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1. Background on regular variation
The material in this section is from the book of Bingham
et al. (1989). In the following, U denotes a regularly varying
function and ` denotes a slowly varying function, locally
bounded on (0,∞).

Theorem 1 (Karamata’s theorem) (Bingham et al., 1989,
Propositions 1.5.8 and 1.5.10). Suppose ρ > −1 and
U(t) ∼ tρ`(t) as t tends to infinity. Then∫ x

0

U(t)dt ∼ 1

ρ+ 1
xρ+1`(x)

as x tends to infinity.
Suppose ρ < −1. Then U(t) ∼ tρ`(t) as t tends to infinity
implies ∫ ∞

x

U(t)dt ∼ − 1

ρ+ 1
xρ+1`(x)

as x tends to infinity.

Corollary 2 Suppose ρ < −1 and U(y) ∼ yρ`(1/y) as y
tends to 0. Then∫ ∞

x

U(y)dy ∼ −1

ρ+ 1
xρ+1`(1/x)

as x tends to 0.

Proof. U(t) = tρ`1(1/t) where `1(t) ∼ `(t) as t→∞.∫ ∞
x

U(y)dy =

∫ 1/x

0

t−2−ρ`1(t)dt

∼ −1

1 + ρ
x1+ρ`(1/x)

as x tends to 0 by Theorem 1.
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2. Proofs
2.1. Proof of Equations (18) and (19)

For any s > 0, the function x → γ(s, x) is both regularly
varying at 0 and infinity with

γ(s, x) ∼
{

xs

s as x→ 0
Γ(s) as x→∞

we have therefore for the generalized BFRY process

ρ(w) ∼

{
cτ−σ

Γ(1−σ)(τ−σ)w
−1−σ as x→ 0

Γ(τ−σ)
Γ(1−σ)w

−1−τ as x→∞

and Equations (18) and (19) follow from Theorem 1 and
Corollary 2.

2.2. Proof of Equations (21) and (22)

We have for the beta prime process

ρ(w) ∼

{
cσ−τΓ(τ−σ)

Γ(1−σ) w−1−σ as x→ 0
Γ(τ−σ)
Γ(1−σ)w

−1−τ as x→∞

Equations (21) and (22) then follow from Theorem 1 and
Corollary 2.

2.3. Proof of Proposition 1

Lemma 1 Let (Xk)k≥1 be a sequence of Poisson random
variables such that

log k

EXk
→ 0.

Then
Xk

EXk
→ 1 a.s.

Proof. Let X be a Poisson random variable with parameter
λ. Using the Chernoff bound, it comes that for any t > 0

P(|X − λ| ≥ λt) ≤ 2e−
λt2

2(1+t) .
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Let 0 < ε < 1/2. We deduce from previous inequality that

P
(∣∣∣∣ Xk

EXk
− 1

∣∣∣∣ ≥ ε) ≤ 2e−
ε2EXk

4

= 2k−
ε2EXk
4 log k

Using the assumption, we have that− ε
2EXk

4 log k → −∞. There-
fore, the RHS is summable. The almost sure result follows
from Borel-Cantelli lemma.

Now we can prove Proposition 1. Let ν =
∑
k δwk . Then,

for all x > 0, ν([x,+∞)) is a Poisson random variable
with mean ρ(x). Let us show that,

ν([1/x,+∞))
x→+∞∼ xα`(x) a.s.

Using Lemma 1 on the sequence (ν([1/k,+∞)))k≥1, we
find that

ν([1/k,+∞))
k→+∞∼ kα`1(k) a.s.

Now, since x 7→ ν([1/x,+∞)) is almost surely non de-
creasing, it comes that

ν([1/bxc,+∞)) ≤ ν([1/x,+∞)) ≤ ν([1/bx+ 1c,+∞))

We get the desired result by noticing that

(bx+ 1c)α`1(bx+ 1c) ∼ (bxc)α`1(bxc) ∼ xα`1(x).

Now, pick K0 such that
∑
k≥K0

w(k) < 1, and define pk =

w(k) if k ≥ K0 and pk =
1−

∑
j≥K0

w(j)

K0−1 otherwise. Notice
that

∑
pk = 1 and for x ≤ w(K0),

#{pk|pk ≤ x} = ν([x,+∞)).

