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Abstract

Bayesian nonparametric approaches, in particular
the Pitman-Yor process and the associated two-
parameter Chinese Restaurant process, have been
successfully used in applications where the data
exhibit a power-law behavior. Examples include
natural language processing, natural images or
networks. There is also growing empirical evi-
dence suggesting that some datasets exhibit a two-
regime power-law behavior: one regime for small
frequencies, and a second regime, with a different
exponent, for high frequencies. In this paper, we
introduce a class of completely random measures
which are doubly regularly-varying. Contrary to
the Pitman-Yor process, we show that when com-
pletely random measures in this class are normal-
ized to obtain random probability measures and
associated random partitions, such partitions ex-
hibit a double power-law behavior. We present
two general constructions and discuss in particular
two models within this class: the beta prime pro-
cess (Broderick et al. (2015, 2018) and a novel
process called generalized BFRY process. We
derive efficient Markov chain Monte Carlo algo-
rithms to estimate the parameters of these models.
Finally, we show that the proposed models pro-
vide a better fit than the Pitman-Yor process on
various datasets.

1. Introduction

Power-law distributions appear to arise in a wide range of
contexts, including natural languages, natural images or
networks. For example, the empirical distribution of the
word frequencies in natural languages is well approximated
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by a power-law distribution, an observation attributed to Zipf
(1935). That is, the frequency f(y) of the kth most frequent
word in a corpus satisfies, within some range

where C' is some constant and £ > 0 is the power-law
exponent which is typically close to 1 for natural languages.
These empirical findings have motivated the development of
numerous generative models that can reproduce this power-
law behavior; see the reviews of (Mitzenmacher, 2004) and
(Newman, 2005).

Amongst these generative models, Bayesian nonparamet-
ric hierarchical models based on infinite-dimensional ran-
dom measures have been successfully used to capture the
power-law behavior of various datasets. Applications in-
clude natural language processing (Goldwater et al., 2006;
Teh, 2006; Wood et al., 2009; Mochihashi et al., 2009; Sato
& Nakagawa, 2010), natural image segmentation (Sudderth
& Jordan, 2009) or network analysis (Caron, 2012; Caron
& Fox, 2017; Crane & Dempsey, 2018; Cai et al., 2016).
A very popular model is the Pitman-Yor (PY) process (Pit-
man, 1995; Pitman & Yor, 1997; Pitman, 2006), an infinite-
dimensional random probability measure whose properties
induce a power-law behavior. It admits two parameters
(0 <a < 1,0 > —a). The PY random probability measure
is almost surely discrete, with weights (1) = T(2) 25
following the so-called two-parameter Poisson-Dirichlet dis-
tribution PD(a, §) (Pitman & Yor, 1997). For « > 0, the
random weights satisfy

(k) ~ k1S almost surely as k — oo

where S is a random variable. That is, small weights asymp-
totically follow a power-law distribution whose exponent is
controlled by the parameter o. The PY process also enjoys
tractable alternative constructions via the two-parameter
Chinese restaurant process or the stick-breaking construc-
tion which explains its great popularity amongst models
with similar properties. Other popular infinite-dimensional
random measures that have been used for their similar
power-law properties include the stable Indian buffet pro-
cess (Teh & Gorur, 2009) or the generalized gamma pro-
cess (Hougaard, 1986; Brix, 1999).
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Figure 1. (Top) Ranked word frequencies from the American Na-
tional Corpus (circles) and power-law fit (straight lines). (Bottom)
Proportion of words with a given number of occurences for the
same dataset (circles) and power-law fit (straight lines).

Double power-law in empirical data. There is a grow-
ing empirical evidence that some datasets may exhibit a
double power-law regime when the sample size is large
enough. Examples include word frequencies in natural lan-
guages (Ferrer i Cancho & Solé, 2001; Montemurro, 2001;
Gerlach & Altmann, 2013; Font-Clos et al., 2013), Twit-
ter rates and retweet distributions (Bild et al., 2015), or
degree distributions in social (Csanyi & Szendrd6i, 2004),
communication (Seshadri et al., 2008) or transportation net-
works (Paleari et al., 2010). In the case of word frequencies
for example, it is conjectured that high frequency words
approximately follow a power-law with Zipfian exponent
approximately equal to 1, while the low frequency words
follow a power-law with a higher exponent. An illustration
is given in Figure 1, which shows the word frequencies of
about 300,000 words from the American National Corpus'.

