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1. Unbiased Estimator of the Gradient of EI-CF
In this section we prove that, under mild regularity conditions, EI-CFn is differentiable and an unbiased estimator of its
gradient can be efficiently computed. More concretely, we prove the following.

Proposition 1.1. Suppose that g is differentiable and let X0 be an open subset of X so that µn and Kn are differentiable on
X0 and there exists a measurable function η : Rm → R satisfying

1. ‖∇g (µn(x) + Cn(x)z) ‖ < η(z) for all x ∈ X0, z ∈ Rm,

2. E[η(Z)] <∞, where Z is a m-variate standard normal random vector.

Further, suppose that for almost every z ∈ Rm the set {x ∈ X0 : g (µn(x) + Cn(x)z) = f∗n} is countable. Then, EI-CFn is
differentiable on X0 and its gradient is given by

∇EI-CFn(x) = En [γn(x, Z)] ,

where the expectation is with respect to Z and

γn(x, z) =

{
∇g (µn(x) + Cn(x)z) , if g (µn(x) + Cn(x)z) > f∗n,

0, otherwise.

Proof. Since g is differentiable and µn and Kn are differentiable on X0, for any fixed z ∈ Rm the function x 7→
g (µn(x) + Cn(x)z) is differentiable onX0 as well. This in turn implies that the function x 7→ {g (µn(x) + Cn(x)z)−f∗n}+
is continuous on X0 and differentiable at every x ∈ X0 such that g (µn(x) + Cn(x)z) 6= f∗n, with gradient equal to γ(x, z).
From our assumption that for almost every z ∈ Rm the set {x ∈ X : g (µn(x) + Cn(x)z) = f∗n} is countable, it follows
that for almost every z the function x 7→ {g (µn(x) + Cn(x)z)− f∗n}+ is continuous on X0 and differentiable on all X0,
except maybe on a countable subset. Using this, along with conditions 1 and 2, and Theorem 1 in L’Ecuyer (1990), the
desired result follows.

We end this section by making a few remarks.

• If µ and K are differentiable on int(X ), then one can show that µn and Kn are differentiable on int(X ) \ {x1, . . . , xn}.

• If one imposes the stronger condition E[η(Z)2] < ∞, then γn has finite second moment, and thus this unbiased
estimator of ∇EI-CFn(x) can be used within stochastic gradient ascent to find a stationary point of EI-CFn (Bottou,
1998).

• In Proposition 1.1, the condition that for almost every z ∈ Rm the set {x ∈ X0 : g (µn(x) + Cn(x)z) = f∗n} is
countable, can be weakened to the following more technical condition: for almost every z ∈ Rm, every x ∈ X0 and
every i ∈ {1, . . . , d}, there exists ε > 0 such that the set {x+ hei : |h| < ε and g (µn(x+ hei) + Cn(x+ hei)z) =
f∗n} is countable, where ei denotes the i-th canonical vector in Rd.
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2. EI-CF and EI Do Not Coincide When g Is Linear
Recall the following result that was stated in the main paper.

Proposition 2.1. Suppose that g is given by g(y) = w>y for some fixed w ∈ Rm. Then,

EI-CFn(x) = ∆n(x)Φ

(
∆n(x)

σn(x)

)
+ σn(x)ϕ

(
∆n(x)

σn(x)

)

The resemblance of the above expression to the classical EI acquisition function may make one think that, in the above case,
EI-CF coincides, in some sense, with the classical EI under an appropriate choice of the prior distribution.

Indeed, suppose that we set a single-output GP prior with mean w>µ(x) and covariance function w>Kn(x)w of f (and fix
its hyperparameters), then

E
[{
w>h(x)− f∗n

}+ | xi, w>h(xi) = yi : i = 1, . . . n
]

= E
[
{f(x)− f∗n}

+ | xi, f(xi) = yi : i = 1, . . . n
]
.

However, if we condition on h(xi) rather than w>h(xi) in the left-hand side, then the equality is no longer true, even if the
values on which we condition satisfy w>h(xi) = yi:

E
[{
w>h(x)− f∗n

}+ | xi, h(xi) : i = 1, . . . n
]
6= E

[
{f(x)− f∗n}

+ | xi, f(xi) = yi : i = 1, . . . n
]
.

Thus, even if we initiate optimization using EI-CF and a parallel optimization using EI with a single-output Gaussian process
as described above, their acquisition functions will cease to agree once we condition on the results of an evaluation.

