 3. The largest and smallest singular values
are shown after 50 iterations of the algorithm.

to quantify approximation performance, we carefully pick
two n dimensional probability distributions such that 1) The
Wasserstein Distance between them is exactly 1 and 2) the
optimal dual surface consists of an n — 1 dimensional cone
with a gradient of 1 everywhere, embedded in n dimensions.
We later train 1-Lipschitz constrained neural networks to
optimize the dual Wasserstein objective in Equation 1 and
check how well the choice of architecture is able to approxi-
mate the dual surface. Architectures that can obtain tighter
estimates of Wasserstein distance are more expressive.

Figure 14 shows that neural networks trained with Bjorck
orthonormalization not only are able to approximate high
dimensional cones better than spectral normalization, but
also converge much faster in terms of training iterations.
The gap between these methods gets much more significant
as the problem dimensionality increases. In this experi-
ment, each network consisted of 3 hidden layers with 512

Convergence Behavior of
Bjorck vs. Spectral Normalization

1.0

. B Y Lo ¥
v iy A
Py, ST
o &

§ e
_ e

o
3
N
X

o
o

s === dim: 4 Bjorck
E —-- dim:16 Bjbrck
h /"’_/ —-- dim: 64 Bjorck
il 157 dim: 256 Bjorck
/' ! —-= dim: 4 Spectral Norm.
-- dim: 16 Spectral Norm
i/ dim: 64 Spectral Norm
" dim: 256 Spectral Norm

Approximation Performance
S
=

I
N}
==

50 100 150 200 250 300
Training iterations

Figure 14: Comparing the performance of 1-Lipschitz neu-
ral nets using Bjorck orthonormalization vs. spectral nor-
malization on the high dimensional cone fitting task (Sec-
tion 7.1.1). Using Bjorck orthonormalization leads to fasted
convergence and better approximation performance, mea-
sured by the estimated Wasserstein Distance.

hidden units per layer, and was trained with the Adam opti-
mizer (Kingma & Ba, 2015) with its default hyperparame-
ters. Tuned learning rates of 0.01 for Bjorck and 0.0033 for
spectral normalization were used.

B.3. Sufficient Condition for Convergence of Bjorck
Orthonormalization

The Bjorck orthonormalization can be shown to always
converge as long as the condition |[WTW —1I||; < 1
is satisfied (Hasenclever et al., 2017). Since Bjorck or-
thonormalization is scale invariant, (BJORCK(aW) =
aBJORCK (W) (Bjorck & Bowie, 1971), the aforemen-
tioned sufficient condition can be implemented by simply
scaling the weight matrix so that all of its singular values
are less than or equal to 1 before orthonormalization.

A scaling factor can be computed efficiently by considering
the following matrix norm inequalities:

Omaz < Vm*nHWHmam (9)
Omax S \/EHWHI (10)
Omaz < Vm|[W/l (11)

Above, 0,4, corresponds to the largest singular value of
the matrix and m and n stand for the number of rows and
columns respectively. Note that computing the quantities
on the right hand side of the inequalities involves at most
summing over the rows or columns of the weight matrix,
which is a cheap operation.

B.4. Computational Considerations Regarding Bjoi'ck
Orthonormalization

Bjorck orthonormalization is a costly operation even when
implemented on a GPU, as it contains matrix-matrix prod-
ucts. In this section, we go over a few methods that can
be used to accelerate Bjorck orthonormalization. Note that

Sorting Out Lipschitz Function Approximation

GroupSort’s additional cost is only incurred during train-
ing: once the network is trained, it is possible to use the
orthonormalized parameters as the network weights and
bypass the orthonormalization step.

Enforcing a soft Lipschitz constraint throughout train-
ing: We found in our experiments that one can run only a
few iterations of Bjorck orthonormalization during training,
then increase the number of iterations towards the end of
training without hurting performance in classification tasks.

Performing spectral normalization before Bjorck or-
thonormalization: By normalizing the weight matrices by
their spectral norm before Bjorck orthonormalization, one
can not only guarantee convergence (as described in B.3),
but also faster convergence. As opposed to guaranteeing
convergence by normalizing the weights using estimates of
other norms (as in equations 9, 10 and 11), normalizing by
the spectral norm ensures the singular values of the matrix
are closer to unity before Bjorck orthonormalization is run.

Implementing Bjorck using Matrix-Vector products: It
is possible to rewrite the Bjorck algorithm in terms of
Matrix-Vector products. This stems from the fact that we
do not actually need to compute the entire orthonormal ma-
trix A, but only a matrix-vector product Av, where v are
the activations of the previous network layer. Recall the
expression for one Bjorck update:

3 1
Ak+1v = iAkv — §AkAgAk’U

Unfortunately, we cannot compute Ay_1v from only Aiv
as we also need to compute Ay AT Ayv which requires Ay,
explicitly. However, we can rewrite the above using two
operations: u — Aju and u — A, Alu. To see why this is
useful, we write,

3

1
Appr Al = (54K — SARAL A)

3 1
(5AK = 5 AL ARAL)v

9 3
= ZAkAgv — §(AkAkT-)(AkAkT-)U

1
+ Z(AkAIZ)(AkAg)(AkAIz)U

Hence, we can write u — A1 Ag+1u as a function of u —
A Apu. This allows us to recursively define the matrix-
vector product of the kth iterate in terms of the previous
iterates.

This method works very well for relatively few iterations
(approximately less than 5) but scales poorly as the num-
ber of iterations increases. This is because the algorithm
requires O(3%) matrix-vector products. Table 3 shows a run-
time comparison for the original algorithm and the Matrix-

Iterations 1 2 3 5 10
Full Bjorck 0.020 0.039 0.059 0.095 021
MVP Bjorck 0.0002 0.0005 0.0011 0.012 2.88
Speedup Factor 99.98x 78.59x 53.56x 7.77x 0.07x

Table 3: Runtime (seconds) for full Bjorck and Matrix-
Vector Product (MVP) Bjorck for a 1000 x 1000 matrix,
averaged over 10 runs.

Vector Product (MVP) for increasing iterations averaged
over 10 runs. The weight matrices have a dimension of
1000 x 1000 and are normalized using the equation 11 to
guarantee convergence.

C. Projecting Vectors on L, Ball

The following algorithm uses sorting to project vectors on
L balls (Condat, 2016).

Algorithm 1 L, Projection via. Sorting

Input: y € RY, Output: z € RV .
Sortyintow: uy > ... > uyn .
Set K := maxlngN{kKZf:l Uy —
Set7:= (X F up —1)/K.
forn=1,...,Ndo

Set x,, := max,, _r0
end for

1)/k < ug}.

D. Non-expressive norm-constrained
networks are linear

Theorem 1. Consider a neural net, f : R — R, built
with matrix 2-norm constrained weights (||W||2 < 1) and
1-Lipschitz, element-wise, monotonic activation functions.
If|IV f(x)||2 = 1 almost everywhere, then f is linear.

Proof. We can express the input-output Jacobian of a neural
network as:

of 0f Ohp10zp—1 _
ox Ohp 40z, ox ¢

0¢(zp—1) Ozp—1
8zL,1 ox

Note that W; € R ™.-1 Moreover, using the sub-
multiplicativity of matrix norms, we can write:

1= Haf < HWL Op(zr-1) || ||0zL-1
ox ||, Ozr—1 ||5]] 9x ||,
09(zr-1) 0zr—1
< <
— ||WLH2 azL—l) ax) — 1

for almost everywhere. The quantity is also upper
bounded by 1 due to the 1-Lipschitz property. Therefore, all
of the Jacobian norms in the above equation must be equal

Sorting Out Lipschitz Function Approximation

to 1. Notably,
Op(zr-1)

=1 d
921 an

-
2

Wil =1

We then consider the following operation:

d(zr_1)||?

