
Distributed Weighted Matching via Randomized Composable Coresets

Sepehr Assadi 1 MohammadHossein Bateni 2 Vahab Mirrokni 2

Abstract

Maximum weight matching is one of the most fun-
damental combinatorial optimization problems
with a wide range of applications in data min-
ing and bioinformatics. Developing distributed
weighted matching algorithms is challenging due
to the sequential nature of efficient algorithms for
this problem. In this paper, we develop a simple
distributed algorithm for the problem on general
graphs with approximation guarantee of 2+ ε that
(nearly) matches that of the sequential greedy al-
gorithm. A key advantage of this algorithm is that
it can be easily implemented in only two rounds
of computation in modern parallel computation
frameworks such as MapReduce. We also demon-
strate the efficiency of our algorithm in practice on
various graphs (some with half a trillion edges) by
achieving objective values always close to what
is achievable in the centralized setting.

1. Introduction
A matching in a graph is defined as a collection of edges that
do not share any vertices. The problem of finding a match-
ing with a maximum weight in an edge-weighted graph—
henceforth referred to as the maximum weight matching
(MWM) problem—is one of the most fundamental com-
binatorial optimization problems with a wide range of ap-
plications in data mining and bioinformatics. For instance,
maximum weight matchings can improve the quality of
data clustering (Bateni et al., 2017) or partitioning (Karypis
& Kumar, 1998), as well as discovery of subgraphs in
networks in bioinformatics (Langmead & Donald, 2004;

A full version of the paper including the missing proofs and
details is available on arXiv.
1Department of Computer Science, Princeton University, Prince-
ton, NJ, US. Supported in part by the Simons Collaboration on
Algorithms and Geometry. Majority of the work done while this
author was a summer intern at Google Research, New York.
2Google Research, New York, NY, US.
Correspondence to: Sepehr Assadi <sassadi@princeton.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Berger et al., 2008). Other applications are in trading mar-
kets and computational advertising (Penn & Tennenholtz,
2000; Mehta et al., 2007; Charles et al., 2010), kidney ex-
change (Dickerson et al., 2012; Blum et al., 2015), online
labor markets (Behnezhad & Reyhani, 2017), and semi-
supervised learning (Jebara et al., 2009) (see (Manshadi
et al., 2013) for other similar examples). Yet another appli-
cation arise in numerical linear algebra, e.g., in sparse lin-
ear solvers (Duff & Koster, 1999; 2001), decomposition of
sparse matrices (Pothen & Fan, 1990), and computing sparse
bases for underdetermined matrices (Pinar et al., 2005).

The study of MWM dates back to the introduction of the
complexity class P as the set of “tractable” problems by (Ed-
monds, 1965b;a) who designed a poly-time algorithm for
this problem on general graphs. Since then, there have
been numerous attempts in developing faster algorithms
for MWM (see, e.g., (Gabow, 1976; Gabow et al., 1984;
Gabow, 1985; 1990; Gabow & Tarjan, 1991; Cygan et al.,
2012; Duan et al., 2017)) culminating in the Õ(m

√
n)-time1

algorithm of (Gabow & Tarjan, 1991). For approximation
algorithms, the greedy algorithm that repeatedly picks the
heaviest edge possible in the matching achieves a two ap-
proximation and after a series of work (Preis, 1999; Vinke-
meier & Hougardy, 2005; Pettie & Sanders, 2004; Duan
& Pettie, 2010), an Õ(m/ε)-time algorithm for (1 + ε)-
approximation was developed by (Duan & Pettie, 2014).

Nowadays, many applications that involve MWM require
processing massive graphs that are typically being stored
and processed in a distributed fashion. Classical algorithmic
approaches to MWM are no longer viable options to cope
with challenges that stem from processing massive graphs
and one should now instead focus on algorithms that can be
implemented efficiently in distributed settings even at the
cost of a (slight) reduction in the quality of the solution.

In this paper, we design a simple and efficient greedy dis-
tributed algorithm for the maximum weight matching prob-
lem with an approximation ratio that nearly matches that of
the sequential greedy algorithm for MWM. Our algorithm
can also be easily implemented in two rounds of parallel
computation in MapReduce-style computation frameworks,
which is known to be the minimum number of rounds nec-
essary for solving this problem.

1Throughout the paper, we use Õ(f) := O(f) · polylog(f).

Distributed Weighted Matching via Randomized Composable Coresets

1.1. Background and Related Work

Maximum weight and maximum cardinality matchings have
been studied extensively in different models of computation
for processing massive graphs such as streaming and dis-
tributed settings; see, e.g., (McGregor, 2005; Epstein et al.,
2011; Goel et al., 2012; Konrad et al., 2012; Ahn et al.,
2012; Ahn & Guha, 2013; Kapralov, 2013; Manshadi et al.,
2013; Crouch & Stubbs, 2014; Assadi et al., 2016; 2017;
Paz & Schwartzman, 2017; Ahn & Guha, 2015; Lattanzi
et al., 2011; Huang et al., 2015; Assadi & Khanna, 2017;
Czumaj et al., 2018; Harvey et al., 2018; Assadi et al., 2019).

Closely related to our work, (Lattanzi et al., 2011) designed
MapReduce algorithms with 2- and 8-approximation guar-
antees, respectively, for unweighted and weighted match-
ings in O(1) rounds on machines with memory n1+Ω(1).
These results were subsequently improved to (1 + ε)-
approximation for both problems inO(1/ε) rounds by (Ahn
& Guha, 2015) using sophisticated primal-dual algorithms
and multiplicative-weight-update method (for unweighted
bipartite matching, a simpler algorithm with (1 + ε)-
approximation in O(1/ε) rounds using O(n

√
n) space was

recently proposed in (Behnezhad et al., 2017)). Very re-
cently, (Harvey et al., 2018) designed a 2-approximation
algorithm for weighted matchings in O(1) rounds based
on the local-ratio theorem of (Paz & Schwartzman, 2017)
for MWM. Furthermore, (Assadi & Khanna, 2017) de-
signed a MapReduce algorithm with O(n

√
n) memory—

using the so-called randomized composable coreset method
which we also exploit in this paper—that achieves an O(1)-
approximation to both problems in only two rounds of
computation which is the optimal number of rounds by
a result of (Assadi et al., 2016). This result was very re-
cently improved by (Assadi et al., 2019) to (almost) 1.5-
approximation for unweighted matchings. Recent papers
by (Czumaj et al., 2018; Assadi et al., 2019; Ghaffari
et al., 2018) also considered these problems with smaller
per-machine memory and achieved (1 + ε)- and (2 + ε)-
approximation for unweighted and weighted matchings in
O(log log n) rounds and Õ(n) memory per-machine. The
approximation ratio for weighted matchings in these results
was recently improved to (1 + ε) (Gamlath et al., 2018).

