
Linear-Complexity Data-Parallel Earth Mover’s Distance Approximations

A. Optimality and Effectiveness

Alg. 2 computes an optimum flow F∗, whose components are determined by the quantities r in step 4. Namely, the

components of the i-th row of F∗, are given recursively as F ∗
i,s[1] = min(pi, qs[1]) and F ∗

i,s[l] = min(pi−
∑l−1

u=1 F
∗
i,s[u], qs[l])

for l = 2, . . . , hq .

Lemma 1. Each row i of the flow F∗ of Algorithm 2 has a certain number ki, 1 ≤ ki ≤ hq of nonzero components, which

are given by F ∗
i,s[l] = q

s[l] for l = 1, . . . , ki − 1 and F ∗
i,s[ki]

= pi −
∑ki−1

l=1 q
s[l].

The Lemma follows by keeping track of the values of the term r in step 4 in Alg. 2. An immediate implication is that the

flow F ∗ satisfies the constraints (2) and (4). One can also show that F ∗ is a minimal solution of (1) under the constraints

(2) and (4), and this leads to the following theorem.

Theorem 1. (i) The flow F ∗ of Algorithm 2 is an optimal solution of the relaxed minimization problem given by (1), (2)

and (4). (ii) ICT provides a lower bound on EMD.

Proof. Proof of part (i): It has already been shown that the flow F∗ satisfies constraints (2) and (4), and it remains to show

that F∗ achieves the minimum in (1). To this end, let F be any nonnegative flow, which satisfies (2) and (4). To show that

F∗ achieves the minimum in (4), it is enough to show that for every row i, one has
∑

j Fi,jCi,j ≥
∑

j F
∗
i,jCi,j , which then

implies
∑

i,j Fi,jCi,j ≥
∑

i,j F
∗
i,jCi,j .

By Alg. 2, there is a reordering given by the list s such that

Ci,s[1] ≤ Ci,s[2] ≤ . . . ≤ Ci,s[nq ]. (10)

By Lemma 1, there is a ki ≤ nq such that
∑ki

l=1 F
∗
i,s[l] = pi and F ∗

i,s[l] = 0 for l > ki. Furthermore by Lemma 1 and by

constraint (4) on F , it follows that

Fi,s[l] ≤ q
s[l] = F ∗

i,s[l] for l = 1, . . . , ki − 1. (11)

The outflow-constraint (2) implies
∑

j Fi,j = pi =
∑

j F
∗
i,j or, equivalently,

nq∑

l=ki

Fi,s[l] = F ∗
i,s[ki]

+

ki−1∑

l=1

(F ∗
i,s[l] − Fi,s[l]). (12)

In the following chain of inequalities, the first inequality follows from (10), and (12) implies the equality in the second

step.

nq∑

l=ki

Ci,s[l]Fi,s[l] ≥ Ci,s[ki]

nq∑

l=ki

Fi,s[l]

= Ci,s[ki](F
∗
i,s[ki]

+

ki−1∑

l=1

(F ∗
i,s[l] − Fi,s[l]))

= Ci,s[ki]F
∗
i,s[ki]

+

ki−1∑

l=1

Ci,s[ki](F
∗
i,s[l] − Fi,s[l])

≥ Ci,s[ki]F
∗
i,s[ki]

+

ki−1∑

l=1

Ci,s[l](F
∗
i,s[l] − Fi,s[l]).

The inequality in the last step follows from (10) and the fact that the terms F ∗
i,s[l] − Fi,s[l] are nonnegative by (11). By
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rewriting the last inequality, one obtains the desired inequality

∑

j

Fi,jCi,j =

nq∑

l=1

Fi,s[l]Ci,s[l]

≥

ki∑

l=1

F ∗
i,s[l]Ci,s[l]

=
∑

j

F ∗
i,jCi,j ,

where in the last equation F ∗
i,s[l] = 0 for l > ki is used.

