
Scalable Fair Clustering

A. Example of Our Fairlet Decomposition

(a) The original space parti-
tioned into hypercubes.

(b) A 2-HST embedding of
the input points.

(c) Stage 1: we must connect
3 blue points from the left
node through the root.

(d) Stage 2: we can connect
1 red point from the middle
node through the root.

(e) Stage 3: we add the unsatu-
rated fairlet in the right node to
the root and make it balanced.

(f) The final fairlet clustering.

Figure 2. A run of our algorithm for (1,3)-fairlet decomposition on 8 blue points and 4 red points in R2. Steps (c)-(e) show the three stages
of step 1 in FAIRLETDECOMPOSITION.

B. Missing Proofs
Proof of Lemma 4.3. The proof is by induction on height of v in T . The base case is when v is a leaf node in T and the
algorithm trivially finds an optimal solution in this case. Suppose that the induction hypothesis holds for all vertices of T at
height h− 1. Here, we show that the statement holds for the vertices of T at height h as well.

Let OPT denote an optimal (r, b)-fairlet decomposition of the points in T (v) with respect to costmed. Next, we decompose
OPT into γd + 1 parts: {OPTi}i∈[γd] and OPTH. For each i ∈ [γd], OPTi denotes the set of fairlets in OPT whose lca
are in T (vi). Moreover, OPTH denotes the set of heavy fairlets with respect to v and HOPT denotes the set of heavy points
with respect to v in OPT. Lastly, Hi

OPT := HOPT ∩ T (vi) denotes the set of heavy points with respect to v in OPT that are
contained in T (vi).

Let SOL denote the solution returned by FAIRLETDECOMPOSITION(v, r, b). Similarly, we decompose SOL into γd + 1 parts:
{SOLi}i∈[γd] and SOLH. Moreover, HSOL denotes the set of heavy points with respect to v in SOL and for each i ∈ [γd],
Hi

SOL := HSOL ∩ T (vi) denotes the set of heavy points with respect to v in SOL that are contained in T (vi).

Claim B.1. For each i ∈ [γd], there exists an (r, b)-fairlet decomposition of Pi \ Hi
SOL of cost at most cost(OPTi) +

(|Hi
OPT|+ |Hi

SOL| · (r + b)) · (r2 + b2) · γh−1 where Pi is the set of points contained in T (vi).

Hence, by the induction hypothesis, for each i ∈ [γd],

cost(SOLi) ≤ c · (r2 + b2) · (cost(OPTi) + (|Hi
OPT|+ |Hi

SOL| · (r + b)) · (r2 + b2) · γh−1). (4)
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Next, we bound the cost of SOL by Lemma 4.4 and (4) as follows:

cost(SOL) = cost(SOLH) +
∑
i∈[γd]

cost(SOLi)

≤ ηH · (r2 + b2) · cost(OPTH) + c · (r2 + b2) · (ηH(r + b)5

γ
· cost(OPTH) +

∑
i∈[kd]

cost(OPTi))

≤ c · (r2 + b2) · cost(OPT) + (ηH −
c

2
) · (r2 + b2) · cost(OPTH) B By setting γ := 2ηH(r + b)5

≤ c · (r2 + b2) · cost(OPT)B c ≥ 2ηH �

Proof of Claim B.1. Consider the fairlet decomposition OPTi on Pi \Hi
OPT. A fairlet D ∈ OPTi is affected if it contains a

point p ∈ Hi
SOL.

We define the set of affected points as P i = Hi
OPT ∪

⋃
D∈OPTi

D to denote the union of the points in the affected fairlets
(i.e.,

⋃
D∈OPTi

D) and the set Hi
OPT (whose points do not belong to any of fairlets in OPTi).

Next, we bound the cost of the fairlet decomposition which is constructed by augmenting the set of fairlets OPTi \ OPTi
with the set of affected points P i.

Let Q0 denote the set of affected points P i. We augment the fairlet decomposition in three steps:

Step 1. In this step, we create as many (r, b)-balanced fairlets using the affected points Q0 only. Note that the contribution
of each point involved in such fairlets is hT (vi) where hT (vi) denotes the distance of vi from the leaves in T (vi). Let
Q1 ⊆ Q0 denote the set of affected points that do not join any fairlets at the end of this step. Note that all points in Q1 are
of the same color c.