Our work is also closely aligned with the trend on “paral-
lelizing” sequential greedy algorithms in distributed settings,
e.g., (Kumar et al., 2013; Mirrokni & Zadimoghaddam,
2015; da Ponte Barbosa et al., 2015; 2016; Harvey et al.,
2018). As noted elegantly by (Kumar et al., 2013): “Greedy
algorithms are practitioners’ best friends—they are intuitive,
simple to implement, and often lead to very good solutions.
However, implementing greedy algorithms in a distributed
setting is challenging since the greedy choice is inherently
sequential, and it is not clear how to take advantage of the

extra processing power.” As such there have been extensive
efforts in recent years to carry over the greedy algorithms in
the sequential setting to distributed models as well. These
results are typically of two types: they either use a relatively
large number of rounds to “faithfully” simulate the greedy
algorithm, i.e., to obtain approximation guarantees that (al-
most) match that of the greedy algorithm (Kumar et al.,
2013; da Ponte Barbosa et al., 2016), or use a very small
number of rounds, say one or two, for “weak” simulation,
resulting in approximation guarantees that are within some
constant factor of the corresponding greedy algorithm (Mir-
rokni & Zadimoghaddam, 2015; da Ponte Barbosa et al.,
2015). Table 1 provides a summary of previous work.

1.2. Our Contribution

In this paper, we “faithfully” parallelize the sequential
greedy algorithm for MWM in two rounds of parallel compu-
tation. In particular, we present an algorithm in the MapRe-
duce framework (defined formally in Section 2) that for
any constant ε > 0, outputs a (2 + ε)-approximation to
maximum weight matching in expectation using O(

√
m
n)

machines each with O(
√
mn) memory and in only two

rounds of computation; here, m and n denote the number of
edges and vertices in the graph, respectively. See Theorem 2
for the formal statement of this result.

Our distributed algorithm works as follows: send each edge
of the graph to O(1) machines randomly, run the greedy
algorithm—the one that repeatedly picks the heaviest avail-
able edge in the matching—on each part separately, combine
the output of the greedy algorithms on a single machine,
and find a near-optimal weighted matching among these
edges using any standard offline algorithm, say algorithm
of (Duan & Pettie, 2014) (see also Section 3.1 for details
on when one can simply run the greedy algorithm at the
end). We prove that this simple algorithm leads to an al-
most two approximate matching of the original graph. This
technique of partitioning the input randomly and comput-
ing a subgraph of each piece (here, a matching output by
the greedy algorithm) is called the randomized composable
coreset technique and has been used previously in context
of unweighted matchings (Assadi & Khanna, 2017; Assadi
et al., 2019) and constrained submodular maximization (Mir-
rokni & Zadimoghaddam, 2015; da Ponte Barbosa et al.,
2015) (see Section 2.1). Finally, the number of rounds of
our algorithm is optimal by a result of (Assadi et al., 2016).

Comparison with prior work. We conclude this section
by making the following two comparisons between our
result and previous results in the literature:

• Number of rounds used by our algorithm is an absolute
constant two, independent of the approximation of the
algorithm. This significantly improves upon the previ-

Distributed Weighted Matching via Randomized Composable Coresets

Table 1: A summary of previous work on MapReduce algorithms for MWM and our result.

Reference Approximation Memory Per-Machine Rounds

(Lattanzi et al., 2011) 8 O(n) O(log n)

(Crouch & Stubbs, 2014) 4 O(n) O(log n)

(Ahn & Guha, 2015) 1 + ε Õ(n) O(ε−1 log n)

(Harvey et al., 2018) 2 O(n) O(log n)

(Czumaj et al., 2018) 2 + ε O(n) O(ε−Θ(1/ε) · (log log n)
2
)

(Assadi et al., 2019) 2 + ε Õ(n) O(ε−Θ(1/ε) · log log n)

(Gamlath et al., 2018) 1 + ε Õ(n) O(ε−Θ(1/ε2) · log log n)

(Lattanzi et al., 2011) 8 n1+Ω(1) O(1)

(Crouch & Stubbs, 2014) 4 n1+Ω(1) O(1)

(Ahn & Guha, 2015) 1 + ε n1+Ω(1) O(1/ε)

(Harvey et al., 2018) 2 n1+Ω(1) O(1)

(Assadi & Khanna, 2017) O(1) Õ(n
√
n) 2

(Assadi et al., 2019) 3 + ε Õ(n
√
n) 2

This paper 2 + ε O(n
√
n) 2

ously best MapReduce algorithms of (Ahn & Guha, 2015;
Harvey et al., 2018) that require a large unspecified con-
stant number of rounds to achieve a similar guarantee on
the approximation ratio. Other algorithms for weighted
matching with similar guarantee on the number of rounds
as ours are that of (Lattanzi et al., 2011) that achieves 8-
approximation (improvable to (almost) 4-approximation
using the Crouch-Stubbs technique (Crouch & Stubbs,
2014)) in six rounds when using the same per-machine
memory as ours (and at least three rounds by allow-
ing even more memory), and (almost) 3-approximation
of (Assadi et al., 2019) which is based on a considerably
complicated algorithm (as it first finds an approximation
to unweighted matching with better than 2-approximation
which is well-known to be a “hard task” for matchings2).
We emphasize that the main bottleneck in MapReduce
computation is the transition between different rounds
(see, e.g., (Lattanzi et al., 2011)) and hence minimizing
the number of rounds is the primary goal in this setting.