Proof of part (ii): Since ICT is a relaxation of the constrained minimization problem of the EMD, ICT provides a lower

bound on EMD given by the output of Alg. 2, namely,
∑

i,j F
∗
i,jCi,j = ICT(p,q) ≤ EMD(p,q).

Similar to Alg. 2, Alg. 3 also determines an optimum flow F ∗, which now depends on the number of iterations k.

Lemma 2. Each row i of the flow F∗ of Algorithm 3 has a certain number ki, 1 ≤ ki ≤ k of nonzero components, which

are given by F ∗
i,s[l] = q

s[l] for l = 1, . . . , ki − 1 and F ∗
i,s[ki]

= pi −
∑ki−1

l=1 q
s[l].

Based on this Lemma, one can show that the flow F ∗ from Algorithm 3 is an optimum solution to the minimization problem

given by (1), (2) and (4), in which the constraint (4) is further relaxed in function of the predetermined parameter k. Since

the constrained minimization problems for ICT, ACT, OMR, RWMD form a chain of increased relaxations of EMD, one

obtains the following result.

Theorem 2. For two normalized histograms p and q: RWMD(p,q) ≤ OMR(p,q) ≤ ACT(p,q) ≤ ICT(p,q) ≤

EMD(p,q).

We call a nonnegative cost function C effective, if for any indices i, j, the equality Ci,j = 0 implies i = j. For a topological

space, this condition is related to the Hausdorff property. For an effective cost function C, one has Ci,j > 0 for all i 6= j,

and, in this case, OMR(p,q) =
∑

i,j Ci,jF
∗
i,j = 0 implies F ∗

i,j = 0 for i 6= j and, thus, ki = 1 in Lemma 2 and, thus, F∗

is diagonal with F ∗
i,i = pi. This implies pi ≤ qi for all i and, since both histograms are normalized, one must have p = q.

Theorem 3. If the cost function C is effective, then OMR(p,q) = 0 implies p = q, i.e., OMR is effective.

Remark 1. If OMR is effective, then, a fortiori, ACT and ICT are also effective. However, RWMD does not share this

property.

B. Complexity Analysis

The algorithms presented in Section 3 assume that the cost matrix C is given, yet they still have a quadratic time complexity

in the size of the histograms. Assume that the histograms size is h. Then, the size of C is h2. The complexity is determined

by the row-wise reduction operations on C. In case of the OMR method, the top-2 smallest values are computed in each

row of C and a maximum of two updates are performed on each bin of p. Therefore, the complexity is O(h2). In case of

the ACT method, the top-k smallest values are computed in each row, and up to k updates are performed on each histogram

bin. Therefore, the complexity is O(h2 log k + hk). The ICT method is the most expensive one because 1) it fully sorts

the rows of C, and 2) it requires O(h) iterations in the worst case. Its complexity is given by O(h2 log h).

In Section 5, the complexity of Phase 1 of the LC-ACT algorithm is O(vhm + nh log k) because the complexity of the

matrix multiplication that computes D is O(vhm), and the complexity of computing top-k smallest distances in each row

of D is O(nh log k). The complexity of performing (6), (7), (8), and (9) are O(nh) each. When k − 1 iterations of Phase

2 is applied, the overall time complexity of the LC-ACT algorithm is O(vhm + knh). Note that when the number of

iterations k performed by LC-ACT is a constant, LC-ACT and LC-RWMD have the same time complexity. When the

number of iterations are in the order of the dimensionality of the coordinates (i.e., O(k) = O(m)) and the database is

sufficiently large (i.e., O(n) = O(v)), LC-ACT and LC-RWMD again have the same time complexity, which increases

linearly in the size of the histograms h. In addition, the sizes of the matrices X, V, D, and Z are nh, vm, vh, and vk,

respectively. Therefore, the overall space complexity of the LC-ACT algorithm is O(nh+ vm+ vh+ vk).


