
Scalable Fair Clustering

Arturs Backurs 1 2 Piotr Indyk 1 3 Krzysztof Onak 1 4 Baruch Schieber 1 5 Ali Vakilian 1 3 Tal Wagner 1 3

Abstract
We study the fair variant of the classic k-
median problem introduced by Chierichetti
et al. (Chierichetti et al., 2017) in which the points
are colored, and the goal is to minimize the same
average distance objective as in the standard k-
median problem while ensuring that all clusters
have an “approximately equal” number of points
of each color. Chierichetti et al. proposed a two-
phase algorithm for fair k-clustering. In the first
step, the pointset is partitioned into subsets called
fairlets that satisfy the fairness requirement and
approximately preserve the k-median objective.
In the second step, fairlets are merged into k clus-
ters by one of the existing k-median algorithms.
The running time of this algorithm is dominated
by the first step, which takes super-quadratic time.
In this paper, we present a practical approximate
fairlet decomposition algorithm that runs in nearly
linear time.

1. Introduction
The success of machine learning led to its widespread adop-
tion in many aspects of our daily lives. Automatic pre-
diction and forecasting methods are now used to approve
mortgage applications or estimate the likelihood of recidi-
vism (Chouldechova, 2017). It is thus crucial to design
machine learning algorithms that are fair, i.e., do not suffer
from bias against or towards particular population groups.
An extensive amount of research over the last few years has
focused on two key questions: how to formalize the notion
of fairness in the context of common machine learning tasks,
and how to design efficient algorithms that conform to those
formalizations. See e.g., the survey by Chouldechova and
Roth for an overview (Chouldechova & Roth, 2018).

1Authors ordered alphabetically. 2TTIC, Chicago, IL, USA
3CSAIL, MIT, Cambridge, MA, USA 4IBM T. J. Watson, York-
town Heights, NY, USA 5Department of Computer Science, New
Jersey Institute of Technology, Newark, NJ, USA. Correspondence
to: Ali Vakilian <vakilian@mit.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

In this paper we focus on the second aspect. Specifically,
we consider the problem of fair clustering and propose effi-
cient algorithms for solving this problem. Fair clustering,
introduced in (Chierichetti et al., 2017), generalizes the stan-
dard notion of clustering by imposing a constraint that all
clusters must be balanced with respect to specific sensitive
attributes, such as gender or religion. In the simplest for-
mulation, each input point is augmented with one of two
colors (say, red and blue), and the goal is to cluster the data
while ensuring that, in each cluster, the fraction of points
with the less frequent color is bounded from below by some
parameter strictly greater than 0. Chierichetti et al. proposed
polynomial time approximation algorithms for fair variants
of classic clustering methods, such as k-center (minimize
the maximum distance between points and their cluster cen-
ters) and k-median (minimize the average distance between
points and their cluster centers). To this end, they intro-
duced the notion of fairlet decomposition: a partitioning of
the input pointset into small subsets, called fairlets, such
that a good balanced clustering can be obtained by merg-
ing fairlets into clusters. Unfortunately, their algorithm for
computing a fairlet decomposition has running time that is
at least quadratic in the number of the input points. As a
result, the algorithm is applicable only to relatively small
data sets.

In this paper we address this drawback and propose an al-
gorithm for computing fairlet decompositions with running
time that is near-linear in the data size. We focus on the
k-median formulation, as k-center clustering is known to
be sensitive to outliers. Our algorithms apply to the typical
case where the set of input points lie in a d-dimensional
space, and the distance is induced by the Euclidean norm.1

To state the result formally, we need to introduce some nota-
tion. Consider a collection of n points P ⊆ Rd, where
each point p ∈ P is colored either red or blue. For a
subset of points S ⊆ P , the balance of S is defined as
balance(S) := min{ |Sr|

|Sb| ,
|Sb|
|Sr|} where Sr and Sb respec-

tively denote the subset of red and blue points in S. Assum-
ing b < r, a clustering C = {C1 . . . Ck} of P is (r, b)-fair
if for every cluster C ∈ C, balance(C) ≥ b

r . In k-median
clustering, the goal is to find k centers and partition the

1E.g., all data sets used to evaluate the algorithms
in (Chierichetti et al., 2017) fall into this category.

Scalable Fair Clustering

pointset P into k clusters centered at the selected centers
such that the sum of the distances from each point p ∈ P
point to its assigned center (i.e., the center of the cluster to
which p belongs) is minimized. In the (r, b)-fair k-median
problem, all clusters are required to have balance at least br .
Our main result is summarized in the following theorem.

Theorem 1.1. Let T (n, d, k) be the running time of an α-
approximation algorithms for the k-median problem over n
points in Rd. Then there exists anO(d·n·log n+T (n, d, k))-
time algorithm that given a point set P ⊆ Rd and balance
parameters (r, b), computes a (r, b)-fair k-median of P
whose cost is within a factor of Or,b(d · log n+ α) from the
optimal cost of (r, b)-fair k-median of P .