• Previous work on parallelizing greedy algorithms in
MapReduce framework suffered from one of the fol-
lowing two drawbacks: either a suboptimal approxima-
tion guarantee compared to the greedy algorithm even

2For instance, getting efficient algorithms with better than 2-
approximation in both streaming and dynamic graphs models are
longstanding open problems, and very recently proven to be im-
possible in the (general) online model (Gamlath et al., 2019).

by allowing unbounded computation time on each ma-
chine (da Ponte Barbosa et al., 2015; Mirrokni & Zadi-
moghaddam, 2015), or a relatively large number of
rounds to match the performance of the greedy algorithm
exactly or to within a factor of (1 + ε) (da Ponte Barbosa
et al., 2016; Kumar et al., 2013; Harvey et al., 2018). Ob-
taining MapReduce algorithms that can (almost) match
the performance of the greedy algorithm without blowing
up the number of rounds (in the context of submodu-
lar maximization) has been posed as an open question
very recently (Liu & Vondrák, 2019). To our knowledge,
ours is the first parallel implementation of the greedy
algorithm in a minimal number of rounds with (almost)
no blow-up in the approximation ratio. It is a fascinat-
ing open question if our improvement for MWM can be
extended to other greedy algorithms, in particular, for
constrained submodular maximization.

In addition to aforementioned theoretical improvements
over previous works, our algorithm has the benefit of be-
ing extremely simple (with nearly all the details “pushed”
to the analysis), making it easily implementable in the
MapReduce model (the only other MapReduce algorithm
for matching that we know of to be implemented previously
is (Behnezhad et al., 2017) which is limited to bipartite
graphs in a crucial way). We believe this additional feature
of our algorithm is an important contribution of this paper.
We discuss this further in Section 4 where we present our

Distributed Weighted Matching via Randomized Composable Coresets

experimental results and in more details in the full version
of the paper in which we further compare our algorithm
with prior algorithms in practice.

2. Preliminaries
Throughout, [t] := {1, . . . , t}. For a graphG(V,E), opt(G)
denotes the weight of a maximum weight matching in G.

Greedy algorithm. Let G(V,E) be a graph and π :=
π(E) denote any permutation of E. Greedy(G, π) denotes
the standard greedy algorithm which iterates over edges
according to π and add e = (u, v) to the matching iff both
u and v are unmatched. It is a standard fact that when π
is sorted in non-increasing order of weights, Greedy(G, π)
outputs a 2-approximation to opt(G).

MapReduce framework. We adopt the MapReduce
model as formalized by Karloff et al. (Karloff et al., 2010);
see also (Goodrich et al., 2011; Beame et al., 2013). Let
G(V,E) with n := |V | and m := |E| be the input graph.
In this model, there are p machines, each with a memory
of s such that p · s = O(m), i.e., at most a constant factor
larger than the input size, and both p, s = m1−Ω(1), i.e.,
sublinear in the input size. The motivation behind these con-
straints is that the number of machines, and local memory
of each machine should be much smaller than the input size
to the problem since these frameworks are used to process
massive datasets. Computation in this model proceeds in
synchronous rounds: in each round, each machine performs
some local computation and at the end of the round ma-
chines exchange messages to guide the computation for the
next round. All messages received by each machine in one
round have to fit into the memory of the machine.

2.1. Randomized Composable Coresets

We briefly review the notion of randomized composable
coresets originally introduced by (Mirrokni & Zadimoghad-
dam, 2015) in the context of submodular maximization, and
further refined in (Assadi & Khanna, 2017) for graph prob-
lems. Our definition slightly deviates from previous works
as we will remark below.

Let E be an edge-set of a weighted graph G(V,E). Let c ≥
1 be a parameter. A collection of edges

{
E(1), . . . , E(k)

}
is

a random k-clustering of E with expected multiplicity c iff
each edge e inE is sent to ce different setsE(i1), . . . , E(ice)

chosen uniformly at random, where ce is chosen indepen-
dently for each edge from the binomial distribution with
k trials and expected value c. A random clustering of E
naturally defines clustering the graph G into k subgraphs
G(1), . . . , G(k) where G(i) := G(V,E(i)) for all i ∈ [k]; as
a result, we use random clustering for both the edge-set and
the input graph interchangeably.

Definition 1 (cf. (Mirrokni & Zadimoghaddam, 2015; As-
sadi & Khanna, 2017)). Consider an algorithm ALG that
given a graph G(V,E) outputs a subgraph ALG(G) ⊆ G
with at most s edges. Let k, c ≥ 1 be integers and
G(1), . . . , G(k) denote a random k-clustering with expected
multiplicity c of a graph G. We say that ALG outputs an α-
approximate (k, c)-randomized composable coreset of size
s for the weighted matching problem iff

α · E
[
opt
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)]
≥ opt(G),

where opt(·) denotes the weight of a maximum weight match-
ing in the given graph. Here, the expectation is taken over
the random choice of the random clustering.

We remark that our definition is somewhat different
from (Mirrokni & Zadimoghaddam, 2015; Assadi &
Khanna, 2017) in the following sense: Previous works con-
sidered the case where each edge is sent to exactly c dif-
ferent subgraphs (only c = 1 was considered in (Assadi &
Khanna, 2017)), while we send each edge to c subgraphs
in expectation. This way of partitioning has the simple yet
quite helpful property that makes the distribution of graphs
G(1), . . . , G(k) a product distribution, i.e., each graph G(i)

is chosen independently even conditioned on all other graphs
in the random k-clustering. At the same time, size of each
subgraph and the total number of edges across all subgraphs,
are still respectivelyO(m ·c/k) and c ·m±Θ(

√
c ·m log n)

with high probability.

Randomized Coresets in MapReduce Framework.
Suppose G(V,E) is the input and let k :=

√
m · c/s. We

use a randomized coreset to obtain a MapReduce algorithm:

1. Random clustering: Create a random k-clustering
G(1), . . . , G(k) of expected multiplicity c and allocate
each graph G(i) to the machine i ∈ [k].

2. Coreset: Each machine i ∈ [k] creates a randomized
composable coreset Ci ← ALG(G(i)).

3. Post-processing: Collect the union of coresets to cre-
ate H := H(V,C1, . . . , Ck) on one machine and re-
turn a β-approximation to MWM on H using any of-
fline algorithm.

It is straightforward to verify that the algorithm requires
O(k) = O(

√
m · c/s) machines with O(

√
m · c · s + n)

memory and only two rounds of computation. Moreover,
by Definition 1, the output of this algorithm is an (α · β)-
approximation to maximum weight matching of G.