We can therefore apply Proposition 23 of Gnedin et al.
(2007), leading to

pk ∼ k−1/α`∗1(k)

with k → +∞, where `∗1 is a slowly varying function de-
fined by

`∗1(x) =
1

{`1/α1 (x1/α)}#
,

where `# denotes a de Bruijn conjugate (Bingham et al.,
1989, Definition 1.5.13) of the slowly varying function `.
Therefore, since w(k) = pk for k large enough, it comes
that

w(k) ∼ k−1/α`∗1(k)

almost surely as k →∞.

2.4. Proof of Proposition 2

The proof of this proposition follows the line of the proof of
Theorem 1.2 of Kevei & Mason (2014). Let

ρ−1(y) = sup{x | ρ(x) > y}

denote the inverse tail Lévy intensity. Let (w(k))k≥1 be the
ordered jumps of a CRM with Lévy measure ηρ(dw). From
the inverse Lévy measure representation of a real valued
Poisson point process, we know that

(w(k))k≥1
d
= (ρ−1(Γk/η))k≥1,

where (Γk)k≥1 are the points of a unit-rate Poisson point
process on (0,∞), sorted in increasing order. In particular,
we have that

(w(k1), w(k1+k2))
d
=

(
ρ−1

(
X1

η

)
, ρ−1

(
X1 +X2

η

))
,

where X1 and X2 are independent Gamma random vari-
ables, with respective parameters (k1, 1) and (k2, 1). There-
fore,

w(k1+k2)

w(k1)

d
=

ρ−1(X1/η)

ρ−1((X1 +X2)/η)
.

Since ρ−1 is the generalized inverse of ρ1, which is regularly
varying at∞with parameter τ , it follows from Lemma 22 of
(Gnedin et al., 2007) that ρ−1 is regularly varying at 0 with
parameter 1/τ . Therefore, the right-hand side expression of

the last equation converges almost surely to X
1/τ
1

(X1+X2)1/τ
as

η →∞. From which we conclude that

wτ(k1+k2)

wτ(k1)

d→ X1

X1 +X2

d
= Beta(k1, k2),

as η → +∞

2.5. Proof of Proposition 3

In order to prove this proposition, we need to introduce some
notations and results on generalized-kernel based Abelian
theorems. Interested reader can refer to Chapter 4 of Bing-
ham et al. (1989) for more details. Given a measurable
kernel k : (0,∞)→∞, let

ǩ(z) =

∫ ∞
0

t−z−1k(t)dt =

∫
uz−1k(1/u)du

be its Mellin transform, for z ∈ C such that the integral
converges. We will use Theorem 4.1.6 page 201 in (Bing-
ham et al., 1989) (that we recall here after) to derive the
behaviour at +∞.

Theorem 3 (Theorem 4.1.6 page 201 in Bingham et al.)
Suppose that k converge at least in the strip
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σ ≤ Re(z) ≤ Σ, where −∞ < σ < Σ < ∞. Let
ξ ∈ (σ,Σ), ` a slowly varying function, c ∈ R. If f is
measurable, f(x)/xσ is bounded on every interval (0, a]
and

f(x) ∼ cxξ`(x) as x→∞

then∫ ∞
0

k(x/t)f(t)t−1dt ∼ cǩ(ξ)xρ`(x) as x→∞

To get the behaviour at 0, we will use the following corol-
lary.

Corollary 4 Let the Mellin transform ǩ of k converge at
least in the strip τ1 ≤ Re(z) ≤ τ2, where −∞ < τ1 <
τ2 < ∞. Let ξ ∈ (τ1, τ2), ` a slowly varying function,
c ∈ R. If f is measurable, f(x)/xτ2 is bounded on every
interval [a,∞) and

f(x) ∼ cxξ`(1/x) as x→ 0

then∫ ∞
0

k(x/t)f(t)t−1dt ∼ cǩ(ξ)xξ`(1/x) as x→ 0

Proof.