The running time can be reduced further by applying dimen-
sionality reduction techniques, see, e.g., (Makarychev et al.,
2018) and the references therein.

We complement our theoretical analysis with empirical
evaluation. Our experiments show that the quality of the
clustering obtained by our algorithm is comparable to that
of (Chierichetti et al., 2017). At the same time, the empir-
ical runtime of our algorithm scales almost linearly in the
number of points, making it applicable to massive data sets
(see Figure 1).

Related work. Since the original paper of (Chierichetti
et al., 2017), there has been several followup works studying
fair clustering. In particular, (Rösner & Schmidt, 2018) and
(Bercea et al., 2018) studied the fair variant of k-center clus-
tering (as opposed to k-median in our case). Furthermore,
the latter paper presented a “bi-criteria” approximation algo-
rithm for k-median and k-means under a somewhat different
notion of fairness. However, their solution relies on a linear
program that is a relaxation of an integer linear program
with at least n2 variables, one for every pair of points. Thus,
their algorithm does not scale well with the input size. An-
other algorithm proposed in (Bera et al., 2019), requires
solving a linear program with nk variables. Due to the spe-
cial structure of the LP it is plausible that it can be solved
efficiently, but we are not aware of any empirical evaluation
of this approach.

The work most relevant to our paper is a recent manuscript
by Schmidt et al. (Schmidt et al., 2018), which proposed
efficient streaming algorithms for fair k-means (which is
similar to k-median studied here). Specifically, they give a
near-linear time streaming algorithm for computing a core-
set: a small subset S ⊆ P such that solving fair clustering
over S yields an approximate solution for the original point-
set P . In order to compute the final clustering, however,
they still need to apply a fair clustering algorithm to the core-
set. Thus, our approach is complementary to the core-set
approach, and the two can be combined to yield algorithms

which are both fast and space-efficient2.

We note that the above algorithms guarantee constant ap-
proximation factors, as opposed to the logarithmic factor
in our paper. As we show in the experimental section, this
does not seem to affect the empirical quality of solutions
produced by our algorithm. Still, designing a constant factor
algorithm with a near-linear running time is an interesting
open problem.

Possible settings of (r, b). (Chierichetti et al., 2017) gave
(r, b)-fairlet decomposition algorithms only for b = 1. This
does not allow for computing a full decomposition of the
pointset into well-balanced fairlets if the numbers of red and
blue points are close but not equal (for instance, if their ratio
is 9:10). One way to address this could be to downsample
the larger set in order to make them have the same cardi-
nality and then compute a (1, 1)-fairlet decomposition. The
advantage of our approach is that we do not disregard any,
even random, part of the input. This may potentially lead to
much better solutions, partially by allowing that the clusters
are not ideally balanced. The general settings of r and b
are also considered by Bercea et al. and Bera et al. (Bercea
et al., 2018; Bera et al., 2019).

Our techniques. Our main contribution is to design a
nearly-linear time algorithm for (r, b)-fairlet decomposition
for any integer values of r, b. Our algorithm has two steps.
First, it embeds the input points into a tree metric called
HST (intuitively, this is done by computing a quadtree de-
composition of the point set, and then using the distances in
the quadtree). In the second step it solves the fairlet decom-
position problem with respect to the new distance function
induced by HST. The distortion of the embedding into the
HST accounts for the log n factor in the approximation guar-
antee.

Once we have the HST representation of the pointset, the
high-level goal is to construct “local” (r, b)-fairlets with
respect to the tree. To this end, the algorithm scans the
tree in a top-down order. In each node v of the tree, it
greedily partitions the points into fairlets so that the number
of fairlets whose points belong to subtrees rooted at different
children of v is minimized. In particular, we prove that
minimizing the number of such fairlets (which we refer to
as the Minimum Heavy Point problem) leads to an O(1)-
approximate (r, b)-fairlet decomposition with respect to the
distance over the tree.

2We note, however, that since core-sets typically require assign-
ing weights to data points, such combination requires extending
the clustering algorithm to weighted pointsets. In this paper we do
not consider the weighted case.

Scalable Fair Clustering

2. Preliminaries
Definition 2.1 (Fairlet Decomposition). Suppose that
P ⊆ Y is a collection of points such that each is either col-
ored red or blue. Moreover, suppose that balance(P) ≥ b

r
for some integers 1 ≤ b ≤ r such that gcd(r, b) = 1. A
clustering X = {D1, · · · , Dm} of P is an (r, b)-fairlet
decomposition if (a) each point p ∈ P belongs to exactly
one cluster Di ∈ X , (b) for each Di ∈ Y , |Di| ≤ b + r,
and (c) for each Di ∈ X , balance(Di) ≥ b

r .

Probabilistic metric embedding. A probabilistic metric
(X, d) is defined as a set of ` metrics (X, d1), · · · , (X, d`)
along with a probability distribution of support size ` de-
noted by α1, · · · , α` such that d(p, q) =

∑`
i=1 αi · di(p, q).

