A. Example of Our Fairlet Decomposition

Figure 2. A run of our algorithm for (1,3)-fairlet decomposition on 8 blue points and 4 red points in \mathbb{R}^2 . Steps (c)-(e) show the three stages of step 1 in FAIRLETDECOMPOSITION.

B. Missing Proofs

Proof of Lemma 4.3. The proof is by induction on height of v in T. The base case is when v is a leaf node in T and the algorithm trivially finds an optimal solution in this case. Suppose that the induction hypothesis holds for all vertices of T at height h-1. Here, we show that the statement holds for the vertices of T at height h as well.

Let OPT denote an optimal (r,b)-fairlet decomposition of the points in T(v) with respect to $\operatorname{cost}_{\operatorname{med}}$. Next, we decompose OPT into γ^d+1 parts: $\{\operatorname{OPT}_i\}_{i\in[\gamma^d]}$ and OPT_H . For each $i\in[\gamma^d]$, OPT_i denotes the set of fairlets in OPT whose lca are in $T(v_i)$. Moreover, OPT_H denotes the set of heavy fairlets with respect to v and $\operatorname{H}_{\operatorname{OPT}}$ denotes the set of heavy points with respect to v in OPT. Lastly, $\operatorname{H}^i_{\operatorname{OPT}}:=\operatorname{H}_{\operatorname{OPT}}\cap T(v_i)$ denotes the set of heavy points with respect to v in OPT that are contained in $T(v_i)$.

Let SOL denote the solution returned by FAIRLETDECOMPOSITION(v,r,b). Similarly, we decompose SOL into γ^d+1 parts: $\{\text{SOL}_i\}_{i\in[\gamma^d]}$ and SOL_H . Moreover, H_{SOL} denotes the set of heavy points with respect to v in SOL and for each $i\in[\gamma^d]$, $H_{\text{SOL}}^i:=H_{\text{SOL}}\cap T(v_i)$ denotes the set of heavy points with respect to v in SOL that are contained in $T(v_i)$.

Claim B.1. For each $i \in [\gamma^d]$, there exists an (r,b)-fairlet decomposition of $P_i \setminus \mathrm{H}^i_{\mathrm{SOL}}$ of cost at most $\mathrm{cost}(\mathrm{OPT}_i) + (|\mathrm{H}^i_{\mathrm{OPT}}| + |\mathrm{H}^i_{\mathrm{SOL}}| \cdot (r+b)) \cdot (r^2 + b^2) \cdot \gamma^{h-1}$ where P_i is the set of points contained in $T(v_i)$.

Hence, by the induction hypothesis, for each $i \in [\gamma^d]$,

$$cost(SOL_i) \le c \cdot (r^2 + b^2) \cdot (cost(OPT_i) + (|H_{OPT}^i| + |H_{SOI}^i| \cdot (r+b)) \cdot (r^2 + b^2) \cdot \gamma^{h-1}). \tag{4}$$

Next, we bound the cost of SOL by Lemma 4.4 and (4) as follows:

$$\begin{split} & \operatorname{cost}(\operatorname{SOL}) = \operatorname{cost}(\operatorname{SOL}_{\mathrm{H}}) + \sum_{i \in [\gamma^d]} \operatorname{cost}(\operatorname{SOL}_i) \\ & \leq \eta_{\mathrm{H}} \cdot (r^2 + b^2) \cdot \operatorname{cost}(\operatorname{OPT}_{\mathrm{H}}) + c \cdot (r^2 + b^2) \cdot (\frac{\eta_{\mathrm{H}}(r+b)^5}{\gamma} \cdot \operatorname{cost}(\operatorname{OPT}_{\mathrm{H}}) + \sum_{i \in [k^d]} \operatorname{cost}(\operatorname{OPT}_i)) \\ & \leq c \cdot (r^2 + b^2) \cdot \operatorname{cost}(\operatorname{OPT}) + (\eta_{\mathrm{H}} - \frac{c}{2}) \cdot (r^2 + b^2) \cdot \operatorname{cost}(\operatorname{OPT}_{\mathrm{H}}) \quad \rhd \operatorname{By} \operatorname{setting} \gamma := 2\eta_{\mathrm{H}}(r+b)^5 \\ & \leq c \cdot (r^2 + b^2) \cdot \operatorname{cost}(\operatorname{OPT}) \rhd c \geq 2\eta_{\mathrm{H}} \end{split}$$