∫ ∞
0

k(x/t)f(t)t−1dx =

∫ ∞
0

k(xu)f(1/u)u−1du

=

∫ ∞
0

k̃(1/(xu))f̃(u)u−1du

where f̃(x) = f(1/x), f̃(x)/x−τ2 bounded on every inter-
val (0, 1/a] with

f̃(x) = f(1/x) ∼ cx−ρ`(x) as x→∞

and k̃(x) = k(1/x) is such that its Mellin transform con-
verges in the strip −τ2 ≤ Re(z) ≤ −τ1. Theorem 4.1.6
above therefore gives the result.

We can now proceed with the proof of Proposition 3

Proof. Let ρ0 and fZ , both regularly varying at 0 such that

ρ0(x) ∼ x−α`1(1/x) (1)
fZ(z) ∼ τzτ−1`2(1/z) (2)

with α < τ . Since ρ0 is cadlag and fz is locally bounded,
ρ0 and fZ are bounded on any set of the form [a, b] for

0 < a < b. Suppose that there exists β > τ such that
µβ =

∫∞
0
wβρ0(w)dw < +∞. Let

ρ(w) =

∫ ∞
0

zfZ(z)ρ0(wz)dz.

Using the change of variables Y = 1/Z, we can equiva-
lently write

ρ(w) =

∫ ∞
0

fY (y)ρ0(w/y)y−1dz,

with fY (y) = y−2fZ(1/y). From Equation (2), fY (y) ∼
τy−1−τ `2(y) when y → +∞. Let ξ = −1−τ , σ = −1−β
and Σ ∈ (−1− τ,−1− α) (since α < τ ). We notice that
for any δ ∈ [σ,Σ],

t−δ−1ρ0(t) = O(t−Σ−1ρ0(t)) as t→ 0

t−δ−1ρ0(t) = O(tβρ0(t)) as t→ +∞

Since ρ0 is bounded on any set of the form [a, b] and −Σ−
1 − 1 − α > −1, it comes that ρ̌0(δ) < +∞. Besides,
fY (y)y−σ → 0 as y → 0. Therefore we can apply the
previous theorem from which we deduce that

ρ(w) ∼ ρ̌0(−1− τ)w−1−τ `2(w),

which give the required asymptotic behaviour noticing that
ρ̌0(−1− τ) = µτ . For the behaviour at 0, we write

ρ(w) =

∫
ρ0(w0)fY (w/w0)w−1

0 dw0,

and take τ1 ∈ (−1− τ,−1−α), τ2 = −1 and ξ = −1−α.
Similarly as before, we can show that the conditions of the
corollary are satisfied, which gives the expected result.

2.6. Proof of Corollary 2

Denote f(k) =
w(k)

W (Θ) . From Equation (24) of Theorem 1,
and Proposition 23 of Gnedin et al. (2007), we have that
almost surely the discrete probability measure (f(k))k≥1

satisfies Equation (17) of (Gnedin et al., 2007) (which is
simply an equivalent way of writing the regularly varying
property). We conclude by noticing that Corollary 21 of the
same paper gives Equation (27).

3. Useful properties

γ(1, x) = 1− e−x

γ(s, x) =

∫ x

0

us−1e−udu

= xs
∫ 1

0

vs−1e−vxdv
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γ(s, x) ∼ xs

s

as x→ 0. We have∫ ∞
w0

wm−1−τe−wtdw = tτ−mΓ(m− τ, tw0)

4. Generalized BFRY distribution
The BFRY random variable (Bertoin et al., 2006; Devroye &
James, 2014) is a positive random variable W with density

fW (w) =
α

Γ(1− α)
w−1−α(1− e−w), α ∈ (0, 1).

W is a heavy tailed random variable with infinite mean,
and is known to have a close connection to the stable and
generalized gamma processes (Lee et al., 2016). W can be
simulated as W = X/Y where X ∼ Gamma(1 − α, 1)
and Y ∼ Beta(α, 1).