For any finite metric M = (Y, d) and probabilistic metric
(X, d), an embedding f : Y → X has distortion cf , if:

• for all p, q ∈ Y and i ≤ k, di(f(p), f(q)) ≥ d(p, q),

• d(f(p), f(q)) ≤ cf · d(p, q).

Definition 2.2 (γ-HST). A tree T rooted at vertex r is a
hierarchically well-separated tree (γ-HST) if all edges of T
have non-negative weights and the following two conditions
hold:

1. The (weighted) distances from any node to all its chil-
dren are the same.

2. For each node v ∈ V \ {r}, the distance of v to its
children is at most 1/γ times the distance of v to its
parent.

We build on the following result due to Bartal (Bartal, 1996),
which gives a probabilistic embedding from Rd to a γ-HST.
Our algorithm explicitly computes this embedding which
we describe in more detail in the next section. For a proof
of its properties refer to (Indyk, 2001) and the references
therein. In this paper, we assume that the given pointset has
poly(n) aspect ratio (i.e. the ratio between the maximum
and minimum distance is poly(n)).
Theorem 2.3 ((Bartal, 1996)). Any finite metric space M
on points in Rd can be embedded into probabilistic metric
over γ-HST metrics with O(γ · d · logγ n) distortion in
O(d · n · logγ n) time.

3. High-level Description of Our Algorithm
Our algorithm for (r, b)-fair k-median problem in Euclidean
space follows the high-level approach of (Chierichetti et al.,
2017): it first computes an approximately optimal (r, b)-
fairlet decomposition for the input point set P (see Algo-
rithm 1). Then, in the second phase, it clusters the (r, b)-
fairlets produced in the first phase into k clusters (see Al-
gorithm 2). Our main contribution is designing a scalable

algorithm for the first phase of this approach, namely (r, b)-
fairlet decomposition.

Preprocessing phase: embedding to γ-HST. An impor-
tant step in our algorithm is to embed the input pointset
P into a γ-HST (see Section 2 for more details on HST
metrics). To this end, we exploit the following standard
construction of γ-HST using randomly shifted grids.

Suppose that all points in P lie in {−∆, · · · ,∆}d. We
generate a random tree T (which is a γ-HST embedding
of P) recursively. We translate the d-dimensional hyper-
cube H = [−2∆, 2∆]d via a uniformly random shift vector
σ ∈ {−∆, · · · ,∆}d. It is straightforward to verify that
all points in P are enclosed in H + σ. We then split each
dimension of H into γ equal pieces to create a grid with γd

cells. Then we proceed recursively with each non-empty
cell to create a hierarchy of nested d-dimensional grids with
O(logγ

∆
ε) levels (each cell in the final level of the recursion

either contains exactly one point of P or has side length ε).
Next, we construct a tree T corresponding to the described
hierarchy nested d-dimensional grids as follows. Consider a
cell C in the i-th level (level 0 denote the initial hypercube
H) of the hierarchy. Let T 1

C , · · · , T `C denote the trees con-
structed recursively for each non-empty cells of C. Denote
the root of each tree T jC by ujC . Then we connect uC (cor-
responding to cell C) to each of uCj with an edge of length
proportional to the diameter of C (i.e., (

√
d ·∆)/γi).

Note that the final tree generated by the above construction
is a γ-HST: on each path from the root to a leaf, the length
of consecutive edges decrease exponentially (by a factor of
γ) and the distance from any node to all of its children are
the same. Moreover, we assume that ∆/ε = nO(1).

Phase 1: computing (r, b)-fairlet decomposition. This
phase operates on the probabilistic embedding of the input
into a γ-HST T from the preprocessing phase, where γ =
poly(r, b). The distortion of the embedding is O(d · γ ·
logγ n). Additionally, we augment each node v ∈ T with
integers Nr and Nb denoting the number of red and blue
points, respectively, in the subtree T (v) rooted at v.

Step 1. Compute an approximately minimum number of
points that are required to be removed from the children
of v so that (1) the set of points contained by each child
becomes (r, b)-balanced, and (2) the union of the set of
removed points is also (r, b)-balanced. More formally, we
solve Question 3.2 approximately (recall that for each child
vi, N i

r and N i
b respectively denotes the number of red and

blue points in T (vi)).

Definition 3.1 (Heavy Point). A point p ∈ T (v) is heavy
with respect to v if it belongs to a fairlet D such that
lca(D) = v. For each fairlet D ∈ X , lca(D) denotes

Scalable Fair Clustering

Algorithm 1 FAIRLETDECOMPOSITION(v, r, b): returns an
(r, b)-fairlet decomposition of the points in T (v)

1: if v is a leaf node of T then
2: return an arbitrary (r, b)-fairlet decomposition of

the points in T (v)
3: end if
{Step 1: approximately minimize the total number of
heavy points with respect to v}

4: {xir, xib}i ← MINHEAVYPOINTS({N i
r, N

i
b}i∈[γd], r, b)

{for non-empty children i ∈ [γd] of v}
{Step 2: find an (r, b)-fairlet decomposition of heavy
points with respect to v}

5: Pv ← ∅
6: for all non-empty children i ∈ [γd] of v do
7: remove an arbitrary set of xir red and xib blue points

from T (vi) and add them to Pv
8: end for
9: output an (r, b)-fairlet decomposition of Pv
{Step 3: proceed to the children of v}

10: for all non-empty children i ∈ [γd] of v do
11: FAIRLETDECOMPOSITION(vi, r, b)
12: end for

the least common ancestor (lca) of the points contained in
D in T .