Proof of Claim B.1. Consider the fairlet decomposition OPT_i on $P_i \setminus H^i_{OPT}$. A fairlet $D \in OPT_i$ is affected if it contains a point $p \in H^i_{SOL}$.

We define the set of *affected points* as $\overline{P}_i = \operatorname{H}^i_{\operatorname{OPT}} \cup \bigcup_{D \in \overline{\operatorname{OPT}}_i} D$ to denote the union of the points in the affected fairlets (i.e., $\bigcup_{D \in \overline{\operatorname{OPT}}_i} D$) and the set $\operatorname{H}^i_{\operatorname{OPT}}$ (whose points do not belong to any of fairlets in OPT_i).

Next, we bound the cost of the fairlet decomposition which is constructed by augmenting the set of fairlets \overline{OPT}_i with the set of affected points \overline{P}_i .

Let Q_0 denote the set of affected points \overline{P}_i . We augment the fairlet decomposition in three steps:

- **Step 1.** In this step, we create as many (r,b)-balanced fairlets using the affected points Q_0 only. Note that the contribution of each point involved in such fairlets is $h_T(v_i)$ where $h_T(v_i)$ denotes the distance of v_i from the leaves in $T(v_i)$. Let $Q_1 \subseteq Q_0$ denote the set of affected points that do not join any fairlets at the end of this step. Note that all points in Q_1 are of the same color c.
- Step 2: Next, we add as many points of Q_1 as possible to the existing fairlets in $OPT_i \setminus \overline{OPT_i}$ while preserving the (r,b)-balanced property. Now the extra cost incurred by each points of Q_1 that joins a fairlet in this step is at most $(r+b) \cdot h_T(v_i)$. Let $Q_2 \subset Q_1$ be the set of points that do not belong to an fairlets by the end of the second phase. Note that at the end of this step, if Q_2 is non-empty, then all fairlets are maximally-balanced c-dominant (a fairlet S is maximally-balanced c-dominant if (1) in S, the number of points of color c are larger than the number of points in color \overline{c} , (2) the set S is (r,b)-balanced, and (3) adding a point of color c to S makes it unbalanced).
- Step 3: Finally, we show that by mixing the points of at most $b \cdot |Q_2|$ existing fairlets with the set Q_2 , we can find an (r,b)-balanced fairlet decomposition of the involved points and the contribution of each such point to the total cost is at most $h_T(v_i)$. Note that since the set of all points we are considering is (r,b)-balanced, not all of the so far constructed fairlets are saturated (i.e., has size exactly r+b). In particular, we show that there exists a set of non-saturated fairlets $\mathcal X$ of size at most $b \cdot |Q_2|$ whose addition to Q_2 constitutes a (r,b)-balanced set. For each fairlet $D \in \mathcal X$,

$$|c_D| < \frac{r}{b}|\bar{c}_D| \Rightarrow b \cdot |c_D| \le r \cdot |\bar{c}_D| - 1,$$

where c_D and \bar{c}_D respectively denotes the set of points of color c and \bar{c} in D. This implies that after picking at most $|Q_2|$ non-saturated fairlets (i.e., the fairlets in \mathcal{X}),

$$b \cdot |c_{\mathcal{X}}| \le r \cdot |\overline{c}_{\mathcal{X}}| - b \cdot |Q_2| \Rightarrow b \cdot (|c_{\mathcal{X}}| + |Q_2|) \le r \cdot |\overline{c}_{\mathcal{X}}|,$$

where $c_{\mathcal{X}}$ and $\overline{c}_{\mathcal{X}}$ respectively denotes the set of points of color c and \overline{c} in $\bigcup_{D \in \mathcal{X}} D$. Hence, the set of points $Q_2 \cup \bigcup_{D \in \mathcal{X}} D$ is (r,b)-balanced. Moreover, the cost of this step is at most $|Q_2| \cdot b \cdot (r+b) \cdot h_T(v_i)$.