Now let W = X/Y , X ∼ Gamma(κ, 1) and Y ∼
Beta(τ, 1), with parameters κ, τ > 0. Then the density
of W is computed as

fW (w) =

∫ 1

0

yfX(wy)fY (y)dy

=
τ

Γ(κ)

∫ 1

0

y(wy)κ−1e−wyyτ−1dy

=
τ

Γ(κ)
wκ−1

∫ 1

0

yκ+τ−1e−wydy

=
τ

Γ(κ)
w−τ−1γ(κ+ τ, w). (3)

The resulting distribution, which we call as the generalized
BFRY distribution, contains the BFRY as its special case
when κ = 1 − τ ∈ (0, 1) and has potentially heavier tail
than the BFRY distribution. Like the BFRY distribution has
a close connection with the stable and generalized gamma
process, the generalized BFRY distribution has a close con-
nection with the generalized BFRY process we described in
the main text. Indeed, the generalized BFRY process can
be thought as a process version of the generalized BFRY
random variable, and the name generalized BFRY process
was coined after this connection.

For m < τ , the moments are given by

E(Wm) =
τΓ(m+ κ)

(τ −m)Γ(κ)
, (4)

and E(Wm) =∞ for m ≥ τ .

5. Additional details on the inference
Here we describe detailed inference procedures for General-
ized BFRY process and Beta-prime process.

5.1. Generalized BFRY process

The Lévy density of generalized BFRY process is written as

ρ(w) =
1

Γ(1− σ)
w−1−τγ(τ − σ,w), (5)

where we fixed c = 1. The quantities required for the
evaluation of the joint likelihood are

ψ(t) =
η

σ

∫ 1

0

((y + t)σ − yσ)yτ−σ−1dy (6)

κ(m, t) =
ηΓ(m− σ)

Γ(1− σ)

∫ 1

0

yτ−σ−1

(y + t)m−σ
dy. (7)

As explained in the main text, we introduce a set of latent
variables (Yj)

Kn
j=1 with

p(yj | rest) ∝
yτ−σ−1
j

(yj + t)mj−σ
10<yj<1. (8)

The joint log-likelihood is then written as

p((mj)j=1,...,Kn , y, u|η, σ, τ) ∝ un−1e−ψ(u)

×
Kn∏
j=1

ηΓ(mj − σ)

Γ(1− σ)

yτ−σ−1
j

(yj + u)mj−σ
. (9)

Since yj ∈ (0, 1), we take a transformation

yj =
1

1 + e−ỹj
, (10)

which yields

p((mj)j , ỹ, u|η, σ, τ) ∝ un−1e−ψ(u)

×
Kn∏
j=1

ηΓ(mj − σ)

Γ(1− σ)

yτ−σj (1− yj)
(yj + u)mj−σ

. (11)

Sampling ỹ We update ỹ via HMC (Duane et al., 1987;
Neal et al., 2011). The gradient of log p((mj)j , ỹ, u|η, σ, τ)
w.r.t. ỹj is given as(

τ − σ
yj
− 1

1− yj
− mj − σ

yj + u

)
· yj(1− yj). (12)

For all experiments, we used step size ε = 0.05 and number
of leapfrog steps L = 30.

Sampling u We take a transform u = eũ and update ũ via
Metropolis-Hastings with proposal distribution q(ũ′|ũ) =
Normal(ũ, 0.05).

Sampling η We place a prior η ∼ Lognormal(0, 1), and
updated η via Metropolis-Hastings with proposal distribu-
tion q(η̂|η) = Lognormal(log η, 0.05).
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Sampling σ We place a prior σ ∼ Logitnormal(0, 1),
and updated σ via Metropolis-Hastings with proposal distri-
bution q(σ̂|σ) = Logitnormal(logit(σ), 0.05).

Sampling τ Since τ > σ, instead of directly sam-
pling τ , we sampled δ = τ − σ > 0. Then we
place a prior δ ∼ Lognormal(0, 1) and update δ via
Metropolis-Hastings with proposal distribution q(δ̂|δ) =
Lognormal(log δ, 0.05).