W \\%
W - w252

2 (12)

2 : 8¢ ZL 1) 2 W 2
0zr_1 zz)(L,i)
We have 0 < ;—“b < 1 as ¢ is 1-Lipschitz and monotoni-
zL

cally increasing. Therefore, we must have either % =1
3
almost everywhere, or Wy, ; = 0. Thus we can write,

zp = Z Wrid(zr—1)i +br
i=1
Z Wrid(zr—1)i +br

W, ;#0

= Z Wrizr—1,:+br
iZWLYi;éO

Then z;, can be written as a linear function of z;,_; almost
everywhere and by Lipschitz continuity we must have that
zy, is a linear function of z,_;. In particular, we can write
L =W Wy _1hp o+ (Wpbp_1 + bp), collapsing the
last two layers into a single linear layer, with weight matrix
W;W;_; € RIX"2—2 and scalar bias Wby, + br.

From here we can apply the exact same argument as above to
¢(z1,—2), reducing the next layer to be linear. By repeating
this all the way to the first linear layer we collapse the
network into a single linear function. O

Theorem 2. Consider a network, f : R™ — R, built with
matrix 2-norm constrained weights and with ||V f (x)||2 = 1
almost everywhere. Without changing the computed func-
tion, each weight matrix W € R™*k can be replaced with
a matrix W whose singular values all equal 1.

Proof. Take a weight matrix W, for ¢ < L. By the argu-
ment in the proof of Theorem 1, this matrix must preserve
the norm of gradients during backpropagation. That is,

1=
[

2

Using the singular value decomposition, we write W;
UXVT. We then define W; = USXV7 where X has ones
along the diagonal. Furthermore, define Wgt) =tW,; +
(1 — t)W,. Replacing W; with Wgt) in the network:

of 0f 0z _ Of

ot 9z, Ot 0z (Wi = Wi)hia

_ 9y ST
621 (21 - Ez)v hzfl

As the norm of is preserved by W, we must have that

u = (52 9L U) has non-zero entries only where the diagonal
of ¥ 1sl Thatis, u; =0 <= 2” < 1. In particular, we
have u”'S; = w73, meaning at = 0. Thus, the output of
the network is the same for all ¢, in particular for ¢ = 0 and
t = 1. Thus, we can replace W; with W and the network
output remains unchanged.

We can repeat this argument for all # < L (fori = 1 we
adopt the notation hy = x, the input to the network). For
1 = L the result follows directly. [

E. Universal Approximation of 1-Lipschitz
Functions

Here we present formal proofs related to finding neural
network architectures which are able to approximate any
1-Lipschitz function. We begin with a proof of Lemma 1.

Lemma 1. (Restricted Stone-Weierstrass Theorem) Sup-
pose that (X, dx) is a compact metric space with at least
two points and L is a lattice in Cr,(X, R) with the property
that for any two distinct elements x,y € X and any two
real numbers a and b such that |a — b| < dx(x,y) there
exists a function f € L such that f(x) = a and f(y) =
Then L is dense in Cr,(X,R).

Proof. This proof follows a standard approach with small
modifications. We aim to show that for any g € C1(X,R)
and € > 0 we can find f € L such that ||g — f||c < €(i.e.
the largest difference is €).

Fix z € X. Then for each y € X, we have an f, € L
with fy(z) = g(x) and f,(y) = g(y). This follows from
the separation property of L and, using the fact that g is
1-Lipschitz, |g(x) — g(y)| < dx(z,y).

Define V, = {z € X : f,(2) < g(z) +€}. Then V,, is open
and we have x,y € V,. Therefore, the collection of sets
{Vy }yex is an open cover of X. By the compactness of X,

there exists some finite subcover of X, say, {V,,,...,V,, },
with corresponding functions f,, ..., fy..

Let F, = man(fy,,. .., fy,). Since L is a lattice we must
have F,, € L. And moreover, we have that F,(z) = g(x)
and F(z) < g(z) + ¢ forall z € X.