3. Probability of Improvement for Composite Functions
In this section, we formally define the probability of improvement for composite functions (PI-CF) acquisition function and
specify its implementation details used within our experimental setup.

Analogously to EI-CF, PI-CF is simply defined as the probability of improvement evaluated with respect to the implied
posterior distribution on f when we model h as a multi-output GP:

PI-CF(x) = Pn (g(h(x)) ≥ f∗n + δ) ,

where Pn denotes the conditional probability given the available observations at time n, {(xi, h(xi))}ni=1, and δ > 0 is a
parameter to be specified. As we did with EI-CF, we can express PI-CF(x) as

PI-CF(x) = Pn (g(µn(x) + Cn(x)Z) ≥ f∗n + δ) ,

where Z is a m-variate standard normal random vector under the time-n posterior distribution.

We can further rewrite PI-CF(x) using an indicator function I as

PI-CF(x) = En [I{g(µn(x) + Cn(x)Z) ≥ f∗n + δ}] ,

which implies that PI-CF can be computed with arbitrary precision following a Monte Carlo approach as well:

PI-CF(x) ≈ 1

L

L∑
`=1

I
{
g
(
µn(x) + Cn(x)Z(`)

)
≥ f∗n + δ

}
,

where Z(1), . . . , Z(L) are draws of an m-variate standard normal random vector. However, an unbiased estimator of the
gradient of PI-CF cannot be computed following an analogous approach to the one used with EI-CF. In fact, ∇I{g(µn(x) +
Cn(x)Z) ≥ f∗n + δ} = 0 at those points for which the function x 7→ I{g(µn(x) + Cn(x)Z) >≥ f∗n + δ} is differentiable.
Thus, even if ∇I{g(µn(x) + Cn(x)Z) ≥ f∗n + δ} exists, in general

∇PI-CF(x) 6= En [∇I{g(µn(x) + Cn(x)Z) ≥ f∗n + δ}] ,
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unless∇PI-CF(x) = 0.

In our experiments, we adopt a sample average approximation (Kim et al., 2015) scheme for approximately maximizing
PI-CF. At each iteration we fix Z(1), . . . , Z(L) and choose the next point to evaluate as

xn+1 ∈ arg max
x∈X

1

L

L∑
`=1

I
{
g
(
µn(x) + Cn(x)Z(`)

)
≥ f∗n + δ

}
,

where L = 50 and δ = 0.01. We solve the above optimization problem using the derivative-free optimization algorithm,
CMA-ES (Hansen, 2016).

4. Description of Langermann and Rosenbrock Test Problems
The following pair of test problems are standard benchmarks in the global optimization literature. In this section, we describe
in detail how they are adapted our setting, i.e., how we express them as composite functions.

4.1. Langermann Function

The Langermann function (Surjanovic & Bingham, a) is defined by f(x) = g(h(x)) where

hj(x) =

d∑
i=1

(xi −Aij)2, j = 1, . . .m,

g(y) = −
m∑
j=1

cj exp(−yj/π) cos(πyj).

In our experiment we set d = 2, m = 5, c = (1, 2, 5, 2, 3),

A =

(
3 5 2 1 7
5 2 1 4 9

)
,

and X = [0, 10]2.

4.2. Rosenbrock Function

The Rosenbrock function (Surjanovic & Bingham, b) is

f(x) = −
d−1∑
j=1

100(xj+1 − x2j )2 + (xj − 1)2

We adapt this problem to our framework by taking d = 5 and defining h and g by

hj(x) = xj+1 − x2j , j = 1, . . . , 4,

hj+4(x) = xj , j = 1, . . . , 4,

g(y) = −
4∑
j=1

100y2j + (yj+4 − 1)2.

5. Asymptotic Consistency of the Expected Improvement for Composite Functions
5.1. Basic Definitions and Assumptions

In this section we prove that, under suitable conditions, the expected improvement sampling policy is asymptotically
consistent in our setting. In the standard Bayesian optimization setting, this was first proved under quite general conditions
by Vazquez & Bect (2010). Later, Bull (2011) provided convergence rates for several expected improvement-type policies
both with fixed hyperparameters and hyperparameters estimated from the data in suitable way. Here, we restrict to prove
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asymptotic consistency, under fixed hyperparameters, following a similar approach to Vazquez & Bect (2010). In particular,
we provide a generalization of the No-Empty-Ball (NEB) condition, under which the expected improvement sampling policy
is guaranteed to be asymptotically consistent in our setting. In the reminder of this work {xn}n∈N denotes the sequence of
points at which h is evaluated, which is not necessarily given by the expected improvement acquisition function, unless
explicitly stated.