5.2. Beta prime process

The Lévy density of Beta prime process is

ρ(w) =
Γ(τ − σ)

Γ(1− σ)
w−1−σ(1 + w)σ−τ , (13)

where we fixed c = 1. Then we have

ψ(t) =
η

σ

∫ ∞
0

((y + t)σ − yσ)yτ−σ−1e−ydy, (14)

κ(m, t) =
ηΓ(m− σ)

Γ(1− σ)

∫ ∞
0

yτ−σ−1e−y

(y + t)m−σ
dy. (15)

As for the generalized BFRY process, we augment the joint
likelihood with a set of latent variables (Yj)

Kn
j=1 with density

p(yj | rest) ∝
yτ−σ−1
j

(yj + u)mj−σ
1yj<0, (16)

which yields

p((mj)j , y, u|η, σ, τ) ∝ un−1e−ψ(u)

×
Kn∏
j=1

ηΓ(mj − σ)

Γ(1− σ)

yτ−σ−1
j

(yj + u)mj−σ
. (17)

Since yj > 0, we take a transformation yj = eỹj to have

p((mj)j , y, u|η, σ, τ) =
un−1e−ψ(u)

Γ(n)

×
Kn∏
j=1

ηΓ(mj − σ)

Γ(1− σ)

yτ−σj

(yj + u)mj−σ
. (18)

Sampling ỹ We update ỹ via HMC. The gradient required
for ỹ is computed as

τ − σ − yj − (mj − σ)
yj

yj + u
.

Sampling u, η, σ, τ Same as for the generalized BFRY
process.

6. Results of experiments
Synthetic data

As explained in the main text, we sample simulated datasets
from the GBFRY and the BP models with parameters σ =
0.1, τ = 2, c = 1 and η = 4000. We run the MCMC algo-
rithm described in Section 4.2 with 100 000 iterations. The
95% credible intervals are σ ∈ (0.09, 0.12), τ ∈ (1.6, 2.2)
for the BFRY and σ ∈ (0.08, 0.11), τ ∈ (1.8, 2.3) for
the BP model. The MCMC algorithm is therefore able to
recover the true parameters. Trace plots are reported in
Figures 1 and 2.

Real data

Here we report the results for the 5 datasets described in the
main text. We report the 95% credible intervals of the poste-
rior predictive for the proportion of occurrences and ranked
frequencies of the Generalized BFRY, BP, normalized GGP
and PY models for each dataset in Figures 3 to 12. We can
see that as predicted the GGP and PY do not manage to
capture the behavior of the large clusters (which are on the
right of the figures displaying the proportion of clusters of
a given size, and on the left on the figures displaying the
ordered sizes of the clusters).
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(a) Posterior η (b) Posterior σ (c) Posterior τ

Figure 1. Trace plots of the parameter samples for the Generalized BFRY model. Dashed line represents true value of the parameter.

(a) Posterior η (b) Posterior σ (c) Posterior τ

Figure 2. Trace plots of the parameter samples for the Beta prime process model. Dashed line represents true value of the parameter.

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 3. Proportion of clusters of a given size in the ANC dataset: 95% credible interval of the posterior predictive in blue, real values in
red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 4. Proportion of clusters of a given size in the English books dataset: 95% credible interval of the posterior predictive in blue, real
values in red
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(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 5. Proportion of clusters of a given size in the French books dataset: 95% credible interval of the posterior predictive in blue, real
values in red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 6. Proportion of clusters of a given size in the nips dataset: 95% credible interval of the posterior predictive in blue, real values in
red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 7. Proportion of nodes with a given degree in the Twitter dataset: 95% credible interval of the posterior predictive in blue, real
values in red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 8. Ordered size of the clusters in the ANC dataset: 95% credible interval of the posterior predictive in blue, real values in red
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(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 9. Ordered size of the clusters in the English books dataset: 95% credible interval of the posterior predictive in blue, real values in
red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 10. Ordered size of the clusters in the French books dataset: 95% credible interval of the posterior predictive in blue, real values in
red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 11. Ordered size of the clusters in the nips dataset: 95% credible interval of the posterior predictive in blue, real values in red

(a) Generalized BFRY (b) Beta prime (c) GGP (d) PY

Figure 12. Ordered degrees of the nodes in the Twitter dataset: 95% credible interval of the posterior predictive in blue, real values in red
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