Question 3.2 (Minimum Heavy Points Problem).
Suppose that v is a node in T . For each i ∈ [γd]
corresponding to non-empty children of v, let xir, x

i
b be

respectively the number of red and blue points that are
removed from T (vi). The goal is to minimize

∑γd

i=1 x
i
r +xib

such that the following conditions hold:

1. for each i ∈ [γd], (N i
r−xir, N i

b−xib) is (r, b)-balanced.

2. (
∑
i∈[γd] x

i
r,
∑
i∈[γd] x

i
b) is (r, b)-balanced.

Step 2. After computing {xir, xib}i∈[γd], for each i ∈ [γd],
remove an arbitrary set of xir red and xib blue points from
T (vi) and add them to Pv. Then, output an arbitrary (r, b)-
fairlet decomposition of points Pv which is guaranteed to
be (r, b)-balanced by Step 1.

Step 3. For each i ∈ [γd] corresponding to a non-empty
child of v, run FAIRLETDECOMPOSITION(vi, r, b) which
is guaranteed to be (r, b)-balanced by Step 1.

Here is the main guarantee of our approach in the first step
(i.e., (r, b)-fairlet decomposition).

Theorem 3.3. There exists an O(d · n · logγ n) time algo-
rithm that given a point set P ⊆ Rd and balance param-
eters (r, b), computes an (r, b)-fairlet decomposition of P
with respect to costmedian whose expected cost is within

O(d · (r8 + b8) · log n) factor of the optimal (r, b)-fairlet
decomposition of P in expectation.

Phase 2: merging (r, b)-fairlets into k clusters. In
this phase, we essentially follow the same approach as
(Chierichetti et al., 2017).

Algorithm 2 CLUSTERFAIRLET(Q): the algorithm returns
an (r, b)-fair k-median of P given an (r, b)-fairlet decompo-
sition Q of P

1: for all fairlet qi ∈ Q do
2: let an arbitrary point ci ∈ qi be the center of qi
3: add |qi| copies of ci to P
4: end for
5: C ← β-approximate k-median clustering of P
6: C∗ ← {

⋃
j:cj∈Ci

qj}ki=1 {each fairlet joins the cluster
of its center in C}

7: return C∗

Theorem 3.4 (Fairlet to Fair Clustering). Suppose that
Q is an α-approximate (r, b)-fairlet decomposition of P .
Then, CLUSTERFAIRLET(Q) returns an (α+ (r + b) · β)-
approximate (r, b)-fair k-median clustering of P where β
denotes the approximation guarantee of the k-median algo-
rithm invoked in CLUSTERFAIRLET.

Finally, Theorem 3.3 and 3.4 together imply Theorem 1.1.

4. Fairlet Decomposition: a Top-down
Approach on γ-HST

In this section, we provide a complete description of the first
phase in our (r, b)-fair k-median algorithm (described in
Section 3), namely our scalable (r, b)-fairlet decomposition
algorithm.

The first step in our algorithm is to embed the input point
set into a γ-HST (for a value of γ to be determined later in
this section). Once we build a γ-HST embedding T of the
input points P ⊆ Rd, the question is how to partition the
points into (r, b)-fairlets. We assume that each node v ∈ T
is augmented with extra informationNr andNb respectively
denoting the number of red and blue points in the subtree
T (v) rooted at v.

To compute the total cost of a fairlet decomposition, it is im-
portant to specify the clustering cost model (e.g., k-median,
k-center). Here, we define costmedian to denote the cost
of a fairlet (or cluster) with respect to the cost function
of k-median clustering: for any subset of points S ⊂ Rd,
costmedian(S) := minp∈S

∑
q∈S d(p, q) where d(p, q) de-

notes the distance of p, q in T .

In this section, we design a fast fairlet decomposition algo-
rithm with respect to costmedian.

Scalable Fair Clustering

Theorem 4.1. There exists an Õ(n) time algorithm that
given an O(r5 + b5)-HST embedding T of the point set P
and balance parameters (r, b), computes an O(r3 + b3)-
approximate (r, b)-fairlet decomposition of P with respect
to costmedian on T .