Now, define U, = {#z € X : Fy(2) > g(2) — €}. Then
U, is an open set containing z. Therefore, the collec-
tion {U, }.cx is an open cover of X and admits a finite
subcover, {Uy,, ..., U, }, with corresponding functions
Foyo oV Fy,

Let G = max(Fy,,...
g(z) —e forall z € X.

,Fyp,) € L. We have G(z) >

Combining both inequalities, we have that g(z) — ¢ <
G(z) < g(2) + ¢ forall z € X. Or more succinctly,
llg — G|l < €. The result is proved by taking f = G. O

Sorting Out Lipschitz Function Approximation

We now proceed to prove Theorem 3.

Theorem 3. (Universal Approximation with Lipschitz Net-
works) Let LN}, denote the class of fully-connected net-
works whose first weight matrix satisfies ||W1||p.co = 1, all
other weight matrices satisfy ||W||oo = 1, and GroupSort
activations have a group size of 2. Let X be a closed and
bounded subset of R" endowed with the L,, metric. Then
the closure of LN}, is dense in Cr,(X,R).

Proof. The first property we require is separation of points.
This follows trivially as given four points satisfying the re-
quired conditions we can find a linear map with the required
L, o matrix norm that fits them. It remains then to prove
that we can construct a lattice under this constraint. We be-
gin by considering two 1-Lipschitz neural networks, f and
g. We wish to design an architecture which is guaranteed to
be 1-Lipschitz and can represent max(f, g) and min(f, g).

The key insight is that we can split the network into two
parallel channels each of which computes one of f and g.
At the end of the network, we can then select one of these
channels depending on whether we want the max or the min.

Each of the networks f and ¢ is determined by
a set of weights and biases, we will denote these
(WY bl,... . WI b/] and [W9 bY,..., W9, bd] for f
and g respectively. For now, assume that these networks are
of equal depth (we can lift this assumption later) however
we make no assumptions on the width. We will now con-
struct h = max(f,g) in the form of a 1-Lipschitz neural
network. We will design a network h which first concate-
nates the first layers of networks f and g and then computes
f and g separately before combining them at the end.

We take the first weight matrix of h to be W =
W/ WY, the weight matrices of f and g stacked verti-
cally. This matrix necessarily satisfies ||[W[, - = 1. Sim-
ilarly, the bias will be those from the first layers of f and g
stacked vertically. Then the first layer’s pre-activations will
be exactly the pre-activations of f and g stacked vertically.

For the following layers, we construct the biases in the same
manner (vertical stacking). We construct the weights by
constructing new block-diagonal weight matrices. That is,
given W/ and WY, we take

f
n_ | WS 0
w5 |

This matrix also has co-norm equal to 1. We repeat this for
each of the layers in f and g and end up with a final layer
which has two units, f and g. We can then take MaxMin
of this final layer and take the inner product with [1, 0] to
recover the max or [0, 1] for the min.

Finally, we must address the case where the depth of f and
g are different. In this case we notice that we are able to

represent the identity function with MaxMin activations. To
do so observe that after the pre-activations have been sorted
we can multiply by the identity and the sorting activation
afterwards will have no additional effect. Therefore, for
the channel that has the smallest depth we can add in these
additional identity layers to match the depths and resort to
the above case.

We have shown that the set of neural networks is a lattice
which separates points, and thus by Lemma 1 it must be
dense in C (X, R). O

Note that we could have also used the maxout activation
(Goodfellow et al., 2013) to complete this proof. This makes
sense, as the maxout activation is also norm-preserving in
L. However, this does not hold when using a 2-norm con-
straint on the weights. We now present several consequences
of the theoretical results given above.

This result can be extended easily to vector-valued Lipschitz
functions with respect to L, distance by noticing that the
space of such 1-Lipschitz functions is a lattice. We may
apply the Stone-Weierstrass proof to each of the coordinate
functions independently and use the same construction as
in Theorem 3 modifying only the last layer which will now
reorder the outputs of each function to do a pairwise com-
parison and then select the relevant components to produce
the max or the min.