Definition 5.1 (Generalized-No-Empty-Ball property). We shall say that a kernel, K, satisfies the Generalized-No-Empty-
Ball (GNEB) property if, for all sequences {xn}N in X and all x̃ ∈ X , the following assertions are equivalent:

1. x̃ is a limit point of {xn}n∈N.

2. There exists a subsequence of {Kn(x̃)}n∈N converging to a singular matrix.

We highlight that, if K is diagonal, i.e. if the output components are independent of each other, the GNEB property holds
provided that at least one of its components satisfies the standard NEB property. In particular, the following result is a
corollary of Proposition 10 in Vazquez & Bect (2010).

Corollary 5.2. Suppose K is diagonal and at least one of its components has a spectral density whose inverse has at most
polynomial growth. Then, K satisfies the GNEB property.

Thus, the GNEB property holds, in particular, if K is diagonal and at least one of its components is a Matérn kernel (Stein,
2012).

Now we introduce some additional notation. We denote byH to the the reproducing kernel Hilbert space associated with K
(Alvarez et al., 2012). As is standard in Bayesian optimization, we make a slight abuse of notation and denote by h both a
fixed element ofH and a random function distributed according to a Gaussian process with mean µ and kernel K (below we
assume µ = 0); we shall explicitly state whenever h is held fixed. As before, we denote Kn(x, x) by Kn(x). Finally, we
make the following standing assumptions.

1. X is a compact subset of Rd, for some d ≥ 1.

2. The prior mean function is identically 0.

3. K is continuous, positive definite, and satisfies the GNEB property.

4. g : Rm → R is continuous.

5. For any bounded sequences {an}n∈N ⊂ Rm and {An}n∈N ⊂ Rm×m, E[supn |g(an +AnZ)|] < ∞, where the
expectation is over Z and Z is a m-dimensional standard normal random vector.

The assumption that g is continuous guarantees that f = g ◦h is continuous, provided that h is continuous as well. Moreover,
in this case, since X is compact, f attains its maximum value in X ; we shall denote this maximum value by M , i.e.,
M = maxx∈X f(x).

5.2. Preliminary Results

Before proving asymptotic consistency, we prove several auxiliary results. We begin by proving that EI-CFn is continuous.

Proposition 5.3. For any n ∈ N, the function EI-CFn : X → R defined by

EI-CFn(x) = E[{g (µn(x) + Cn(x)Z)− f∗n}+],

where the expectation is over Z and Z is a m-dimensional standard normal random vector, is continuous.

Proof. Let {x′k}k∈N ⊂ X be a convergent sequence with limit x′∞. Since K is continuous, µn and Cn are both continuous
functions of x, and thus µn(x′k)→ µn(x′∞) and Cn(x′k)→ Cn(x′∞) as k →∞. Moreover, since g is continuous too, it
follows by the continuous mapping theorem (Billingsley, 2013) that

{g(µn(x′k) + Cn(x′k)Z)− f∗n}+ → {g(µn(x′∞) + Cn(x′∞)Z)− f∗n}+
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almost surely as k →∞.

Now observe that
{g(µn(x′k) + Cn(x′k)Z)− f∗n}+ ≤ sup

k
|g(µn(x′k) + Cn(x′k)Z)|+ |f?n|.

Moreover, the sequences {µn(x′k)}k∈N and {Cn(x′k)} are both convergent (with finite limits) and thus are bounded. Hence,
the above inequality, along with assumption 5 and the dominated convergence theorem (Williams, 1991), imply that

E[{g(µn(x′k) + Cn(x′k)Z)− f∗n}+]→ E[{g(µn(x′∞) + Cn(x′∞)Z)− f∗n}+],

as k →∞, i.e., EI-CFn(x′k)→ EI-CFn(x′∞). Hence, EI-CFn is continuous.

Lemma 5.4. Let {xn}n∈N and {x′n}n∈N be two sequences in X . Assume that {x′n}n∈N is convergent, and denote by x′∞
its limit. Then, each of the following conditions implies the next one:

1. x′∞ is a limit point of {xn}n∈N.