Thus, by Theorem 4.1 and the bound on the expected dis-
tortion of embeddings into HST metrics (Theorem 2.3), we
can prove Theorem 3.3.
Proof of Theorem 3.3. We first embed the points into an
O(r5 + b5)-HST T and then perform the algorithm guar-
anteed in Theorem 4.1. By Theorem 2.3, the expected
distortion of our embedding to T is O(d · γ · logγ n) and
by Theorem 4.1, there exists an algorithm that computes an
O(r3 + b3)-approximate fairlet-decomposition of P with
respect to distances in T . Hence, the overall algorithm
achieves O(d · (r8 + b8) · log n)-approximation.

Since the embedding T can be constructed in time O(d ·
n · log n) and the fairlet-decomposition algorithm of Theo-
rem 4.1 runs in near-linear time, the overall algorithm also
runs in Õ(n). �

Before describing the algorithm promised in Theorem 4.1,
we define a modified cost function costmed which is a sim-
plified variant of costmedian and is particularly useful for
computing the cost over trees. Consider a γ-HST embed-
ding of P denoted by T and assume that X is a fairlet
decomposition of P . Moreover, h(D) denotes the height of
lca(D) in T . For each fairlet D, costmed(D) is defined as

costmed(D) :=
∑
q∈D

d(lca(D), q) = Θ(|D| · γh(lca(D))).

(1)

In particular, costmed(D) relaxes the task of finding “the
best center in fairlets” and at the same time, its value is
within a small factor of costmedian(D).
Claim 4.2. Suppose that T is a γ-HST embedding of the set
of points P . For any (r, b)-fairlet S of P , costmedian(S) ≤
costmed(S) ≤ (r + b) · costmedian(S) where the distance
function is defined w.r.t. T .

In the rest of this section we prove the following result
which together with Claim 4.2 imply Theorem 4.1.
Lemma 4.3. There exists a near-linear time algorithm that
given an O(r5 + b5)-HST embedding T of the point set P
and balance parameters (r, b), computes an O(r2 + b2)-
approximate (r, b)-fairlet decomposition of P with respect
to costmed on T .

Lemma 4.4. For any tree T with the root vertex v, the
number of heavy points with respect to v in the (r, b)-fairlet
decomposition constructed by MINHEAVYPOINTS(v, r, b)
is at most O(r2 + b2) times the minimum number of heavy
points in any valid (r, b)-fairlet decomposition of T .

4.1. Description of Step 1: Minimizing the Number of
Heavy Points

In this section, we show that MINHEAVYPOINTS algorithm
invoked by FAIRLETDECOMPOSITION finds an O(r2 + b2)-
approximate solution of Minimum Heavy Points problem.

The high-level overview of MINHEAVYPOINTS is as fol-
lows. For any subset of points D ⊆ P , we can compute in
O(1) what the maximal size (r, b)-balanced subset of D is:
w.l.o.g. suppose that Nr ≥ Nb and r ≥ b. If Nr ≤ r

b ·Nb,
the collection is (r, b)-balanced. Otherwise, it suffices to
greedily pick maximal size (r, b)-fairlets (see procedure UN-
BALANCEDPOINTS for the formal algorithm). This simple
observation implies a lower bound on the size of any opti-
mal solution of Heavy Points Minimization with respect to v
and we use this value to bound the approximation guarantee
of MINHEAVYPOINTS algorithm.

Claim 4.5. UNBALANCEDPOINTS(Nr, Nb, r, b) correctly
computes the minimum number of points that is required
to be removed from Nr ∪Nb so that the remaining points
become (r, b)-balanced. Moreover, the solution returned by
the procedure only removes points form a single color class.

For each i ∈ [γd], let (x̃ir, x̃
i
b) be the output of UNBAL-

ANCEDPOINTS(N i
r, N

i
b , r, b).

Corollary 4.6. Any (r, b)-fairlet decomposition of the
points in T (v) has at least

∑
i∈[γd] x̃

i
r + x̃ib heavy points.

Stage 1: minimum number of heavy points. If∑
i∈[γd] x̃

i
r red points together with

∑
i∈[γd] x̃

i
b blue points

form an (r, b)-balanced collection, then MINHEAVYPOINTS
technically terminates at the end of stage 1 and the solution
returned by MINHEAVYPOINTS achieves the minimum pos-
sible number of heavy points. However, in general, the
collection with

∑
i∈[γd] x̃

i
r red points and

∑
i∈[γd] x̃

i
b may

not form an (r, b)-balanced collection. Next, we show that
we can always pick at most rb(

∑
i∈[γd] x̃

i
r + x̃ib) additional

heavy points and keep both all subtrees rooted at children
of v and the set of heavy points (r, b)-balanced.

Another structure we will refer to in the rest of this section
is saturated (r, b)-fairlets. A fairlet D is a saturated (r, b)-
fairlet if it has exactly r + b points; r points from color c
and b points from color c.

Stage 2: Adding free points. If the “must-have” heavy
points are not (r, b)-balanced, then one color is dominant.
For a color class c ∈ {r, b}, a collection of points S is c-
dominant if |Sc| ≥ r

b · |Sc|. Moreover, the collection is
minimally-balanced c-dominant if S is (r, b)-balanced but it
will be no longer (r, b)-balanced even if we remove a single
point of color c.

