Supplementary material for the paper ‘“Unsupervised Label Noise Modeling
and Loss Correction”

A. Beta Mixture Model (BMM)

This section extends the discussion of the proposed unsuper-
vised BMM in the main paper providing detail on several
more aspects.

BMM performance under low levels of label noise We
seek robust representation learning in the presence of label
noise, which may occur when images are automatically
labeled. Performance will likely drop in carefully annotated
datasets with near 0% noise because the loss distribution is
not a two-component mixture. In this situation the BMM
classifies almost all samples as clean, but some estimation
errors may occur, which lead to a reliance on the sometimes
incorrect network prediction instead of the true clean label.
Nevertheless, for 20% noise, we outperform the compared
state-of-the-art at the end of the training, demonstrating
improved robustness for low noise levels.

BMM parameter estimation frequency The BMM pa-
rameters are re-estimated after every epoch once the loss
correction begins (i.e. there is an initial warm-up as noted
in Subsection 4.1 with no loss correction) by computing
the cross-entropy loss from a forward pass with the origi-
nal (potentially noisy) labels. We also tested our approach
M-DYR-H (CIFAR-10, 80% of label noise) changing the es-
timation period to 5 and 0.5 epochs, observing no decrease
in accuracy. While the original configuration presented in
Figure 4(a) reaches 86.8 (86.6) for best (last), every 5 epochs
leads to (86.9) 86.8 and every 0.5 to 88.0 (87.5).

BMM classification accuracy and robustness Figure
4(b) shows the clean/noisy classification capabilities of the
BMM in terms of Area Under the Curve (AUC) evolution
during training, demonstrating that performance and ro-
bustness are consistent across noise levels. In particular,
the experiment on CIFAR-10 with M-DYR-H exceeds 0.98
AUC for 20, 50 and 80% label noise. AUC increases during
training and increases faster for lower noise levels, show-
ing increasingly better clean/noisy discrimination related to
consistent BMM predictions over time.

Effect of BMM classification accuracy on image classi-
fication accuracy BMM prediction accuracy is essential
for high image classification accuracy, as demonstrated
by the tendency for both image classification and BMM
accuracy to increase together in Figure 4(a) and (b), es-
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Figure 4. M-DYR-H results on CIFAR-10 for (a) image classifica-
tion and (b) clean/noisy classification of the BMM. (c) comparison
of GMM and BMM for clean/noisy classification with 80% label
noise.

pecially for higher noise levels. Figure 4(c) further veri-
fies this relationship by comparing the BMM with a GMM
(Gaussian Mixture Model) on CIFAR-10 with M-DYR-H
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and 80% label noise. The GMM gives both less accurate
clean/noisy discrimination and worse image classification
results (clean/noisy AUC drops from 0.98 to 0.94, while
image classification accuracy drops from 86.6 to 83.5).

Performance attributable to the BMM Incorporating
the BMM results in a loss that goes beyond mere regu-
larization. This can be verified by removing the BMM and
assigning fixed weights in the bootstrapping loss (0.8 to GT
and 0.2 to network prediction, keeping mixup for robust-
ness). This leads to a drop from 86.6 for M-DYR-H to 74.6
in the last epoch (80% of label noise on CIFAR10).

B. Hyperparameters

We stress that experiments across all datasets share the same
hyperparameter configuration and lead to consistent im-
provements over the state-of-the-art, demonstrating that the
general approach does not require carefully tuned hyper-
params. Indeed, we are likely reporting suboptimal results
that could be improved with a label noise free validation set,
though availability of this set is not assumed in this paper.

Starting training with high learning rates is important: train-
ing more epochs leads to better performance, as mixup
together with a high learning rate helps prevent fitting la-
bel noise. This warm-up learns the structured data (mainly
associated to clean samples) and helps separate the losses
between clean/noisy samples for a better BMM fit.

Experiment details All experiments used the following
setup and hyperparameter configuration:

Preprocessing Images are normalized and augmented by
random horizontal flipping. We use 32x32 random
crops after zero padding with 4 pixels on each side.

Network A PreAct ResNet-18 is trained from scratch using
PyTorch 0.4.1. Default PyTorch initialization is used
on all layers.

Optimizer SGD with momentum (0.9), weight decay of
10~4, and batch size 128.

Training schedule without mixup Training for 120
epochs in total. We reduce the initial learning rate
(0.1) by a factor of 10 after 30, 80, and 110 epochs.
Warm-up for 30 epochs, i.e. bootstrapping (when
used) starts in epoch 31. This configuration is used in
all experiments in Table 1.

Training schedule with mixup Training for 300 epochs in
total. We reduce the initial learning rate (0.1) by a
factor of 10 after 100 and 250 epochs. Warm-up for
105 epochs, i.e. bootstrapping starts in epoch 106 when
used (note: the warmup period can be much longer

when using mixup because it mitigates fitting label
noise. Mixup a = 32. This configuration is used for
all experiments excluding those in Table 1.

Regarding BMM parameter estimation: parameters are fit
automatically using 10 EM iterations as noted in the paper.
We also ran M-DYR-H (80% of label noise, CIFAR-10)
using 5 and 20 EM iterations, obtaining 87.4 (87.2) and
86.9 (86.3) for best (last) epoch, suggesting that the method
is relatively robust to this hyperparameter.