Altogether, there exists a fairlet decomposition of $P_i \setminus H^i_{SOL}$ of cost at most

$$\begin{aligned} & \cos(\mathsf{OPT}_i) + |Q_0 \setminus Q_1| \cdot h_T(v_i) + |Q_1 \setminus Q_2| \cdot (r+b) \cdot h_T(v_i) + |Q_2| \cdot b \cdot (r+b) \cdot h_T(v_i) \\ & \leq \cos(\mathsf{OPT}_i) + |Q_0| \cdot b \cdot (r+b) \cdot h_T(v_i) \\ & \leq \cos(\mathsf{OPT}_i) + (|\mathcal{H}_{\mathsf{OPT}}^i| + |\mathcal{H}_{\mathsf{SOL}}^i| \cdot (r+b)) \cdot (r^2 + b^2) \cdot \gamma^{h-1} \end{aligned} \qquad \square$$

Proof of Theorem 3.4 For a pointset X, let $\mathrm{OPT}_{k\text{-fair}}(X)$ and $\mathrm{OPT}_{\mathrm{fairlet}}(X)$ respectively denote an optimal (r,b)-fair k-median and an optimal (r,b)-fairlet decomposition of X. It is straightforward to see that for any set of point X, $\mathrm{cost}(\mathrm{OPT}_{\mathrm{fairlet}}(X)) \leq \mathrm{cost}(\mathrm{OPT}_{k\text{-fair}}(X))$ and in particular,

$$cost(Q) \le \alpha \cdot cost(OPT_{k\text{-fair}}(P)).$$
 (5)

Let N denote the set of the centers of fairlets in Q. For a set of points X, let $\mathrm{OPT}_{k\operatorname{-median}}(X)$ denotes an optimal $k\operatorname{-median}$ clustering of X (note that there is not fairness requirement). Since $C\subseteq P$, the optimal $k\operatorname{-median}$ cost of N is smaller than the optimal $k\operatorname{-median}$ cost of P. Since \overline{P} contains at most (r+b) copies of each point of N, by assigning all copies of each point $p\in N$ in \overline{P} to the center of p in an optimal $k\operatorname{-median}$ clustering of N,

$$cost(OPT_{k-median}(\overline{P})) \le (r+b) \cdot cost(OPT_{k-median}(N)) \le (r+b) \cdot cost(OPT_{k-median}(P)). \tag{6}$$

As CLUSTERFAIRLET returns a β -approximate k-median clustering of \overline{P} , and by (5)-(6), the cost of the clustering \mathcal{C} constructed by CLUSTERFAIRLET is

Since the distance of each point $p_i \in P$ to the center of its cluster in \mathcal{C}^* is less than the sum of its distance to the center of its fairlet c_i in Q and the distance of c_i to its center in C, we can bound the cost of C^* in terms of the costs of C and Q as follows:

$$\begin{aligned} & \cot(\mathcal{C}^*) \leq \cot(Q) + \cot(\mathcal{C}) \\ & \leq \alpha \cdot \cot(\mathsf{OPT}_{k\text{-fair}}(P)) & \rhd \mathsf{By} \ (5) \\ & + \beta \cdot \cot(\mathsf{OPT}_{k\text{-median}}(\overline{P})) \\ & \leq \alpha \cdot \cot(\mathsf{OPT}_{k\text{-fair}}(P)) \\ & + \beta \cdot (r+b) \cdot \cot(\mathsf{OPT}_{k\text{-median}}(P)) & \rhd \mathsf{By} \ (6) \\ & \leq (\alpha + \beta \cdot (r+b)) \cdot \cot(\mathsf{OPT}_{k\text{-fair}}(P)) & \Box \end{aligned}$$