In this paper, we introduce a class of completely random
measures (CRMs), named doubly regularly-varying CRMs.
‘We show that, when a random measure in this class is nor-
malized to obtain a random probability measure P, and one
repeatedly samples from P, the resulting frequencies ex-
hibit a double power-law behavior. Informally, the ranked
frequencies satisfy

for small rank &k
for large rank &

Cik—Y/™
f(k') = { C;k—l/a (D

"http://www.anc.org/data/anc-second-release/frequency-data/

where 7 > 0, « € (0,1) and Cy,Cy > 0. The above
statement is made mathematically accurate later in the arti-
cle. We describe two general constructions to obtain doubly
regularly varying CRMs, and consider two specific models
within this class: the beta prime process of Broderick et al.
(2015; 2018) and a novel process named generalized BFRY
process. We show how these two CRMs can be obtained
from transformations of the generalized gamma and sta-
ble beta processes. We derive Markov chain Monte Carlo
inference algorithms for these models, and show that such
models provide a good fit compared to a Pitman-Yor process
on text and network datasets.

2. Background on (normalized) completely
random measures

CRMs, introduced by Kingman (1967), are important build-
ing blocks of Bayesian nonparametric models (Lijoi &
Priinster, 2010). A homogeneous CRM on a Polish space O,
without deterministic component nor fixed atoms, is almost
surely (a.s.) discrete and takes the form

W= wid, @)

k>1

where (wg, O )k >1 are the points of a Poisson point process
with mean measure p(dw)H (df). H is some probability
distribution on O, and p is a Lévy measure on (0, c0). We
write W ~ CRM(p, H). A popular CRM is the generalized
gamma process (GGP) (Hougaard, 1986; Brix, 1999) with
Lévy measure

1

—1—0 _—Cw
7“1_0)111 e dw 3)

Pccp (dw§ a, () =

where o0 € (0,1) and ¢ > 0 or o < 0 and ¢ > 0. The GGP
admits as special case the gamma process (o = 0,( > 0)
and the stable process (o € (0,1),¢ = 0). If

/0 p(dw) = 0o @)

then the CRM is said to be infinite-activity: it has an infinite
number of atoms and the weights satisfy 0 < W(©) =
> e, wi < 0o a.s. We can therefore construct a random
probability measure P by normalizing the CRM (Regazzini
et al., 2003; Lijoi et al., 2007)

w
P=—— 5
We call P a normalized CRM (NCRM) and write P ~
NCRM(p, H). The Pitman-Yor process with parame-
ters 8 > 0 and @ € [0,1) and distribution H, written
P ~ PY(«,0, H) admits a representation as a (mixture of)
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CRMs (Pitman & Yor, 1997, Proposition 21). If 6, « > 0 it
is a mixture of normalized generalized gamma processes

7 ~ Gamma (9, 1) (6)
a
P |~ NCRM(7 pecr (- a, 1), H) (7

and for 6 = 0, it is a normalized stable process
P ~ NCRM(pger(-; ,0), H). ()

Although this representation is more complicated than the
usual stick-breaking or urn constructions of the PY, it will
be useful later on when we will discuss its asymptotic prop-
erties. The above construction essentially tells us that the
PY has the same asymptotic properties as the normalized
GGP for # > 0 and the stable process for § = 0.

3. Doubly regularly varying CRMs
3.1. General definition

We first introduce a few definitions on regularly varying
functions (Bingham et al., 1989).

Definition 3.1 (Slowly varying function) A positive func-
tion £ on (0, 00) is slowly varying at infinity if for all ¢ > 0
L(ct)/l(t) = 1 ast — +oo Examples of slowly varying
functions are constant functions, functions converging to a
strictly positive constant, (logt)® for any real a, etc.

Definition 3.2 (Regularly varying function) A positive
Sunction f on (0,00) is said to be regularly varying at
infinity with exponent ¢ € R if f(x) = x%4(x) where  is
a slowly varying function. Similarly, a function f is said
to be regularly varying at 0 if f(1/x) is regularly varying
at infinity, that is f(x) = x=50(1/x) for some ¢ € R and
some slowly varying function (.

Informally, regularly varying functions with exponent £ #
0 behave asymptotically similarly to a “pure” power-law
function g(z) = z°¢.

A homogeneous CRM W on © with mean measure
p(dw)H (d) is said to be doubly regularly varying if its
tail Lévy intensity

@) = [ ptaw) ©
is regularly varying at O and oo, that is

_ =% (1/x) asx —0
pla) ~ { x Tl (x) as T — 00 (10)

l

where « € [0,1], 7 > 0 and ¢; and /5 are slowly varying
functions. The CRM is said to be doubly power-law if
it is doubly regularly varying with exponents o > 0 and
7 > 0. Note that in this case, the CRM necessarily satisfies
condition (4) and is therefore infinite activity.

3.2. Properties

In the following, let w(1y = W) > ... denote the ordered
weights of the CRM. The first proposition states that, if
the CRM is regularly varying at O with exponent o > 0,
the small weights asymptotically scale as a power-law (up
to a slowly varying function). Its proof is given in the
Supplementary material.

Proposition 1 A CRM, regularly varying at O with exponent
a > 0, satisfies

Wy ~ EYers (k) ask — oo (11)

where (7 is a slowly varying function whose expression,
which depends on {1 and «, is given in the supplementary
material.

The next proposition states that, if the CRM is regularly
varying at infinity with 7 > 0 and the scaling factor of the
Lévy measure is large, the CRM has a power-law behavior
for large weights.

Proposition 2 [Kevei & Mason (2014, Theorem 1.2)]
Consider a CRM with mean measure np(dw)H (df), regu-
larly varying at oo with 7 > 0. Then, for any ky, ke > 1
wT
M S Beta(kq, ko) asn — oc. (12)
Wik

Note that Equation (12) indicates a power-law behavior with
exponent 1/7, as for large n and k > 1, w(y) ~ w(l)k_l/f.

GGP and stable process. The GGP with parameter ¢ > 0
is regularly varying at 0 with exponent « = max(0, o).
Hence, it satisfies Proposition (1). However, the exponential
decay of the tails of the Lévy measure implies that it is
not regularly varying at co. Large weights therefore decay
exponentially fast. The stable process, which is a GGP with
parameter ¢ = 0 and o € (0, 1), is doubly regularly-varying
with the same power-law exponent ¢ at 0 and co. Hence, it
satisfies Proposition 1. Additionally, Pitman & Yor (1997,
Proposition 8) showed that the result of Proposition 2 holds
non-asymptotically for the stable process. In particular, for
allk > 1, w(kH)/w(k) ~ Beta(ko, 1).

In Section 3.3, we describe two general constructions for ob-
taining doubly regularly varying CRMs. Then we describe
two specific processes with doubly regularly varying tail
Lévy measure where one can flexibly tune both exponents.
In the rest of the paper, we assume that the Lévy measure p is
absolutely continuous with respect to the Lebesgue measure,
and use the same notation for its density p(dw) = p(w)dw.

3.3. Construction of doubly regularly varying CRMs

Scaled-CRM. A first way of constructing a doubly regu-
larly varying CRMs is to consider a CRM, regularly varying
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at 0, and to divide its weights by independent and identically
distributed (iid) random variables, whose cumulative density
function (cdf) is also regularly varying at 0. More precisely,
let

W= %s, (13)

z
k>1 “k

where (21, 22, . . .) are strictly positive, continuous and iid
random variables with cumulative density function Fz(z)
and locally bounded probability density function f,(z), and

Wo =Y words, ~ CRM(po, H)
E>1

where p,(z) and Fz(z) are both regularly varying functions
at 0, that is, for some o € (0,1) and 7 > a,

Po(x) ~ 2™ (1/x) (14)
Fz(z) ~ 2703(1/2). (15)

The random measure W isa CRM W ~ CRM(p, H) where

pw) = [ 2tz

The next proposition shows that 1V is doubly regularly vary-
ing.

Proposition 3 Assume that p, and Fy verify Equa-
tions (14) and (15). Additionally, suppose xp(x) and f.
are ultimately bounded and that there exists § > T, such
that pg = [~ wPpo(w)dw < oo. Then the CRM W de-
fined by Equation (13) is doubly regularly varying, with

(x) ~ { E(Z=*)z~%(1/x)

e~ Tl (x)

asr — 0
as T — 0o

where Z is a random variable with cdf I'z.

In Sections 3.4 and 3.5 we present two specific models
constructed via a scaled GGP.