Let c be the dominant color in the heavy points. Then, we

Scalable Fair Clustering

Algorithm 3 MINHEAVYPOINTS({N i
r, N

i
b}i∈[γd], r, b, γ)

{Stage 1: lower bound on the number of heavy points}
1: for all non-empty children i ∈ [γd] of v do
2: (xir, x

i
b)← UNBALANCEDPOINTS(N i

r, N
i
b , r, b)

3: end for
4: yr ←

∑
i∈[γd] x

i
r, yb ←

∑
i∈[γd] x

i
b

5: cdom ← argmaxc∈{r,b}yc, cdom ← {r, b} \ cdom

{Stage 2: add free points with color cdom}
6: if (

∑
i∈[γd] x

i
r,
∑
i∈[γd] x

i
b) is (r, b)-balanced then

7: break
8: end if
9: for all non-empty children i ∈ [γd] of v do

10: xicdom
← xicdom

+

11: max(EXTRAPOINT(cdom, N
i
r − xir, N i

b − xib, r, b),
12: ycdom

− ycdom)
13: end for
{Stage 3: add points of non-saturated (r, b)-fairlets}

14: if (
∑
i∈[γd] x

i
r,
∑
i∈[γd] x

i
b) is (r, b)-balanced then

15: break
16: end if
17: for all non-empty children i ∈ [γd] of v do
18: (nr, nb)←
19: NONSATFAIRLET(N i

r − xir, N i
b − xib, r, b)

20: xir ← xir + nr, xib ← xib + nb
21: end for
22: return ({xir, xib}i∈[γd])

Algorithm 4 UNBALANCEDPOINTS(Nr, Nb, r, b): returns
the minimum number of points that are required to be re-
moved so that (Nr, Nb) become (r, b)-balanced.

1: if Nr ≥ Nb then
2: return (Nr − bNb · rb c, 0)
3: end if
4: return (0, Nb − bNr · rb c)

inspect all children of v and if there exits a child in which
c is dominant, we borrow as many points of color c as we
can (we need to keep the subtree (r, b)-balanced, see EX-
TRAPOINT procedure) till either the set of heavy points
becomes (r, b)-balanced or all subtrees rooted at children of
v become minimally-balanced c-dominant. It is straightfor-
ward to show that at most br · |Sc| points of color c will be
borrowed from the children of v in this phase.

Lemma 4.7. Suppose that the set of heavy points is c-
dominant. If the set of heavy points is not (r, b)-balanced at
the end of stage 2, then for each i ∈ [γd], the set of points in
the subtree rooted at vi is minimally-balanced c-dominant.

Corollary 4.8. Suppose that the set of heavy points is c-
dominant. If the set of heavy points is not (r, b)-balanced at
the end of stage 2, then for each i ∈ [γd], the set of points in
the subtree rooted at vi have an (r, b)-fairlet decomposition

Algorithm 5 EXTRAPOINT(c,Nr, Nb, r, b): returns the
maximum number of points of color c that can be removed
from the set (Nr, Nb) such that they remain (r, b)-balanced.

1: if Nc ≤ Nc then
2: return 0
3: end if
4: return dNc · br e

with at most one non-saturated (r, b)-fairlet.

Stage 3: Non-saturated fairlets. Here, we show that we
can increase the number of heavy points by at most a factor
of O(rb) and make both the set of heavy points and the
set of points in all subtrees rooted at children of v (r, b)-
balanced. Let ns denote the total number of non-saturated
fairlets in the subtree rooted at v. We consider two cases
depending on the value of ns and the total number of heavy
points NH that do not belong to any saturated fairlets (in
particular, |NH| ≤

∑
i∈[γd] x̃

i
r + x̃ib):

Case 1: ns ≤ b ·NH. If we add all non-saturated fair-
lets, since the rest of fairlets in the subtree rooted at children
of v are saturated (r, b)-balanced, then this “extended” col-
lection of heavy points has to be (r, b)-balanced. Otherwise,
the whole data set itself is not (r, b)-balanced which is a
contradiction. Moreover, the total number of heavy points
is at most ns× (r + b) = O(rb ·NH)

Case 2: ns > b ·NH. Here we show that after adding
at most b ·NH non-saturated (r, b)-fairlets, the set of heavy
points becomes (r, b)-balanced. Let ri and bi (ri ≥ bi)
specify the size of the non-saturated fairlet that belongs to
the i-th child of v. Note that since all fairlets are c-dominant,
ri denotes the number of points of color c.