Step 2: Next, we add as many points of Q1 as possible to the existing fairlets in OPTi \ OPTi while preserving the (r, b)-
balanced property. Now the extra cost incurred by each points of Q1 that joins a fairlet in this step is at most (r+ b) ·hT (vi).
Let Q2 ⊂ Q1 be the set of points that do not belong to an fairlets by the end of the second phase. Note that at the end of this
step, if Q2 is non-empty, then all fairlets are maximally-balanced c-dominant (a fairlet S is maximally-balanced c-dominant
if (1) in S, the number of points of color c are larger than the number of points in color c, (2) the set S is (r, b)-balanced,
and (3) adding a point of color c to S makes it unbalanced).

Step 3: Finally, we show that by mixing the points of at most b · |Q2| existing fairlets with the set Q2, we can find an
(r, b)-balanced fairlet decomposition of the involved points and the contribution of each such point to the total cost is at most
hT (vi). Note that since the set of all points we are considering is (r, b)-balanced, not all of the so far constructed fairlets are
saturated (i.e., has size exactly r+ b). In particular, we show that there exists a set of non-saturated fairlets X of size at most
b · |Q2| whose addition to Q2 constitutes a (r, b)-balanced set. For each fairlet D ∈ X ,

|cD| <
r

b
|cD| ⇒ b · |cD| ≤ r · |cD| − 1,

where cD and cD respectively denotes the set of points of color c and c in D. This implies that after picking at most |Q2|
non-saturated fairlets (i.e., the fairlets in X ),

b · |cX | ≤ r · |cX | − b · |Q2| ⇒ b · (|cX |+ |Q2|) ≤ r · |cX |,

where cX and cX respectively denotes the set of points of color c and c in
⋃
D∈X D. Hence, the set of points Q2 ∪

⋃
D∈X D

is (r, b)-balanced. Moreover, the cost of this step is at most |Q2| · b · (r + b) · hT (vi).

Altogether, there exists a fairlet decomposition of Pi \Hi
SOL of cost at most

cost(OPTi) + |Q0 \Q1| · hT (vi) + |Q1 \Q2| · (r + b) · hT (vi) + |Q2| · b · (r + b) · hT (vi)

≤ cost(OPTi) + |Q0| · b · (r + b) · hT (vi)

≤ cost(OPTi) + (|Hi
OPT|+ |Hi

SOL| · (r + b)) · (r2 + b2) · γh−1 �
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Proof of Theorem 3.4 For a pointset X , let OPTk-fair(X) and OPTfairlet(X) respectively denote an optimal (r, b)-fair
k-median and an optimal (r, b)-fairlet decomposition of X . It is straightforward to see that for any set of point X ,
cost(OPTfairlet(X)) ≤ cost(OPTk-fair(X)) and in particular,

cost(Q) ≤ α · cost(OPTk-fair(P )). (5)

Let N denote the set of the centers of fairlets in Q. For a set of points X , let OPTk-median(X) denotes an optimal k-median
clustering of X (note that there is not fairness requirement). Since C ⊆ P , the optimal k-median cost of N is smaller than
the optimal k-median cost of P . Since P contains at most (r + b) copies of each point of N , by assigning all copies of each
point p ∈ N in P to the center of p in an optimal k-median clustering of N ,

cost(OPTk-median(P )) ≤ (r + b) · cost(OPTk-median(N)) ≤ (r + b) · cost(OPTk-median(P )). (6)

As CLUSTERFAIRLET returns a β-approximate k-median clustering of P , and by (5)-(6), the cost of the clustering C
constructed by CLUSTERFAIRLET is

Since the distance of each point pi ∈ P to the center of its cluster in C∗ is less than the sum of its distance to the center of
its fairlet ci in Q and the distance of ci to its center in C, we can bound the cost of C∗ in terms of the costs of C and Q as
follows:

cost(C∗) ≤ cost(Q) + cost(C)
≤ α · cost(OPTk-fair(P )) B By (5)

+ β · cost(OPTk-median(P ))

≤ α · cost(OPTk-fair(P ))

+ β · (r + b) · cost(OPTk-median(P )) B By (6)
≤ (α+ β · (r + b)) · cost(OPTk-fair(P )) �


