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Proof of Proposition 2.3. The reverse direction is given in
Remark 1 from Hall et al. (2013), though we provide the
argument here again for completeness. Let B € .% and
X, X’ € X" be adjacent elements. Then

L) ) vt

B Ixm)’

i (B) = /B Fx(®) du(b) =
< /B exp(€) fx/(8) du(b) = exp(e)pux (),

which implies that .# achieves e-DP.

Going in the other direction we will use a proof by contra-
diction. Assume that ./ is an e-DP mechanism. Recall that
two measures are equivalent if they agree on the zero sets.
Thus, as we have said, the measures in a DP mechanism
must all be equivalent. So, we can assume that all of the
measures have a density with respect to some common base
measure, v, which, without loss of generality, we can take
to be one of the elements of .#. Now assume that there
exists a set B and some adjacent databases X, X’ such that
fx () > fx:(b)exp(e) for all b € B and that v(B) > 0.
Then this would imply the strict inequality

px(B) = /fo(b) dv (b)
> exp(e)/ fx:(b) dv(b) = exp(e)ux/ (B),
B

which is a contradiction, and thus the claim holds. O

Proof of Theorem 3.2. The density of the exponential mech-
anism can be expressed as

fx(8) = et g(b)exp { 51Ex(b) }

"Department of Statistics, Pennsylvania State University, Uni-
versity Park, Pennsylvania. Correspondence to: Jordan Awan
<awan@psu.edu>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

where ¢;, is the normalizing constant. Define the random
variable Z = \/n(b — b), then its density is given by
€

Ja(2) = 6" (b 2/ Vi) exp { 5 éalb+ 2 /v }

We now aim to show that, for z fixed, the density converges
to a multivariate normal. Using a two term Taylor expansion,
we have by Assumption (2) and (3) that

Ex(b+2/vn) = [6x(b) + 2" €k (b)/Vn
+ 2T €% (b)z/2n] 4 o(1).
The first term will be absorbed into the constants, since it
Eloes not depend on z, while the second term is zero, since
b minimizes £ x. So, only the thirfl term contributes to the
form of the density. Obviously |g(b+ z/y/n) — g(b*)| — 0,
so the only remaining task is to show that the combined

constants behave appropriately. The integrating constant is
of the form

cnn'/? exp {—i{n (B)}
~ € N ~

= [ oo+ 2o {5 lenth+ 2/ — 6B} =

By Assumption (1) we have that
Ex(b+2/vn) = &) < = 2]

Since exp{—||z||?} is integrable, we can apply the domi-
nated convergence theorem to conclude that the constants
converge to something nonzero as well.

Putting everything together, we conclude that
fal2) > (2) ocexp {—5 2T 22}
2A
which is the density of the multivariate normal. Apply-

ing Scheffe’s Theorem, we thus have both convergence in
distribution as well as convergence in total variation:

Vnb-b) 3 N, (0,2?2). O
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Lemma 0.1. Suppose that 3 and C are nuclear positive-
definite operators on H such that ¥~ C' is Hilbert-Schmidt.
Then CY/?%-1C/2 and ©.=1/2C%~1/2 are also Hilbert-
Schmidt.

Proof. Recall that ¥~ 1C is Hilbert-Schmidt is equivalent
to ||2710||HS = “0271“}15 < o0. Then

00 > |7 Cllas - |1CZ  lus
> <0271,2710>HS
=tr (27'C87'0)
—tr <C1/227101/2C1/2271C1/2)
= |C2E7C |y s,

which implies that C''/2X~1C/2 is Hilbert-Schmidt. The
same trick works for X—1/20%~-1/2, O

Lemma 0.2. In the setting of Theorem 3.3, let ¥ and C' be
nuclear positive-definite operators on H such that ¥~ 1C
is Hilbert-Schmidt (with respect to the inner product of 7,
Y1C is bounded with respect to the Cameron-Martin space
(CMS) of C, and by, lies in the CMS of C for all n. Then

1. The Gaussian process on H with mean
vn (2A »-1 —|— Le- )71 (2c1) b and covariance
(QAZ + C D=1 is equivalent, as probability
measures, to a Gaussian process with mean —\/ﬁi)
and covariance nC.

€ w_ -1
2 (5557 10

nuclear OPEFLZ[OVS.

converges to Y in the space of

3. -2 (5t o) T (L) b= 0in .

Proof. 1. We first check that the covariances will induce
equivalent measures (Corollary 6.4.11 Bogachev, 1998).
Namely we first require that

1/2
3y 1/2
<2A L C’ > (nC)

is invertible and bounded. This can be written in the form
o 1/2
Ny I) .
(3a

Since ¥~ !C is Hilbert-Schmidt and I is bounded, the com-
bined quantity is bounded. Furthermore, the smallest eigen-
value is > 1, so it is invertible.