Observation. Consider the set of networks, LN, = {f :
R" — R™ |[|W||lse = 1}. Then LN is dense in I-

Lipschitz functions with respect to the L, metric.

Proof. Note that given two functions, g, f : R* — R™
which are 1-Lipschitz with respect to the L, metric, their
element-wise max (or min) is also 1-Lipschitz with respect
to the L, metric. Consider the element-wise components
of such an f, written f = (f1,..., fm). We can apply
the Stone-Weierstrass theorem (Lemma 1) to each of the
components independently, such that if the same conditions
apply (trivially extended to R™) the Lattice is dense. Thus,
as in the proof of Theorem 3, it suffices to find a network
h € LN which can represent the max or min of any other
networks, f,g € LN.

In fact, we can use almost exactly the same construc-
tion as in the proof of Theorem 3. We follow the same
initial steps by concatenating weight matrices and con-
structing block-diagonal matrices from the two networks.
After doing this for all layers in the networks f and g,
we will output [f1,..., fm,d1,...9gm]. We can then per-
mute these entries using a single linear layer to produce
[f1,915 f2, 925 - fm,gm] finally we take MaxMin and
use the final weight matrix to select either max(f,g) or

min(f, g).

Sorting Out Lipschitz Function Approximation

F. Spectral Jacobian Regularization

Most existing work begins with the goal of constraining
the spectral norm of the Jacobian and proceeds to achieve
this by placing constraints on the weights of the network
(Yoshida & Miyato, 2017). While not the main focus of our
work, we propose a simple new technique which allows us to
directly regularize the spectral norm of the Jacobian, o (J).
This method differs from the ones described previously as
the Lipschitz constant of the entire network is regularized
using a single term, instead of at the layer level.

The intuition for this algorithm follows that of Yoshida &
Miyato (2017), who apply power iteration to estimate the
singular values of the weight matrices online. The authors
also discuss computing the spectral radius of the Jacobian
directly, and related quantities such as the Frobenius norm,
but dismiss this as being too computationally expensive.

Power iteration can be used to compute the leading singular
value of a matrix J with the following repeated steps,

vie = J w1 /|| k|2, uk = Jvi /|| Tvil2

Then we have o(J) ~ u’.Jv. There are two challenges
that must be overcome to implement this in practice. First,
the algorithm requires higher order derivatives which leads
to increased computational overhead. However, the tradeoff
is often reasonable in practice, see e.g. Drucker & Le Cun
(1992). Second, the algorithm requires both Vector-Jacobian
products and Jacobian-Vector products. The former can be
computed with reverse-mode automatic differentiation but
the latter requires the less common forward-mode. Fortu-
nately, one can recover forward-mode from reverse mode
by constructing Vector-Jacobian products and utilizing the
transpose operator (Townsend, 2017). We can re-use the
intermediate reverse-mode backpropagation within the al-
gorithm which further reduces the computational overhead.
The algorithm itself is presented as Algorithm 2.

Algorithm 2 Spectral Jacobian Regularization

Initialize randomly, choose hyperparameter A > 0
for data batch (X,Y) do
Compute logits fo(X)
Compute loss L(fg(X),Y)
of

Compute g = u”
Setv = g/||g|l2
Compute h = (v

u
Update u = h/||h||2

—, using reverse mode

g .
T=)T = —v, using reverse mode

Compute parameter update from 20 (C +)\uTh)
end for

We present this algorithm primarily to be used for regular-
ization but this could also be used to approximately control

ReLU | MaxMin | GS(4) | FullSort | Maxout
Standard 1.61 1.47 1.62 353 1.40
Dropout 1.27 1.37 1.29 3.62 1.27
Bjorck 1.54 1.25 1.43 2.06 1.43
Spectral Norm 1.54 1.26 1.32 2.94 1.26
Spectral Jac 1.05 1.09 1.24 1.93 1.02
Parseval 1.43 1.40 1.44 3.36 1.35
Lo 2.25 2.28 222 4.88 1.98

Table 4: MNIST classification Test error shown for differ-
ent architectures and activations (GS stands for GroupSort.).

the Lipschitz constraint by rescaling the output of the en-
tire network by the estimate of the Jacobian spectral norm
similar to spectral normalization (Miyato et al., 2018).