Moreover, in any non-saturated (r, b)-fairlet, ribi <
r
b , which

implies that rib ≤ rbi − 1. Let Q denote the set of children
of v whose non-saturated fairlets are picked. After adding
all points in these non-saturated fairlets,

#points of color c ≤ NH +
∑
j∈Q

rj

≤ NH +
∑
j∈Q

(
r

b
· bj −

1

b
)

≤ r

b

∑
j∈Q

bj B since |Q| = b ·NH, (2)

#points of color c ≥ r

b

∑
j∈Q

bj . (3)

Moreover, since in the beginning of the process the number
of points of color c is more than the number of points of
color c and also in each non-saturated fairlest the number of

Scalable Fair Clustering

points of color c is more than the number of points of color c,
at the end of the process, in heavy points, the size of color c
is larger than the size of color c. Thus, by (2) and (3), at the
end of stage 3, the extended heavy points has sizeO(rb·NH)
and is (r, b)-balanced as promised in Lemma 4.4.

Runtime analysis of MinHeavyPoints. Here we analyze
the runtime of MINHEAVYPOINTS which corresponds to
step 1 in FAIRLETDECOMPOSITION. Note that stage 1
only requires O(1) operations on the number of red and
blue points in T (v). Each of stage 2 and stage 3 requires
O(1) operations on the number of red and blue points in
all non-empty children of T (v). Although the number of
children of T (v) can be as large as γd, for each node v
in T , MINHEAVYPOINTS performs O(1) operations on
the number of red and blue points in T (v) exactly twice:
when it is called on v and the parent of v. Hence, in total
MINHEAVYPOINTS performs O(1) time on each node in
T which in total is O(n).

Algorithm 6 NONSATFAIRLET(Nr, Nb, r, b): returns the
non-saturated fairlet in a set with (Nr, Nb) points.

1: if Nr ≤ Nb then
2: zr ← Nr − bNr

b c · b, zb ← Nb − bNr

b c · r
3: else
4: zb ← Nb − bNb

b c · b, zr ← Nr − bNb

b c · r
5: end if
6: return (zr, zb)

5. Experiments
In this section we show the performance of our proposed
algorithm for (r, b)-fair k-median problem on three different
standard data sets considered in (Chierichetti et al., 2017)
which are from UCI Machine Learning Repository (Dheeru
& Karra Taniskidou, 2017)3. Furthermore, to exhibit the per-
formance of our algorithms on large and high-dimensional
scale data sets, we consider an additional dataset.

• Diabetes. The dataset4 represents 10 years of clinical
care at 130 US hospitals and in particular represent
the information and outcome of patients pertaining to
diabetes (Strack et al., 2014). Points are in R2 and
dimensions correspond to two attributes (“age”, “time-
in-hospital”).

• Bank. The dataset5 is extracted from marketing cam-
paigns of a Portuguese banking institution (Moro et al.,
2014). Among the information about the clients, we

3https://archive.ics.uci.edu/ml/datasets/diabetes
4https://archive.ics.uci.edu/ml/datasets/diabetes+130-

us+hospitals+for+years+1999-2008
5https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

selected (“age”, “balance”, “duration-of-account”) as
attributes to represent the dimensions of the points in
the space.

• Census. The data set6 contains the records extracted
from 1994 US Census (Kohavi, 1996). We picked
attributes (“age” , “fnlwgt”, “education-num”, “capital-
gain”, “hours-per-week”) to represent the points in the
space.

• Census II. The data set7 contains the records extracted
from 1990 US Census. We picked 25 numeric at-
tributes to represent points in the space.

Algorithm. We essentially implement the algorithm de-
scribed in Section 4.8 However, instead of building
poly(r, b)-HST, in our implementation, we embed the points
into a 2-HST. After computing a fairlet-decomposition of
the points with given balance parameters, we run an existing
K-medoids clustering subroutine9.

Results. Comparing the cost of the solution returned
by our fairlet decomposition algorithm with the result
of (Chierichetti et al., 2017) (as in Table 1) shows that we
achieve empirical improvements on all instances. The main
reason is that our algorithm is particularly efficient when
the input pointset lies in a low dimensional space which is
the case in all three datasets “Diabetes”, “Bank” and “Cen-
sus”. Moreover, unlike (Chierichetti et al., 2017), for each
dataset, we can afford running our algorithm on the whole
dataset (see Table 3). Empirically, the running time of our
algorithm scales almost linearly in the number points in the
input pointset (see Figure 1).

In Figure 1 and both Table 1 and 3, the reported runtime for
each sample size S is the median runtime of our algorithm
on 10 different sample sets from the given pointset each of
size S.

6. Conclusion and Future Direction
We presented a scalable algorithm for the fair k-median
problem by applying the techniques from embedding to tree
metrics and locally constructing fairlets in a near linear time.
We have demonstrated the runtime analysis of our algorithm
both theoretically and empirically.

Designing a constant factor algorithm for the fair k-median
problem with a near-linear time is an interesting open prob-
lem.