Discrete Mixture. An alternative to the scaled-CRM con-
struction is to consider that the CRM is the sum of two
CRMs, one regularly varying at 0 (hence infinite activity),
the second one regularly varying at infinity. More precisely,
consider the Lévy density

p(w) = po(w) + B f(w) (16)
where pg is a Lévy measure, regularly varying at 0, and f is

the probability density function of a random variable with
power-law tails. That is pg satisfies (14) and

/OO f@®)dt ~ 27Tl (z) asx — 0.

If we additionally assume that p,(«) has light tails at infinity
(e.g. exponentially decaying tails), then the resulting CRM p
is then doubly regularly varying and satisfies Equation (10).
For example, one can take for py the Lévy density (3) of a
GGP, and for f the pdf of a Pareto, generalized Pareto or
inverse gamma distribution.

3.4. Generalized BFRY process

Consider the Lévy density

1
) =gy e A7)
where y(k, ) = [ u""te~"du is the lower incomplete
gamma function and the parameters satisfy o € (—o0, 1),

7 > max(0,0) and ¢ > 0. We have

I(r—o)

as z tends to infinity and, for o > 0,

CT—O'

pla) ~ ot —o)I'(1— a)x_o (19)

as x tends to 0. When o < 0, p(x) is a slowly vary-
ing function, with lim, ,op(z) = oo if ¢ = 0 and
lim,_,0 p(z) < oo if ¢ < 0. p(z) therefore satisfies Equa-
tion (10) with @ = max(c,0). When o > 0, it is doubly
power-law with exponent o € (0, 1) and 7 > 0.

The Lévy density (17) admits the following latent construc-
tion as a scaled-GGP. Note that

T—0

C

p(w) = / ? Poce(w2; 0, 0) f2(2)dx

T

where f7(z) = 7271 is the probability density function
of a Beta(7, 1) random variable. We therefore have the
hierarchical construction. For &k > 1,

w

wy = —2, By ~ Beta(r,1).

Bk
where (woy) x>1 are the points of a Poisson process with
mean measure ¢’ 7 /T pacr(Wo; 0, ¢)dwyg.

The process is somewhat related to, and can be seen as a
natural generalization of the BFRY distribution (Pitman &
Yor, 1997; Winkel, 2005; Bertoin et al., 2006). The name
was coined by Devroye & James (2014) after the work
of Bertoin, Fujita, Roynette and Yor. This distribution has
recently found various applications in machine learning (Lee
et al., 2016; 2017). Taking ¢ = 1, 7 € (0,1) and 0 =
7 —1 < 0, we have

plw) oc w Tl —e™™)
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which corresponds to the unnormalized pdf of a BFRY ran-
dom variable. The BFRY random variable admits a repre-
sentation as the ratio of a gamma and beta random variable,
and the stochastic process introduced in this section, which
admits a similar construction, can be seen as a natural gener-
alization of the BFRY distribution, and we call this process
a generalized BFRY (GBFRY) process. In Section 4 of
the supplementary material, we provide more details on the
BFRY distribution and its generalization.

3.5. Beta prime process

Consider the Lévy density

p0) = gy et @0
where 0 € (—00,1), 7 > 0 and ¢ > 0. This density is an
extension of the beta prime (BP) process, with an additional
tuning parameter. This process was introduced by Broderick
et al. (2015) and generalized by Broderick et al. (2018), as
a conjugate prior for odds Bernoulli process. We have

I(r—o)

p(z) ~ mﬂfq (2D

as x tends to infinity and, for o > 0,

¢ T(1 — o)

ol'(1—o0) v’ @2)

p(x) ~
as x tends to 0. When o < 0, p(x) is a slowly vary-
ing function, with lim, ,op(z) = oo if ¢ = 0 and
lim,_,0p(z) < oo if 0 < 0. () therefore satisfies Equa-
tion (10) with « = max(c,0). When o > 0, it is doubly
power-law with exponent o € (0,1) and 7 > 0.

The BP process is related to the stable beta process (Teh &
Gorur, 2009) with Lévy density

al'(1 — o)

o T—1
il S 1—
(1 — o)u (1—u)

]111,6(0,1)7

via the transformation w = {=-. Similarly to the gener-
alized BFRY model, the beta prime process can also be
obtained via a scaled GGP. Note that

p(w) =T(r)c™" A h Y pece (wy; o, ¢) fy (y)dy

where fy (y) = W is the density of a Gamma(T, c)
random variable. We therefore have the following hierarchi-
cal construction, for k > 1

wp = —, Yk ~ Gamma(r, ¢)

Vi

where (wor)r>1 are the points of a Poisson process with
mean measure ¢ " I'(7) paep (wo; 0, 1)dwy.