2. Kn(x′n)→ 0 as n→∞.

3. For any fixed h ∈ H, µn(x′n)→ h(x′∞) as n→∞.

Proof. First we prove that 1 implies 2. If x′∞ is an element of {xn}n∈N, say x′∞ = xn0 , then, for n ≥ n0, we have

Kn(x′n) . Kn0
(x′n)→ Kn0

(x′∞) = Kn0
(xn0

) = 0,

where we use Lemma 6.3 and the fact thatKn0
is continuous. Now assume x′∞ is not an element of {xn}n∈N. Let {xkn}n∈N

be a subsequence of {xn}n∈N converging to x′∞ and let mn = max{k` : k` ≤ n}. Then, by Lemmas 6.1 and 6.2 we obtain

Kn(x′n) = Cov(h(x′n)− µn(x′n)) . Cov(h(x′n)− h(xmn
)).

Finally, since x′∞ is not an element of {xn}n∈N, mn →∞, and it follows from the continuity of K that

Cov(h(x′n)− h(xmn)) = K(x′n, x
′
n) +K(xmn , xmn)− 2K(x′n, xmn)→ 0,

and thus Kn(x′n)→ 0.

Now we prove that 2 implies 3. Using the Cauchy-Schwarz inequality inH, we obtain

‖h(x′n)− µn(x′n)‖2 ≤ ‖Kn(x′n)‖
1
2
2 ‖h‖H,

Thus,

‖h(x′∞)− µn(x′n)‖2 ≤ ‖h(x′∞)− h(x′n)‖2 + |h(x′n)− µn(x′n)‖2

≤ ‖h(x′∞)− h(x′n)‖2 + ‖Kn(x′n)‖
1
2
2 ‖h‖H → 0

since h is continuous.

Lemma 5.5. Let νn = maxx∈X EI-CFn(x). Then, for all h ∈ H, lim infn→∞ νn → 0.

Proof. Fix h ∈ H and let {xn}n∈N be the sequence of points generated by the expected improvement policy, i.e.,
xn+1 ∈ arg maxx∈X EI-CFn(x). Let x̃ be a limit point of {xn}n∈N and let {xkn}n∈N be any subsequence converging to
x̃. Consider the sequence {x′n}n∈N given by x′n = xk` for all k`−1 ≤ n < k`, n ∈ N. Clearly, x′n → x̃, and thus Lemma
5.4 implies that µn(x′n) → h(x̃) and Kn(x′n) → 0. In particular, µkn−1(x′kn−1) → h(x̃) and Ckn−1(x′kn−1) → 0, i.e.,
µkn−1(xkn)→ h(x̃) and Ckn−1(xkn)→ 0. Moreover, {f∗n}n∈N is a bounded increasing sequence, and thus has a finite
limit, f∗∞, which satisfies f∗∞ ≥ f(x̃) as x̃ is a limit point of {xn}n∈N and f is continuous.
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The sequences {µkn−1(xkn)}n∈N and {Ckn−1(xkn)}n∈N are convergent and thus bounded. Hence, from assumption 5 and
the dominated convergence theorem we obtain that

E
[
{g(µkn−1(xkn) + Ckn−1(xkn)Z)− f∗kn−1

}+
]
→ E

[
{g(h(x̃))− f∗∞}+

]
= E

[
{f(x̃)− f∗∞}+

]
= 0,

but
νkn−1 = E

[
{g(µkn−1(xkn) + Ckn−1(xkn)Z)− f∗kn−1

}+
]
,

and thus the desired conclusion follows.

5.3. Proof of the Main Result

We are now in position to prove that the expected improvement acquisition function is asymptotically consistent in the
composite functions setting.

Theorem 5.6 (Asymptotic consistency of EI-CF). Assume that the covariance function, K, satisfies the GNEB prop-
erty. Then, for any fixed h ∈ H and xinit ∈ X , any (measurable) sequence {xn}n∈N with x1 = xinit and
xn+1 ∈ arg maxx∈X EI-CFn(x), n ∈ N, satisfies f∗n →M .

Proof. First note that if {xn}n∈N is dense in X , then, by continuity of f , f∗n →M . Thus, we may assume that {xn}n∈N is
not dense in X . For the sake of contradiction, we also assume that f∗∞ := limn→∞ f∗n < M , which implies that we can find
ε > 0 such that f∗∞ ≤M − 2ε.