G. Additional Experiments

We present additional experimental results.

G.1. Classification

We compared a wide range of Lipschitz architectures and
training schemes on some simple benchmark classification
tasks. We demonstrate that we are able to learn Lipschitz
neural networks which are expressive enough to perform
classification without sacrificing performance.

MNIST Classification We explored classification with a
3-layer fully connected network with 1024 hidden units in
each layer. Each model was trained with the Adam optimizer
(Kingma & Ba, 2015). The results are presented in Table. 4.

For all models the GroupSort activation is able to perform
classification well - especially when the Lipschitz constraint
is enforced. Surprisingly, we found that we could apply the
GroupSort activation to sort the entire hidden layer and still
achieve reasonable classification performance, even with
dropout. In terms of classification performance, spectral
Jacobian regularization was most effective (Appendix F).

While the Parseval networks are capable of learning a strict
Lipschitz constraint this does not always hold in practice.
A small beta value leads to slow convergence towards or-
thonormal weights. When early stopping is used, which
is typically important for good validation accuracy, it is
difficult to ensure that the resulting network is 1-Lipschitz.

Classification with little data While enforcing the Lips-
chitz constraint aggressively could hurt overall predictive
performance, it decreases the generalization gap substan-
tially. Motivated by the observations of Bruna & Mallat
(2013) we investigated the performance of Lipschitz net-
works on small amounts of training data, where learning
robust features to avoid overfitting is critical.

For these experiments we kept the same network architec-
ture as before. We trained standard unregularized networks,

Sorting Out Lipschitz Function Approximation

(b) MaxMin Ceritic

Figure 15: Generated images from WGAN-GP models
trained on the CelebA dataset.

networks with dropout, networks regularized with weight
decay, and 1-Lipschitz neural networks enforced with the
Bjorck algorithm. We made use of a LeNet-5 architecture,
with convolutions and max-pooling — the latter prevents
norm preservation and thus may reduce the effectiveness of
MaxMin substantially. We found that Dropout was the most
effective regularizer in this case but confirmed that networks
with Lipschitz constraints were able to significantly improve
generalization. Full results are in Table 5.

Classification on CIFAR-10 We briefly explored classifi-
cation on CIFAR-10 using Wide ResNets (Depth 28, Width
4) (Zagoruyko & Komodakis, 2016; He et al., 2016). We
performed these experiments primarily to explore the effec-
tiveness of the MaxMin activation in a more challenging
setting. We used the optimal optimization hyperparameters
for ReLU with SGD and performed a small search over
regularization parameters for Parseval and Spec Jac regu-
larization. We present results in Table 6. We found that
MaxMin performed comparably to ReLU in this setting and
hope to explore this further in future work.

G.2. Training WGAN-GP

We found that the MaxMin activation could also be used as
a drop-in replacement for ReLLU activations in WGAN archi-

tectures that utilize a gradient-norm penalty in the training
objective. We took an existing implementation of WGAN-
GP which used a fully convolutional critic network with
5 layers and LeakyReLU activations. The generator used
a linear layer followed by 4 deconvolutional layers. We
trained this model with the tuned hyperparameters for the
LeakyReLU activation and then used the same settings to
train a model with MaxMin acivations. We defer a more
thorough study of this setting to future work but present here
the output of the trained generators after 50 epochs of train-
ing on the CelebA dataset (Liu et al., 2015) in Figure 15.

G.3. Dynamical Isometry

In Figure 16 we plot the distribution of all singular values of
ReLU and GroupSort 2-norm-constrained networks trained
as MNIST classifiers, with a Lipschitz constant of 10. While
the ReLU singular values are spread between 4-8 the Group-
Sort network concentrates the singular values in range 9-10.
Dynamical isometry (Pennington et al., 2017) requires all
Jacobian singular values to be concentrated around 1. Using
2-norm constraints and GroupSort activations we are able
to achieve dynamical isometry throughout training.