4. Normalized CRMs with double power-law

For some probability distribution H, Lévy measure p satis-
fying Equation (4) and n > 0, let

w
P = —— wh ~ M H
WO where W ~ CRM(np, H)

and fori = 1,....n, X; | P "%" P. As Pis as. dis-

crete, there will be repeated values within the sequence

(Xi)i>1. Let K, < n be the number of unique values
in (X1,...,X,), and my, (1) > My (2) > ... > My (k)
their ranked multiplicities. For k = 1,..., K,,, denote

—( the ranked frequencies.

fn (k) =

4.1. Double power-law properties

The following theorem provides a precise formulation of
Equation (1) and shows that the ranked frequencies have a
double power-law regime when the CRM is doubly regularly
varying with stricly positive exponents.

Theorem 1 The ranked frequencies satisfy

way W)

() Fr2ys ) = <W(@)’ w(e)

> (23)

almost surely as n tends to infinity. If the CRM is regularly
varying at 0 with exponent o > 0 we have
Wek)
w(e)

~W(O) kYo (k) ask — co.  (24)

If the CRM is regularly varying at oo with exponent 7 > 0
we have, for any ki,ko > 1

(k1+k2)
(kl)

% Beta(ky, ks) asn — co.  (25)

Equation (23) in Theorem 1 follows from (Gnedin et al.,
2007, Proposition 26). Equations (24) and (25) follow from
Propositions 1 and 2. Instead of expressing the power-law
properties in terms of the ranked frequencies, we can alter-
natively look at the asymptotic behavior of the number K, ;
of elements with multiplicity j > 1, defined by

Ko Zﬂmn =i (26)

Letp,; = Ig <. Note that 37~ pn,; = 1. The following
is a corollary of Equation (24) It follows from Proposition
23 and Corollary 21 in (Gnedin et al., 2007).

Corollary 2 If the CRM is regularly varying at 0 with ex-
ponent o, we have

Dn,j = Pj A.5. asm — 0O 27
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o ol'(j — ) «
Pi=iri—a) " T-a

) jrFa for large j.

Figure 2 shows some illustration of these empirical results
for the GBFRY model.

Remark 1 The GGP with parameter o > 0 is regularly
varying at 0, but not at infinity. Hence, the normalized
GGP with ¢ > 0 and the related Pitman-Yor process with
0 > 0 satisfy Equation (24) and (27) but not (25), due to
the exponentially decaying tails of the Lévy measure of the
GGP. The normalized GGP with ( = 0, which is the same
as the Pitman-Yor with 0 = 0, satisfies both equations, but
with the same exponent o € (0, 1), lacking the flexibility of
the three models presented in Section 3.

4.2. Posterior Inference

In this subsection, we briefly discuss the inference procedure
for estimating the parameters of the normalized CRMs we in-
troduced in Section 3. Additional details are provided in the
supplementary material. Assume that the Lévy measure p is
parameterised by some parameters ¢» we want to estimate, in
particular the two power-law exponents. We write p(w; ¢)
to emphasize this, and let p(¢) be the prior density. The
objective is to approximate the posterior density of the pa-
rameters given the ranked counts p(¢ | (M, (k) )k=1.,.... K., )-

Parametrisation. Since we are working with normalized
CRMs, multiplying W by any positive constant £ > 0
gives the same random probability measure P. In partic-
ular, the normalized CRMs with Lévy densities p(w) and
p(w) = Ep(Ew) have the same distribution. To avoid over-
parameterisation we set the parameter ¢ = 1 in the GBFRY
and BP processes, and estimate the parameter ¢ = (o, 7, 7).