Distributed Weighted Matching via Randomized Composable Coresets

3. A Randomized Coreset for Maximum
Weight Matching

We present a simple randomized composable coreset for
MWM in this section and then use it to design an efficient
MapReduce algorithm for this problem. In the full version,
we prove the optimality of the size of our coreset using an
adaptation of the argument in (Assadi & Khanna, 2017).

Theorem 1. For ε > 0, there exists a (2 + ε)-randomized
composable coreset of size O(n) with expected multiplicity

O
(

log (1/ε)
ε

)
for the maximum weight matching problem.

Our coreset in Theorem 1 is simply the greedy algorithm
for MWM (with consistent tie-breaking). Let G(V,E)
be a graph and G(1), . . . , G(k) be a random k-clustering
of G with expected multiplicity c. We propose the
GreedyCoreset for approximating MWM on G: on each
subgraph G(i), simply return Mi := Greedy(G(i), πi)
as the coreset, where πi sorts the edges in G(i) in non-
increasing order of their weights (breaking the ties con-
sistently across all i ∈ [k]). In the following lemma, we
analyze the performance of this coreset.

Lemma 3.1. Suppose G(1), . . . , G(k) is a random k-
clustering of G with expected multiplicity c and Mi :=
Greedy(G(i), πi). Define the graph H(V,E(H)) with
E(H) :=

⋃k
i=1Mi; then,

E [opt(H)] ≥
(

1

2
−O

(
log c

c

))
· opt(G).

Theorem 1 follows immediately from Lemma 3.1 (by setting
c = Θ

(
log (1/ε)

ε

)
). The rest of this section is devoted to the

proof sketch of Lemma 3.1. Missing proofs are all deferred
to the full version of the paper.

Notation. Let π be a permutation of all edges in G in
non-increasing order of their weights (consistent with or-
derings πi for i ∈ [k]). Notice that for each i ∈ [k],
Mi = Greedy(G(i), π) as well. Hence, in the following,
we use the permutation π instead of each πi. Throughout
the proof, we fix an arbitrary maximum weight matching
M∗ in G and denote by w(M∗) = opt(G) the weight of
M∗. For any edge e ∈ M∗, we use π<e to refer to the
set of edges in π that appear before e. We slightly abuse
the notation and use Greedy(G, π<e) to mean that we run
Greedy(G, π) and stop exactly before processing the edge
e, i.e., we only consider the edges in π<e.

Definition 2 (Free/Blocked Edges). We say that an edge
e ∈ M∗ is free for machine i ∈ [k] iff no end point of e is
matched by Greedy(G(i), π<e); otherwise we call e ∈M∗
blocked. We use Fi to denote the set of free edges in G(i)

and Bi to denote the blocked edges.

We emphasize that in Definition 2, an edge e ∈M∗ can be
free or blocked on some machine i ∈ [k], without necessar-
ily even appearing in G(i). In other words, this definition is
independent of whether e belongs toG(i) or not. Notice that
if an edge e is free on machine i and it also appears in G(i),
then e would definitely belong to the matching Mi (i.e., the
coreset on machine i). On the other hand, if an edge e is
blocked in machine i, then necessarily some edge e′ exists
in Mi such that e′ is incident on e and w(e′) ≥ w(e). We
refer to e′ as the certificate of e in machine i.

Overview. The idea behind the proof of Lemma 3.1 is
as follows. Recall that the distribution of each graph G(i)

in the random clustering is the same, and is independent
of other graphs. Hence, we can focus on each machine
i ∈ [k], say machine 1, separately. Consider blocked edges
B1 in machine 1: for any such edge, we have already picked
another edge with at least the same weight in the matching
M1 of machine 1 (by definition of an edge being blocked).
We can hence use a simple charging argument here to argue
that the matching M1 of machine 1 already has enough
edges to “compensate” for blocked edges of M∗ that were
not picked by machine 1.

The main part of the argument is however to show that
we can find enough edges in M2, . . . ,Mk chosen by other
machines that can be added to M1 to also compensate for
free edges in machine 1. The idea here is that since the
distribution of input to all machines is the same and is inde-
pendent across, if an edge e is free in machine 1, it is “most
likely” free in many other machines as well, in particular, in
a machine j ∈ [k] \ {1} which also contains this edge. By
definition, this edge then would be chosen in matching Mj .
We then use another careful charging scheme to argue that
we can indeed “augment” the matching M1 by free edges
in F1 that appear in M2, . . . ,Mk to obtain an almost-two
approximation. The main difficulty here is that even though
edges in F1 were free in machine 1, they may still be inci-
dent on edges in M1 with equal or smaller weight (as being
free only implies that these edges were not incident on edges
with higher weight) and hence they cannot be readily added
to M1; this is why we need to find “short augmenting paths”
in F1 ∪M1 which require switching some edges out of M1.

We now start with the formal proof. Throughout, define
F ′1 := F1 ∩ E(H), i.e., the set of free edges in machine 1
that are present in H . We refer to these edges as available
free edges (we prove later that essentially any free edge
is also available with a large probability). To perform the
charging, we need to partition the edges of F ′1, B1 and M1

as follows (see Figure 1 for an illustration):

1. Let e be a max-weight edge in B1 and e′ be its certifi-
cate in M1. Also, let f be the other edge incident on
e′ in F ′1 ∪B1 (f =⊥ if no such edge exists).

Distributed Weighted Matching via Randomized Composable Coresets

f

e

e′

(a) A set of type 1 edges.

f

e

e′

(b) A set of type 2 edges.

e

e′′

f

e

e′

(c) A set of type 3 edges.

Figure 1: Illustration of the partitioning used in Lemma 3.1. Thick solid edges (red) are blocked edges, thick dashed edges
(green) are available free edges, and normal edges (black) are certificate edges.

2. Type 1 edges: If f belongs to B1 or is ⊥, then add e′

to M1,1 and e, f to B1,1. Remove both e and f from
B1. We refer to (e, f, e′) as a set of type 1 edges.

3. Type 2 edges: If f ∈ F ′1 and f is not incident on any
certificate edge other than e′, then add f to F ′1,2, e to
B1,2, and e′ to M1,2. Remove f from F ′1 and e from
B1. We refer to (e, f, e′) as a set of type 2 edges.