Since {xn}n∈N is not dense in X , there exists x? ∈ X that is not a limit point of {xn}n∈N. Applying the Cauchy-Schwarz
inequality inH, we obtain

‖µn(x?)− h(x?)‖2 ≤ ‖Kn(x?)‖
1
2 ‖h‖H ≤ ‖K(x?)‖

1
2
2 ‖h‖H,

where in the last inequality we use that the sequence {Kn(x?)}n∈N satisfies Kn+1(x?) . Kn(x?) . K(x?) for all n ∈ N.
It follows that both sequences {µn(x?)}n∈N and {Kn(x?)}n∈N are bounded and thus we can find convergent subsequences
{µkn(x?)}n∈N and {Kkn(x?)}n∈N, say with limits µ? and K?, respectively. The GNEB property implies that K? is
nonsingular. Let C? be the upper cholesky factor of K? and let Sε = {y ∈ Rm : M − ε ≤ g(y) ≤M}. By continuity of g,
Sε has positive Lebesgue measure, and since K? is nonsingular, µ? + C?Z is a multivariate normal random vector with full
support. Hence, P(µ? + C?Z ∈ Sε) > 0. Moreover,

E
[
{g(µ? + C?Z)− f∗∞}+

]
≥ E[εI{µ? + C?Z ∈ Sε}]
= εP(µ? + C?Z ∈ Sε) > 0.

Finally, using Fatou’s lemma we obtain

lim inf
n→∞

E
[
{g(µkn(x?) + Ckn(x?)Z)− f∗kn}

+
]
≥ E

[
{g(µ? + C?Z)− f∗∞}+

]
> 0,

i.e., lim inf
n→∞

EI-CFkn(x?) > 0, which contradicts lemma 5.5.

6. Auxiliary Results
Here we prove some basic results on multi-output Gaussian processes. Most of them are simple generalizations of
well-known facts for single-output Gaussian processes but are included here for completeness.

Lemma 6.1. Suppose that the sequence {xn}n∈N is deterministic. Then, for any fixed x ∈ X

Kn(x) = Cov(h(x)− µn(x)).

Proof. This result may seem obvious at first sight, but it requires careful interpretation. By definition we have

Kn(x) = Covn(h(x)− µn(x)),
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but we claim that, indeed,

Kn(x) = Cov(h(x)− µn(x)),

i.e., the same equality holds even if we do not condition on the information available at time n. To see this, it is enough to
recall that Kn(x) only depends on x1, . . . , xn, but not on the values of h at these points. Thus, the tower property of the
expectation yields

Kn(x) = E[Kn(x)]

= E
[
En
[
(h(x)− µn(x))(h(x)− µn(x))>

]]
= E

[
(h(x)− µn(x))(h(x)− µn(x))>

]
= Cov(h(x)− µn(x)),

where in the last equality we use that E[h(x)− µn(x)] = 0, which can be verified similarly:

E[h(x)− µn(x)] = E [En[h(x)− µn(x)]] = E [0] = 0.

We emphasize that the sequence of points generated by the expected improvement acquisition function is deterministic once
h (the function to be evaluated, not the Gaussian process) is fixed and thus satisfies the conditions of lemma 6.1.

Lemma 6.2. For any x ∈ X , n ∈ N and i ∈ {1, . . . , n},

Cov(h(x)− µn(x)) . Cov(h(x)− h(xi)).

Proof. By the law of total covariance, we have

E [Covn(h(x)− h(xi))] + Cov (En[h(x)− h(xi)]) = Cov(h(x)− h(xi)),

which implies that

E [Covn(h(x)− h(xi))] . Cov(h(x)− h(xi)),

Moreover, conditioned on the information at time n, both µn(x) and h(xi) are deterministic. Hence,

Covn(h(x)− µn(x)) = Covn(h(x)− h(xi)),

but by lemma 6.1 we know that Covn(h(x) − µn(x)) = Cov(h(x) − µn(x)), and thus E[Covn(h(x) − h(xi))] =
Cov(h(x)− µn(x)), which completes the proof.

Lemma 6.3. For any fixed x ∈ X and n ∈ N,

Kn+1(x) . Kn(x) . K(x)

Proof. Let K0 = K. The standard formula for the posterior covariance matrix applied to the case where only one additional
point is observed yields

Kn+1(x) = Kn(x)−Kn(x, xn+1)Kn(xn+1, xn+1)−1Kn(xn+1, x)

for all n ≥ 0, from which the desired conclusion follows.

Lemma 6.4. For any fixed h ∈ H, n ∈ N and x ∈ X ,

‖h(x)− µn(x)‖2 ≤ ‖Kn(x)‖
1
2
2 ‖h‖H,

where ‖Kn(x)‖2 denotes the spectral norm of the matrix Kn(x).
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