We introduce a latent variable U | W ~
Gamma(n, W(0)).  Using Proposition 3 of James
et al. (2009) (see also Pitman (2003)) and Equation (2.2) of
Pitman (2006)), the joint density is written as

P (M, (k) k=1,.... 5 Us D)
K7L

oc p(¢)u™ e ) T k(mp, ), us 8)  (28)
k=1

where the normalizing constant only depends on n and the
ranked counts, and

W(t:9) = 1 / (1= e ™) p(w; $)dw,  (29)

Kk(m,t;¢) = 77/oo w™e” " p(w; ¢)dw. (30)
0

If ¢ and k have analytic forms, one can derive a MCMC
sampler to approximate the posterior by successively up-
dating U and ¢ . Unfortunately, this is not the case for our
models. For instance, in the generalized BFRY process case,
we have

vito) =2 [(w+o7 vy on

Ly ml(m—o) [y

‘We may resort to a numerical integration algorithm to ap-
proximate v as only one evaluation of this function is
needed at each iteration. We could do the same for x. How-
ever, this would require K, numerical integrations at each
step of the MCMC sampler, which is computationally pro-
hibitive for large K,,. Instead, building on the construction
of the generalized BFRY as a scaled generalized gamma
process described in Section 4, we introduce a set of latent
variables Y = (Y} ),=1,.. k, whose conditional density is
written as
y‘r o—1
k

Pk, (M (k) ) k=1,... K, ) X TG To<y,<e;
and this gives the joint density

p((mn (k)) = Knau yvab)

x p(d)u™" Lo—%(u;9) H

77F mn (k) - U)yk o1

L(1—o)(yx +u)mm="

where the normalizing constant only depends on n and the
ranked counts. Then we can alternate between updating ¢
and U via Metropolis-Hastings and updating Y via Hamil-
tonian Monte-Carlo (HMC) (Duane et al., 1987; Neal et al.,
2011) to estimate the posterior. See the supplementary ma-
terial for more details. A similar strategy can be used for
the beta prime process.

5. Experiments

We run the algorithms described in Section 4.2 for the
GBFRY and BP models. We fix ¢ = 1 to avoid overpa-
rameterisation, as explained in Section 4.2. We use standard
normal prior on log 7, log 7 and logit o. The proposed mod-
els are compared to the normalized GGP with the same
priors on 7 and ¢ and fixed ( = 1, and the PY process
with standard normal prior on log 6 and logit «. We also
considered the discrete mixture construction described in
Section 3.3 with pg taken to be a GGP, and f a Pareto or gen-
eralized Pareto distribution. While we were able to recover
the parameters on simulated data, this model was under-
performing on real data, and results are not reported. The
codes to replicate our experiments can be found in https:
//github.com/0xCSML-BayesNP/doublepowerlaw.
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Figure 2. Simulated data from the normalized GBFRY model. Proportion of clusters of a given size for (First) n = 4000, 7 = 3,0 = 0.2
with varying n and (Second) = 4000, 7 = 3,n = 107 with varying of . Ordered frequencies, normalized by the largest one, for
(Third) n = 10%, 0 = 0.2, 7 = 3 with varying  and (Fourth) n = 10%, ¢ = 0.2, = 50000 with varying 7 .

We stress that the objective is to show that the proposed
models provide a better fit than alternative models, not to
test the double power-law assumption.

5.1. Synthetic data

We sample simulated datasets from the normalized GBFRY
and the BP with parameters 0 = 0.1, 7 =2,c=1and n =
4000. We run the MCMC algorithm described in Section 4.2
with 100000 iterations. The 95% credible intervals are
o € (0.09,0.12), 7 € (1.6,2.2) for the BFRY and ¢ €
(0.08,0.11), 7 € (1.8,2.3) for the BP, indicating that the
MCMC recovers true parameters. Trace plots are reported
in the supplementary material.

5.2. Real data

We then consider five real datasets, four of which are word
frequencies in natural languages, and the last is the out-
degree distribution of a Twitter network. We first provide a
description of the different datasets.

Word frequencies. Each dataset is composed of n words
X1, .., Xy, with K, < n unique words. The counts my, 1)
represent the number of occurences of the kth most fre-
quent word in the dataset. The first dataset is the written
dataset of the American National Corpus2 (ANC), com-
posed of about 18 million word occurences and 300 000
unique words. The second and third datasets are the words
of a collection of most popular English books and French
books, downloaded from the Project Gutenberg®. The En-
glish books dataset is composed of about 3 million words
and 71 000 unique words, the French books of about 7 mil-
lion words and around 135 000 unique words. The fourth
dataset represents the words of a thousand papers from
the NIPS conference. It contains about 2 million word oc-
curences and 68 000 unique words.