4. Type 3 edges: If f ∈ F ′1 and f is incident on another
certificate edge e′′ which is a certificate for some edge
z ∈ B1, then add f to F ′1,3, e, z to B1,3, and e′, e′′ to
M1,3. Remove f from F ′1,3 and e, z from B1,3. We
refer to (e, f, z, e′, e′′) as a set of type 3 edges.

5. Continue the process from first line until no edge re-
mains in B1. Add the remaining edges in F ′1 after this
step the set to F ′1,0.

It is immediate to verify that F ′1 = F ′1,0 ∪ F ′1,2 ∪ F ′1,3,
B1 = B1,1 ∪B1,2 ∪B1,3 and M1,1 ∪M1,2 ∪M1,3 ⊆M1,
and all these sets are pairwise disjoint.

Claim 1. In the partitioning scheme, for any set of edges:

• type 1 (e, f, e′): w(e′) ≥ 1
2 · (w(e) + w(f)).

• type 2 (e, f, e′): w(f) ≥ w(e′) ≥ w(e).

• type 3 (e, f, z, e′, e′′): max {w(f), w(e′) + w(e′′)} ≥
1
2 · (w(e) + w(f) + w(z)).

Claim 1 can then be used to lower bound the weight of
the maximum weight matching in the graph H using a
careful charging scheme whose proof (along with the proof
of Claim 1) appear in the full version.

Lemma 3.2. opt(H) ≥ 1
2 · (w(F ′1) + w(B1)).

Finally, we use the randomness in the clustering to argue
that nearly all free edges on machine 1 are also available.

Lemma 3.3. E
[
w(F ′1)

]
≥ E

[
w(F1)

]
−O

(
log c
c

)
· opt.

Proof. Firstly, E
[
w(F ′1)

]
is:

=
∑

e∈M∗

w(e) · Pr (e ∈ F1 ∧ e ∈Mj for some j ∈ [k])

≥
∑

e∈M∗

w(e) · Pr (e ∈ F1) · Pr (e ∈Mj for some j ∈ [k])

This is because random clustering induces a product distri-
bution on inputs across machines and hence the fact that e is
free in G(1) is independent of whether e is picked in some
other matching Mj for j 6= i. We can now calculate the
probability that an edge e belongs to a matching Mj for a
fixed j ∈ [k].

Pr (e ∈Mj) = Pr
(
e ∈ Fj and e is sampled in G(j)

)
= Pr (e ∈ Fj) · Pr

(
e ∈ G(j)

)
= Pr (e ∈ Fj) ·

c

k
, (1)

since each edge is in G(j) with probability c/k. Now notice
that the marginal distribution of the graph G(1) and G(j) un-
der random clustering is the same; as a result the probability
that an edge is good in G(j) is equal to this probability for
the graph G(1) as well. Using this, plus the fact that the
event that e belongs toMj is independent of all other graphs
G(`) for ` 6= j, we have, Pr (e ∈Mj for j ∈ [k] \ {1})

= 1−
∏

j∈[k]\{1}

Pr (e /∈Mj)

= 1−
∏

j∈[k]\{1}

(
1− Pr (e ∈ Fj) ·

c

k

)
(by Eq (1))

= 1−
(

1− Pr (e ∈ F1) · c
k

)k−1

.

Define S ⊆ M∗ as the set of all edge e ∈ M∗ such that
Pr
(
e is free in G(i)

)
≥ 4 log c

c . By above equation, for any
edge e ∈ S, we have that, Pr (e ∈Mj for j ∈ [k] \ {1}) is:

≥ 1−
(

1− 4 log c

c
· c
k

)k−1

= 1−O(1/c).

Distributed Weighted Matching via Randomized Composable Coresets

Consequently, E
[
w(F ′1)

]
is

≥
∑
e∈S

w(e) · Pr (e ∈ F1) · Pr (e ∈Mj for j ∈ [k] \ {1})

≥
∑
e∈S

w(e) · Pr (e ∈ F1) · (1−O(1/c))

= (1−O(1/c)) · ∑
e∈M∗

Pr (e ∈ F1) · w(e)−
∑

e∈M∗\S

Pr (e ∈ G1) · w(e)


≥ (1−O(1/c)) ·

(
E [w(Fi)]− opt ·O(

log c

c
)

)
≥ E [w(Fi)]−O

(
log c

c

)
· opt,

which finalizes the proof.

Lemma 3.1 now follows as E [opt(H)] is:

≥
Lemma 3.2

1

2
· E
[
w(F ′1) + w(B1)

]
≥

Lemma 3.3

1

2
· E [w(F1) + w(B1)]−O

(
log c

c

)
· opt,

since F1 ∪B1 = M∗ and w(M∗) = opt.

3.1. MapReduce Algorithms for Maximum Weight
Matching

We now present our MapReduce algorithm based on Theo-
rem 1 using the connection outlined in Section 2.1.

Theorem 2. There is a MapReduce algorithm that for any
ε > 0, outputs a (2 + ε)-approximation to maximum weight

matching in expectation using O(
√

m·log (1/ε)
ε·n) machines

each with O(
√
mn · (1/ε) · log (1/ε) + n) memory and in

only two rounds of parallel computation. The local com-
putation on each machine requires O((1/ε) · log (1/ε) ·√
mn · (1/ε) · log (1/ε) + n) time. Here, m and n denote

the number of edges and vertices, respectively.

The algorithm in Theorem 2 implies a theoretically efficient
(almost) 2-approximation for MWM in the MapReduce
model. Implementing this algorithm in practice however can
be slightly challenging, simply due to the post-processing
step which requires computing an (almost) maximum weight
matching (such algorithms tend to be tricky on general
graphs, mainly to handle “blossoms” (see, e.g., (Gabow
& Tarjan, 1991; Duan & Pettie, 2014)) although one can use
any readily available algorithm for MWM in this step). It is
thus natural to consider simpler post-processing steps also
that are easier to implement in practice. An obvious candi-
date here is the greedy algorithm itself. It follows already

from the guarantee of Greedy and Theorem 1 (by the same
exact argument as in Theorem 2) that this would lead to an
(almost) 4-approximation. We next prove that this algorithm
in fact already achieves an improved approximation of 3.