Second, we check that

(nC)1/2<2A2 + c )1(nC)1/2—I

is Hilbert-Schmidt. This can be rearranged as follows:
en -1
e S
(33 *
— (" 2y-1 012 I)_l —MN /25-101/2
(5xC cv2 4 L C c
At this point, we recall that ¥~ 1C being Hilbert-Schmidt
implies that C''/2%~1(C"/2 is Hilbert Schmidt, by Lemma
0.1. So, we have a bounded operator multiplied by a Hilbert-

Schmidt operator, which shows that the result is Hilbert-
Schmidt.

Third and last, we verify that
—1 1 . .
f(z + C > (C—l) b—+/nb
2A n
lies in the CMS of C. We can express this difference as
follows:
o c —ct) —1|b
(s> i) (o) ]
1 A
_\F{(E 10+I) —I]b
_ Mg -t LRSS
= Vi (Gx=C+I) 1= (5=t )] b

N

2A
en -1 /¢ .
- va(Zy-1o I) (—2*0) b.
Vi (5x + 2A
From this representation, we see that
—/n (22710 + I)_1 is a bounded operator, since

> ~1C is Hilbert-Schmidt. So, it suffices to show that
(271Ch,CIRTIOb) < 0.
Equivalently, we may show that
1710 c < oo,

where ||-||c is the norm of the CMS of C. Since ©71C is
bounded in the CMS of C, and since b lies in the CMS of
C, the result holds.

2. Since X~1/2C'¥~1/2 a is symmetric, positive definite,
and Hilbert-Schmidt there exists an orthonormal sequence
(u;)$2, in H and a sequence of real numbers a; € Rt such
that

271/20271/2 —

o

2
E a; < 00.
i=1

o0
Z a;u; @ u;
i=1

Then

—1
(mz n c)

—1
2A21/2 ( 2A21/20 121/2) 21/2.
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Using the eigen decomposition with the u; we have the
inside term is given by

-1
<I+ 2A21/20 121/2)

_ Z ( QAG/_I) u; ® ug

oo

- ; a; + 2&/(%)

U; Q Uy

So then we can express the difference
2A -
—Y - | ==X C

€ ( 2A T+ )

20, 2A

= w2 , Nonl/2
€ = nea; + 2A o (ui @ us) 0

Notice that 2 = >°,_, ©1/20 (u; ®u;) 0 $1/2, since Y- u; ®
u; 1s just the identity operator. Thus, since X is nuclear, for
any § > 0, we can choose m such that

% i 24 »ni/2
€ nea; + 2A

i=m-+1

O(uz’ ®Uz) 021/2 < é’

in the nuclear norm. Finally, now that the sum is finite, we
can choose n such that

2A & 2A
o= 721/2 ; ; 21/2
€ ;neai—FQA o (ui ®us) o

as desired.

3. To see the convergence of

2 (g Lo EEY
2A n n ’

note that the largest (absolute) singular value of

(2s-lC+1)”

-1
1 R
o —1/2 o
Hn <22+C’)(n0>b

1C+I) IBH

Yis upper bounded by 1. So,

O

Proof of Theorem 3.3. The proof strategy is the same as for
Theorem 3.2. However since the base measure is no longer

Lebesgue, the effect of changing variables on the Gaussian
base measure must be handled more carefully. Consider

Z = /n(b—b) and

P(vn(b—1b) € A) = / e fx (b) dv(b)

— 12 / Fx(b+ 2/v/m) du(b + 2/ /).
A

The same Taylor expansion arguments from before still
apply, however the base measure has now been shifted and
scaled. In particular, if di(z) = dv(b+ z/\/n), then ¥ is
the measure of a Gaussian process with mean f\/ﬁf) and
covariance operator nC'. So we have that

P(Vn(b—b) € 4)

:cgl/AeXp{ <z ﬁE

where ¢,, is the normalizing constant. However, this is
a Gaussian measure with covariance operator (3537 +
C~'/n)~" and mean —n~Y/2(35 5" + O~ /n)1C 1.
By part 1 of Lemma 0.2, we know that this Gaussian process
is equivalent to v, which is a Gaussian process with mean
—\/ﬁIA) and covariance nC', meaning that the density in (1)
is well defined. By parts 2 and 3 of Lemma 0.2, we have
that the following limits hold:

>/2} do(2) + o(1),
(1

L 2A
—- —X
€

(2—AZ +C™ l/n)_

_o—1/2( € w1 -1 LT
n (mz e /n) C% -0,

where the first limit is in the space of nuclear operators,
implying the sequence of measures is tight, and the second
limit occurs in H. We conclude that the characteristic func-
tions of the measures converge and, since the sequence is
also tight, this implies that \/7(b — b) converges in distribu-
tion to the specified Gaussian process. O

Proof of Theorem 4.1. Recall that we assumed that || X; || <
Lforalli =1,...,n. So, |[PX;||* < || X;||* < 1 for any
P e &) and any i = 1,...,n. Since we also have that
| PX;|> > 0, we see that A¢ = 1. Since Y, | PX;[]* <
n, we have that exp (—55 > i, [|PX;|?) is a valid den-
sity with respect to any probability measure in &;. By
Proposition 3.1, the mechanism .# satisfies e-DP. O

Proof of Theorem 4.2. The proof is essentially the same as
for Theorem 4.1. O
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