H. Experiment Details

We present additional experimental details.

H.1. Designing Synthetic Distributions for Wasserstein
Distance Estimation

Absolute value We pick pi(x) = do(z) and pa(x) =
1
55,1(@ + 551 (z), where d,,(z) stands for the Dirac delta

function located at . The optimal dual surface learned
while computing the Wasserstein distance between p; and
po is the absolute value function. This also makes intuitive
sense, as the function that assigns “’as low values as possible”
at z = 0 and assigns "as high values as possible” at x = —1
and x = 1 while satistying 1-Lipschitz condition must be
the absolute value function.

The transport plan that minimizes the primal objective will

Distribution of Jacobian singular values in 10-Lipschitz networks

GroupSort
mo HEEE RelU

Frequency
& g

Jacobian Singular Values

Figure 16: Jacobian singular values distribution We com-
pare the Jacobian singular values of ReLU and GroupSort
networks.

Sorting Out Lipschitz Function Approximation

Data Size Standard Dropout Weight Decay Bjorck
ReLU | MaxMin | ReLU | MaxMin | ReLU | MaxMin | ReLU | MaxMin
300 12.40 12.14 7.30 10.64 | 11.06 10.81 8.12 7.81
500 8.57 9.13 5.54 6.15 7.33 7.50 5.96 6.98
1000 5.95 6.23 3.70 4.58 5.14 6.05 4.45 4.54
5000 2.54 2.51 1.84 2.15 2.31 2.55 2.23 2.31
10000 1.77 1.76 1.26 1.70 1.58 1.57 1.66 1.64

Table 5: MNIST Classification with limited data Test error for varying architectures and activations per training data size.

Standard Parseval Spec Jac Regularization
ReLU | MaxMin | ReLU | MaxMin | ReLU MaxMin
CIFAR-10 | 95.29 94.57 | 95.45 94.83 | 95.44 94.62

Table 6: CIFAR-10 Classification Test accuracy for Wide ResNets (Depth 28, Width 4) with varying activations and

training schemes.

simply be to map the center Dirac delta equally to the ones
near it. This leads to a Wasserstein distance of 1.

The networks we trained had 3 hidden layers each with 128
hidden units. We report the results obtained with the Aggre-
tated Momentum optimizer (AggMo) (Lucas et al., 2018)
with its default parameters, as it lead to faster convergence
in our experiments compared to Adam optimizer (Kingma &
Ba, 2015). We note that the choice of optimizer had minimal
impact on the final Wasserstein Distance estimates.

Multiple 2D Circular Cones We describe the probability
distributions p; and ps implicitly by describing how we
sample from them. p; is sampled from by selecting one of
the three points ((—2,0), (0,0) and (2, 0)) uniformly. ps is
sampled from by first uniformly selecting one of the three
points aforementioned, then uniformly sampling a point on
the circle surrounding it, with radius 1. Wasserstein dual
problem aims to find a Lipschitz function which assigns “as
high as possible” values to the three points, and ”as low as
possible” values to the circles with radius 1 surrounding the
three points. Hence, the optimal dual function must consist
of three cones centered around (—2,0), (0,0) and (2,0).
The behavior of the function outside this support doesn’t
have an impact on the solution.

The optimal transport plan must map the probability mass to
the nearby circles surrounding them uniformly. This leads
to an Wasserstein distance of 1.0.

The networks we trained had 3 hidden layers with 312 hid-
den units. We used the Aggretated Momentum optimizer
(AggMo) (Lucas et al., 2018) with its default parameters.

n Dimensional Circular Cones This is a simple extension
of the absolute value case described above.

We pick p; as the Dirac delta function located at the origin,
and sample from py by uniformly selecting a point from high
dimensional spherical shell with radius 1, centered at the
origin. Following similar arguments developed for absolute

value, it can be shown that the optimal dual function is a
single high dimensional circular cone and the Wasserstein
distance is also equal to unity.