Theorem 3. The MapReduce algorithm for maximum
weight matching obtained by applying Greedy as the post-
processing step to GreedyCoreset always outputs a (3+ε)-
approximation in expectation.

Proof of Theorem 3 appears in the full version.

4. Empirical Study
In this section, we report the results of evaluating our algo-
rithm on a number of publicly available datasets.

Datasets. We use different datasets with varying sizes,
ranging from about six million to half a trillion edges. Ta-
ble 2 provides the statistics. We remark that the number
of edges is half the sum of vertex degrees, whereas some
previous work (e.g., (Bateni et al., 2017)) report the lat-
ter as the number of edges. Three of our datasets (namely
Friendster, Orkut, and LiveJournal, all taken from SNAP)
are the public datasets used in evaluating a hierarchical clus-
tering algorithm in (Bateni et al., 2017) (they also have a
fourth private dataset). Maximum weight matching is im-
portant in the context of hierarchical clustering, because it
can be used to generate a more balanced hierarchy: Itera-
tively find a maximum weight matching and contract the
edges of the matching. Then the size of clusters at each
level k will be nearly the same and equal to 2k. We also
add a fourth dataset of our own based on public DBLP co-
authorship (Demaine & Hajiaghayi, 2014): vertices denote
authors and edge weights denote the number of papers two
researchers co-authored.

Implementation Details. We implement our algorithm
on a real proprietary MapReduce-like cluster, i.e., no sim-
ulations, with tens to hundreds of machines, depending on
the size of the dataset. In our set-up, as in any standard
MapReduce system, data is initially stored in distributed
storage (each edge on an arbitrary machine), and is then
fed into the system and the output matching will be stored
in a single file on one machine. To be more precise, our
implementation follows the approach in Theorem 3: we first
compute a coreset on each machine using GreedyCoreset
and then after combining the edges, we simply run the
greedy algorithm again to compute the final solution. As
such, our algorithm can be seen as the distributed version of
the sequential greedy algorithm for the weighted matching
problem. Our experiments verify that our coreset approach
provides significant speed-ups with little quality loss com-
pared to the sequential greedy algorithm, complementing
our theoretical results.

Distributed Weighted Matching via Randomized Composable Coresets

Table 2: Statistics about datasets used for empirical evaluation.

Dataset Number of vertices Number of edges Maximum degree
Friendster 65,608,366 546,396,770,507 2,151,462
Orkut 3,072,441 21,343,527,822 893,056
LiveJournal 4,846,609 3,930,691,845 444,522
DBLP 1,482,070 5,946,953 1,961

The two main measures we are interested in are the quality
of the returned solution and the speed-up of the algorithms
compared to the sequential greedy algorithm:

• Quality. Our coreset-based approach typically secures
close to 99.5% of the weight of the solution found
by the sequential greedy algorithm. Table 3 shows
the quality of the solution obtained on each dataset
separately. We emphasize that even though our theo-
retical proof in Theorem 3 guarantees a 66% perfor-
mance (for the coreset-based algorithm with greedy
as post-processing compared to the sequential greedy
algorithm), we never lose more than 1–2% in terms of
the solution quality (see full version for a theoretical
explanation of this phenomenon).

• Speed-up. The speed-up achieved by our coreset-based
approach varies significantly between the datasets—
ranging from 3x to 130x—compared to the sequential
greedy algorithm. The speed-up is larger for bigger
graphs, where the coreset computation can really take
advantage of the parallelism. Table 3 provides the
speed-up obtained on each dataset separately.

Table 3: Speed-up and relative solution quality of our
coreset-based algorithm compared to sequential greedy.

Dataset Speed-up Weight Cardinality
Friendster 130x 99.83% 99.74%
Orkut 17x 98.90% 99.42%
LiveJournal 6x 99.86% 99.79%
DBLP 3x 99.55% 99.27%

Several remarks are in order. Firstly, since the graphs in
our datasets are too big, we could not compute the value
of optimal weighted matching on these graphs. Therefore
we only compare the quality of our solution to the quality
of the sequential greedy algorithm that does not use a core-
set. Additionally, in Table 3, the actual running times and
number of machines are withheld due to company’s policy
so as to not reveal specifics of hardware and architecture in
our company’s clusters. Instead we focus on speed-up (as
did several previous work) which is, unlike absolute run-
ning time, mostly independent of computing infrastructure,
and thus a better performance measure for the algorithms.

Indeed, we expect that any MapReduce-based system to
see similar speed-up to what we report. However, we pro-
vide the following back-of-the-envelope calculation in order
to help the reader estimate the general whereabouts of the
running times. In the biggest dataset we consider, namely
Friendster, storing the graph in the standard edge format
used by the Stanford Network Analysis Project (SNAP)
requires 20–30TB. Merely reading this data into memory
from a typical 7200 RPM HDD (with maximum read speed
of 160MB/s) takes at least 35–50 hours. On this dataset,
we obtain about 130x speed-up by building a coreset and
running the greedy algorithm on it. Our solution secures
99.83% of the weight of the solution found by sequential
greedy, and its cardinality is 99.74% that of the greedy’s.

Role of Multiplicity. We also verify empirically that in-
creasing the multiplicity parameter in coreset computation
improves the overall quality of the final matching solution.
We demonstrate this for two values of k, which is the num-
ber of subgraphs we partition the original graph into in the
coreset approach (which is also the number of machines).
Our results in this part are summarized in Figure 2.

Figure 2: The effect of increasing multiplicity on the quality
of the solution. The y-axis numbers are relative to the
weight and cardinality of the sequential greedy solution and
k denotes the number of subgraphs we partition the original
graph into in the coreset approach.

Comparison with Prior Works. An experimental com-
parison with prior works appear in the full version.

Distributed Weighted Matching via Randomized Composable Coresets

References
Ahn, K. J. and Guha, S. Linear programming in the semi-

streaming model with application to the maximum match-
ing problem. Inf. Comput., 222:59–79, 2013.

Ahn, K. J. and Guha, S. Access to data and number of iter-
ations: Dual primal algorithms for maximum matching
under resource constraints. In Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA 2015, Portland, OR, USA, June 13-15,
2015, pp. 202–211, 2015.