Twitter network. We consider a rank-1 edge-
exchangeable model for directed multigraphs (Crane

“http://www.anc.org/data/anc-second-release/frequency-data/
3http://www.gutenberg.org/

Table 1. Average Kolmogorov-Smirnov divergence between the
data and the posterior predictive. Lower is better.

Dataset GBFRY BetaPrime GGP PY
Englishbooks 0.072 0.041 0.12 0.12
Frenchbooks 0.064 0.032 0.11 0.11

NIPS1000 0.041 0.081 0.08 0.059
ANC 0.033 0.034 0.082 0.081
Twitter 0.10 0.047 0.25 0.26

& Dempsey, 2018; Cai et al., 2016). In this case, the
atoms of W represent the nodes of the graph, and each
directed edge (X;,Y;) from node X; to node Y; is sampled
independently from P x P. Note that when P is a
Pitman-Yor process, the associated model corresponds
to the urn-based Hollywood model of Crane & Dempsey
(2018). Here, we only consider the out-degree distribution.
Therefore, n represents the number of directed edges and
X1, .., X, the source nodes of the directed edges sampled
from the normalized CRM P. m,, () corresponds to the
kth largest out-degree in the network. We consider a subset
of 25 millions tweets of August 2009 from Twitter (Yang &
Leskovec, 2011). We construct a directed multigraph by
adding an edge (X;, Y;) whenever user X; mentions user
Y; (with @) in tweet . The resulting graph contains about
4 millions edges and 300 000 source nodes.

Results

For each of the four models and each dataset, we approx-
imate the posterior distribution of the parameters ¢ of the
Lévy measure, and sample new datasets from the poste-
rior predictive. The 95% credible intervals of the posterior
predictive for the proportion of occurences and ranked fre-
quencies are reported in Figure 3 for the ANC dataset (plots
for the other datasets are given in the supplementary ma-
terial). As the results for the normalized GGP and PY are
almost identical, we only show the plot for the PY model.
As can clearly be seen from the posterior predictive plots, all
models provide a good fit for low frequencies. However, the
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Table 2. 95% posterior credible intervals of the power-law exponents.

GBFRY Beta Prime GGP PY
Dataset o T o T % o
Englishbooks  (0.351,0.362) (0.912,0.980) (0.345,0.358) (0.974,1.078) (0.416, 0.423) (0.416, 0.423)
Frenchbooks  (0.368,0.375) (0.967,1.039) (0.363,0.371) (1.04,1.175)  (0.407,0.412) (0.407,0.412)
NIPS1000 (0.538,0.545) (1.338,1.906) (0.538,0.545) (1.541,2.286) (0.542,0.548) (0.542,0.549)
ANC (0.433,0.438) (0.998,1.055) (0.431, 0.436) (1.09, 1.17) (0.461,0.465) (0.461, 0.465)
Twitter (0.282,0.287) (1.590, 1.600)  (0.099, 0.116)  (1.336, 1.411) (0.272,0.277) (0.272,0.277)
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Figure 3. Results on the ANC dataset: 95% credible interval of the posterior predictive in blue, data in red. (Top) Proportion of occurences

of a given size. (Bottom) Ranked occurences.

PY model (and similar the normalized GGP) fail to capture
the power-law behavior for large frequencies. This behavior
is better captured by the GBFRY and BP models. To illus-
trate quantitatively the comparison, we compute the average
reweighted Kolmogorov-Smirnov divergence (Clauset et al.,
2009) between the true data and the posterior predictive for
each model, and report the results in Table 1. Finally, we
report in Table 2 the 95% credible intervals of the param-
eters for each model and dataset. We can remark that to
the exception of the NIPS dataset, we recover the Zipfian
exponent 7 = 1 for large frequencies in text datasets.

6. Conclusion

In this paper we presented a novel class of random mea-
sures with double power-law behavior. We focused on the
case of iid sampling from a normalized completely random
measure. More generally, one could build on this class of
models for other CRM-based constructions. In particular,
it would be interesting to explore the asymptotic degree
distribution when such models are used for random graph

models based on exchangeable point processes (Caron &
Fox, 2017). Building hierarchical versions of such mod-
els as for the hierarchical Pitman-Yor process (Teh, 2006)
would also be of interest. Finally, it would be useful to
explore the connections between the models presented here
and the two-stage urn process suggested by Gerlach & Alt-
mann (2013) and investigate if other urn schemes could be
derived that provably exhibit a double power-law behavior.
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