H.2. Wasserstein Distance Estimation

The GAN variants we trained on MNIST and CIFAR10
datasets used the WGAN formulation first introduced in
Arjovsky et al. (2017). The architectures of the generator
and critic networks were the same as the ones used in(Chen
et al., 2016). For the subsequent task of Wasserstein dis-
tance estimation, the weights of the generator networks were
frozen after the initial GAN training has converged.

H.3. Wasserstein GAN with 1-Lipschitz Layers

We borrowed the discriminator and generator networks from
Chen et al. (2016), but switched the ReLLU activations with
MaxMin and replaced the convolutional and fully connected
layers with their Bjorck counterparts. We didn’t use batch
normalization, as this would violate the Lipschitz constraint.

H.4. Classification

For MNIST classification, we searched the hyperparameters
as follows. For Bjorck, L, constrained, and Spectral Norm
architectures we tried networks with a guaranteed Lipschitz
constant of 0.1, 1, 10 or 100. For Parseval networks we
tried 8 values in the range 0.001, 0.01, 0.1, 0.5. For SpecJac
regularization we scaled the penalty by 0.01, 0.05, or 0.1.

In order to scale the Lipschitz constant of the network, we
introduce constant scaling layers in the network such that
the product of the constant scale parameters is equal to the
Lipschitz constant. As the activation functions are homo-
geneous, e.g. ReLU(ax) = aReLU(x), this is equivalent to
scaling the output of the network as described in Section 4.

Sorting Out Lipschitz Function Approximation

H.5. Robustness and Interpretability

For the adversarial robustness experiments we trained fully-
connected MNIST classifiers with 3 hidden layers each with
1024 units. We used the L, projection algorithm referenced
in Section 4.2. We applied the projection to each row in the
weight matrices after each gradient update.

Our implementation of the FGS attack is standard but we
found that the loss proposed by Carlini & Wagner (2016) (in
particular, fg which the authors found most effective) was
necessary to generate attacks for the Margin-0.3 MaxMin
network (and produced stronger adversarial examples for
the other networks). PGD also had difficulty generating
adversarial examples for the Margin-0.3 MaxMin network.
It was necessary to run PGD for 200 iterations and to use a
scaled down version of the random initialization typically
used: instead of randomly perturbing « in the € ball we per-
turbed it by at most €/10 before running the usual scheme.
Table 7 summarizes our results.

For the intepretable gradients in Figure 7 we used the same
architecture, but switched to 2-norm constraints. We chose
a random image from classes 1-4 and computed the input-
output gradient with respect to the loss function. We found
that similar results were achieved with co-norm projections
(and hinge loss) but the uniform gradient scale made the 2-
norm-constrained input-output gradients easier to visualize.

y»a~gbhrocoow
A R R A
Bl T AV

Do o ENINOO
~

k'
¢
2
3
')
d
Ly
O

Figure 17: Samples from WGANS trained on MNIST and
CIFAR10 whose critics use gradient norm preserving units.

Clean FGS PGD
Model Er\c| 01] 03| 01| 03
Standard ReLU 1.6 | 98.3 | 100.0 | 100.0 | 100.0
Standard MaxMin 1.5 | 98.2 | 100.0 | 100.0 | 100.0
Margin-0.1 ReLU 6.2 | 88.3 | 100.0 | 89.7 | 100.0
Margin-0.1 MaxMin 1.9 | 36.3 99.2 444 99.8
Margin-0.3 ReLU 16.9 | 70.1 | 100.0 | 70.3 | 100.0
Margin-0.3 MaxMin 5.3 | 205 62.2 24.4 71.7
PGD 0.1 1.02 8.6 74.4 17.9 | 100.0
PGD 0.15 1.36 | 81 | 529 15.1 | 99.7

Table 7: Adversarial robustness The classification error
for varying L, distance of adversarial attacks. A perturba-
tion size of 0.1 and 0.3 was used.