Ahn, K. J., Guha, S., and McGregor, A. Analyzing graph
structure via linear measurements. In Proceedings of the
Twenty-third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pp. 459–467, 2012.

Assadi, S. and Khanna, S. Randomized composable coresets
for matching and vertex cover. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2017, Washington DC, USA, July
24-26, 2017, pp. 3–12, 2017.

Assadi, S., Khanna, S., Li, Y., and Yaroslavtsev, G. Max-
imum matchings in dynamic graph streams and the si-
multaneous communication model. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pp. 1345–1364, 2016.

Assadi, S., Khanna, S., and Li, Y. On estimating maximum
matching size in graph streams. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pp. 1723–1742, 2017.

Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V. S., and
Stein, C. Coresets meet EDCS: algorithms for matching
and vertex cover on massive graphs. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pp. 1616–1635, 2019.

Bateni, M., Behnezhad, S., Derakhshan, M., Hajiaghayi, M.,
Kiveris, R., Lattanzi, S., and Mirrokni, V. S. Affinity clus-
tering: Hierarchical clustering at scale. In 30th Annual
Conference on Neural Information Processing Systems,
pp. 6867–6877, 2017.

Beame, P., Koutris, P., and Suciu, D. Communication steps
for parallel query processing. In Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS 2013, New York, NY,
USA - June 22 - 27, 2013, pp. 273–284, 2013.

Behnezhad, S. and Reyhani, N. Almost optimal stochas-
tic weighted matching with few queries. CoRR,
abs/1710.10592. To appear in EC 2018, 2017.

Behnezhad, S., Derakhshan, M., Esfandiari, H., Tan, E.,
and Yami, H. Brief announcement: Graph matching in
massive datasets. In Proceedings of the 29th ACM Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA 2017, Washington DC, USA, July 24-26, 2017, pp.
133–136, 2017.

Berger, B., Singh, R., and Xu, J. Graph algorithms for bio-
logical systems analysis. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, pp. 142–151, 2008.

Blum, A., Dickerson, J. P., Haghtalab, N., Procaccia, A. D.,
Sandholm, T., and Sharma, A. Ignorance is almost bliss:
Near-optimal stochastic matching with few queries. In
Proceedings of the Sixteenth ACM Conference on Eco-
nomics and Computation, EC ’15, Portland, OR, USA,
June 15-19, 2015, pp. 325–342, 2015.

Charles, D. X., Chickering, M., Devanur, N. R., Jain, K.,
and Sanghi, M. Fast algorithms for finding matchings
in lopsided bipartite graphs with applications to display
ads. In Proceedings 11th ACM Conference on Electronic
Commerce (EC-2010), Cambridge, Massachusetts, USA,
June 7-11, 2010, pp. 121–128, 2010.

Crouch, M. and Stubbs, D. S. Improved streaming algo-
rithms for weighted matching, via unweighted match-
ing. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pp. 96–104, 2014. doi: 10.4230/LIPIcs.
APPROX-RANDOM.2014.96.

Cygan, M., Gabow, H. N., and Sankowski, P. Algorithmic
applications of baur-strassen’s theorem: Shortest cycles,
diameter and matchings. In 53rd Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pp. 531–
540, 2012.

Czumaj, A., Lacki, J., Madry, A., Mitrovic, S., Onak, K.,
and Sankowski, P. Round compression for parallel match-
ing algorithms. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pp. 471–
484, 2018.

da Ponte Barbosa, R., Ene, A., Nguyen, H. L., and Ward,
J. The power of randomization: Distributed submodular
maximization on massive datasets. In Proceedings of
the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pp. 1236–1244,
2015.

da Ponte Barbosa, R., Ene, A., Nguyen, H. L., and Ward, J.
A new framework for distributed submodular maximiza-
tion. In IEEE 57th Annual Symposium on Foundations

Distributed Weighted Matching via Randomized Composable Coresets

of Computer Science, FOCS 2016, New Brunswick, New
Jersey, USA, pp. 645–654, 2016.

Demaine, E. and Hajiaghayi, M., 2014. URL http://
projects.csail.mit.edu/dnd/DBLP/.

Dickerson, J. P., Procaccia, A. D., and Sandholm, T. Opti-
mizing kidney exchange with transplant chains: theory
and reality. In International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2012, Valencia,
Spain, June 4-8, 2012 (3 Volumes), pp. 711–718, 2012.

Duan, R. and Pettie, S. Approximating maximum weight
matching in near-linear time. In 51th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA, pp. 673–
682, 2010.

Duan, R. and Pettie, S. Linear-time approximation for
maximum weight matching. J. ACM, 61(1):1:1–1:23,
2014.

Duan, R., Pettie, S., and Su, H. Scaling algorithms for
weighted matching in general graphs. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pp. 781–800, 2017.

Duff, I. S. and Koster, J. The design and use of algorithms
for permuting large entries to the diagonal of sparse ma-
trices. SIAM J. Matrix Analysis Applications, 20(4):889–
901, 1999.

Duff, I. S. and Koster, J. On algorithms for permuting large
entries to the diagonal of a sparse matrix. SIAM J. Matrix
Analysis Applications, 22(4):973–996, 2001.

Edmonds, J. Paths, trees, and flowers. Canadian Journal of
mathematics, 17(3):449–467, 1965a.

Edmonds, J. Maximum matching and a polyhedron with 0,
1-vertices. Journal of Research of the National Bureau of
Standards B, 69(125-130):55–56, 1965b.

Epstein, L., Levin, A., Mestre, J., and Segev, D. Improved
approximation guarantees for weighted matching in the
semi-streaming model. SIAM J. Discrete Math., 25(3):
1251–1265, 2011.

Gabow, H. N. An efficient implementation of edmonds’
algorithm for maximum matching on graphs. J. ACM, 23
(2):221–234, 1976.

Gabow, H. N. A scaling algorithm for weighted matching
on general graphs. In 26th Annual Symposium on Founda-
tions of Computer Science, Portland, Oregon, USA, 21-23
October 1985, pp. 90–100, 1985.

Gabow, H. N. Data structures for weighted matching and
nearest common ancestors with linking. In Proceedings
of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, 22-24 January 1990, San Francisco, Califor-
nia., pp. 434–443, 1990.

Gabow, H. N. and Tarjan, R. E. Faster scaling algorithms
for general graph-matching problems. J. ACM, 38(4):
815–853, 1991.

Gabow, H. N., Galil, Z., and Spencer, T. H. Efficient imple-
mentation of graph algorithms using contraction. In 25th
Annual Symposium on Foundations of Computer Science,
West Palm Beach, Florida, USA, 24-26 October 1984, pp.
347–357, 1984.

Gamlath, B., Kale, S., Mitrovic, S., and Svensson, O.
Weighted matchings via unweighted augmentations.
CoRR, abs/1811.02760. To appear in PODC 2019., 2018.

Gamlath, B., Kapralov, M., Maggiori, A., Svensson, O., and
Wajc, D. Online matching with general arrivals. CoRR,
abs/1904.08255, 2019.

Ghaffari, M., Gouleakis, T., Konrad, C., Mitrovic, S., and
Rubinfeld, R. Improved massively parallel computation
algorithms for mis, matching, and vertex cover. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018, pp. 129–138, 2018.

Goel, A., Kapralov, M., and Khanna, S. On the communi-
cation and streaming complexity of maximum bipartite
matching. In Proceedings of the Twenty-third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
’12, pp. 468–485, 2012.

Goodrich, M. T., Sitchinava, N., and Zhang, Q. Sorting,
searching, and simulation in the mapreduce framework.
In Algorithms and Computation - 22nd International Sym-
posium, ISAAC 2011, Yokohama, Japan, December 5-8,
2011. Proceedings, pp. 374–383, 2011.

Harvey, N. J. A., Liaw, C., and Liu, P. Greedy and local ratio
algorithms in the mapreduce model. In Proceedings of
the 30th on Symposium on Parallelism in Algorithms and
Architectures, SPAA 2018, Vienna, Austria, July 16-18,
2018, pp. 43–52, 2018.

Huang, Z., Radunovic, B., Vojnovic, M., and Zhang, Q.
Communication complexity of approximate matching in
distributed graphs. In 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS
2015, March 4-7, 2015, Garching, Germany, pp. 460–
473, 2015.

http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/

Distributed Weighted Matching via Randomized Composable Coresets

Jebara, T., Wang, J., and Chang, S. Graph construction and
b-matching for semi-supervised learning. In Proceedings
of the 26th Annual International Conference on Machine
Learning, ICML 2009, Montreal, Quebec, Canada, June
14-18, 2009, pp. 441–448, 2009.

Kapralov, M. Better bounds for matchings in the streaming
model. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pp.
1679–1697, 2013.

Karloff, H. J., Suri, S., and Vassilvitskii, S. A model of com-
putation for mapreduce. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pp. 938–948, 2010.

Karypis, G. and Kumar, V. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J.
Scientific Computing, 20(1):359–392, 1998.

Konrad, C., Magniez, F., and Mathieu, C. Maximum match-
ing in semi-streaming with few passes. In Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques - 15th International Workshop,
APPROX 2012, and 16th International Workshop, RAN-
DOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, pp. 231–242, 2012.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. In
25th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’13, Montreal, QC, Canada - July 23
- 25, 2013, pp. 1–10, 2013.

Langmead, C. J. and Donald, B. R. High-throughput 3D
structural homology detection via NMR resonance as-
signment. In 3rd International IEEE Computer Society
Computational Systems Bioinformatics Conference, CSB
2004, pp. 278–289, 2004.

Lattanzi, S., Moseley, B., Suri, S., and Vassilvitskii, S. Filter-
ing: a method for solving graph problems in mapreduce.
In SPAA 2011: Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architec-
tures, San Jose, CA, USA, June 4-6, 2011 (Co-located
with FCRC 2011), pp. 85–94, 2011.

Liu, P. and Vondrák, J. Submodular optimization in the
mapreduce model. In 2nd Symposium on Simplicity in
Algorithms, SOSA@SODA 2019, January 8-9, 2019 - San
Diego, CA, USA, pp. 18:1–18:10, 2019.

Manshadi, F. M., Awerbuch, B., Gemulla, R., Khandekar,
R., Mestre, J., and Sozio, M. A distributed algorithm for
large-scale generalized matching. PVLDB, 6(9):613–624,
2013.

McGregor, A. Finding graph matchings in data streams. In
Approximation, Randomization and Combinatorial Opti-
mization, Algorithms and Techniques, 8th International
Workshop on Approximation Algorithms for Combina-
torial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computa-
tion, RANDOM 2005, Berkeley, CA, USA, August 22-24,
2005, Proceedings, pp. 170–181, 2005.

Mehta, A., Saberi, A., Vazirani, U. V., and Vazirani, V. V.
Adwords and generalized online matching. J. ACM, 54
(5):22, 2007.

Mirrokni, V. S. and Zadimoghaddam, M. Randomized com-
posable core-sets for distributed submodular maximiza-
tion. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Port-
land, OR, USA, June 14-17, 2015, pp. 153–162, 2015.

Paz, A. and Schwartzman, G. A (2 + ε)-approximation
for maximum weight matching in the semi-streaming
model. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pp.
2153–2161, 2017.

Penn, M. and Tennenholtz, M. Constrained multi-object
auctions and b-matching. Inf. Process. Lett., 75(1-2):
29–34, 2000.

Pettie, S. and Sanders, P. A simpler linear time 2/3-epsilon
approximation for maximum weight matching. Inf. Pro-
cess. Lett., 91(6):271–276, 2004.

Pinar, A., Chow, E., and Pothen, A. Combinatorial algo-
rithms for computing column space bases that have sparse
inverses. Electronic Transactions on Numerical Analysis,
22:122–145, 2005.

Pothen, A. and Fan, C. Computing the block triangular
form of a sparse matrix. ACM Trans. Math. Softw., 16(4):
303–324, 1990.

Preis, R. Linear time 1/2-approximation algorithm for max-
imum weighted matching in general graphs. In STACS
99, 16th Annual Symposium on Theoretical Aspects of
Computer Science, Trier, Germany, March 4-6, 1999, Pro-
ceedings, pp. 259–269, 1999.

Vinkemeier, D. E. D. and Hougardy, S. A linear-time ap-
proximation algorithm for weighted matchings in graphs.
ACM Trans. Algorithms, 1(1):107–122, 2005.