6https://archive.ics.uci.edu/ml/datasets/adult
7https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
8Our code is publicly available at https://github.com/

talwagner/fair_clustering.
9https://www.mathworks.com/help/stats/kmedoids.html

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://github.com/talwagner/fair_clustering
https://github.com/talwagner/fair_clustering
https://www.mathworks.com/help/stats/kmedoids.html

Scalable Fair Clustering

Dataset Balance
Fairlet Decomposition Cost Fair Clustering Cost (k = 20)

(Chierichetti et al., 2017) Ours (Chierichetti et al., 2017) Ours
Diabetes (1000 points) 0.8a ∼ 9836 2971 ∼ 9909 4149

Bank (1000 points) 0.5 ∼ 5.46× 105 5.24× 105 ∼ 5.55× 105 6.03× 105

Census (600 points) 0.5 ∼ 3.59× 107 2.31× 107 ∼ 3.65× 107 2.41× 107

Table 1. The table compares the performance of our fairlet-decomposition algorithm and the algorithm of (Chierichetti et al., 2017). We
remark that the number for (Chierichetti et al., 2017) mentioned in this table are not explicitly stated in their paper and we have extracted
them from Figure 3 in their paper. Note that the cost denotes the total distances of the points to their fairlet/cluster centroids.

aIn (Chierichetti et al., 2017), based on the description of the experiment setup, the desired balance in all three datasets (including
Diabetes) are 0.5. However, for Diabetes dataset, they have achieved the higher balance of value 0.8.

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000 120000

R
u

n
ti

m
e

(i
n

 s
ec

o
n

d
s)

Number of sub-sampled points

(4,5)-fairlet decomposition runtime
(Diabetes)

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u

n
ti

m
e

(i
n

 s
ec

o
n

d
s)

Number of sub-sampled points

(1,2)-fairlet decomposition runtime
(Bank)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5000 10000 15000 20000 25000 30000

R
u

n
ti

m
e

(i
n

 s
ec

o
n

d
s)

Number of sub-sampled points

(1,2)-fairlet-decomposition runtime
(Census)

0

50

100

150

200

250

300

350

400

0 500000 1000000 1500000 2000000 2500000

Ru
nt

im
e

(in
 se

co
nd

s)

Number of sub-sampled points

(1,2)-fairlet decomposition runtime
(Census II)

Figure 1. Each figure captures the running time of our fairlet decomposition algorithms with the specified balance parameter on different
number of sample points from one of the four datasets: Diabetes, Bank, Census and Census II.

Data set Dimension Number of points Sensitive attribute
Diabetes 2 101, 765 gender

Bank 3 4, 520 marital-status
Census 5 32, 560 gender

Census II 25 2, 458, 285 gender

Table 2. The description of the three datasets used in our empirical
evaluation. In each dataset, the goal is find a fair k-median with
respect to the sensitive attribute.

References
Bartal, Y. Probabilistic approximation of metric spaces and

its algorithmic applications. In Foundations of Computer

Dataset Target Runtime for k = 20 (in sec)
Balance Fairlet dec. Total

Diabetes 0.8 7.42 14
Bank 0.5 0.23 7.63

Census 0.45 5.18 14.19
Census II 0.5 349.08 750.09

Table 3. The performance of our algorithm on all points in each
dataset. We provide the runtime of both fairlet decomposition and
the whole clustering process. Since Census dataset is not (1, 2)-
balanced, we picked a lower balance-threshold for this dataset.

Scalable Fair Clustering

Science, 1996. Proceedings., 37th Annual Symposium on,
pp. 184–193. IEEE, 1996.

Bera, S. K., Chakrabarty, D., and Negahbani, M. Fair algo-
rithms for clustering. arXiv preprint arXiv:1901.02393,
2019.

Bercea, I. O., Groß, M., Khuller, S., Kumar, A., Rösner,
C., Schmidt, D. R., and Schmidt, M. On the cost of
essentially fair clusterings. CoRR, abs/1811.10319, 2018.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Fair clustering through fairlets. In Advances in Neural
Information Processing Systems, pp. 5036–5044, 2017.

Chouldechova, A. Fair prediction with disparate impact: A
study of bias in recidivism prediction instruments. Big
data, 5(2):153–163, 2017.

Chouldechova, A. and Roth, A. The frontiers of fairness
in machine learning. arXiv preprint arXiv:1810.08810,
2018.

Dheeru, D. and Karra Taniskidou, E. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Indyk, P. Algorithmic applications of low-distortion geo-
metric embeddings. In Foundations of Computer Science,
2001. Proceedings. 42nd IEEE Symposium on, pp. 10–33,
2001.

Kohavi, R. Scaling up the accuracy of naive-bayes clas-
sifiers: a decision-tree hybrid. In KDD, volume 96, pp.
202–207, 1996.

Makarychev, K., Makarychev, Y., and Razenshteyn, I.
Performance of johnson-lindenstrauss transform for
k-means and k-medians clustering. arXiv preprint
arXiv:1811.03195, 2018.

Moro, S., Cortez, P., and Rita, P. A data-driven approach
to predict the success of bank telemarketing. Decision
Support Systems, 62:22–31, 2014.

Rösner, C. and Schmidt, M. Privacy preserving clustering
with constraints. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pp. 96:1–96:14,
2018.

Schmidt, M., Schwiegelshohn, C., and Sohler, C. Fair core-
sets and streaming algorithms for fair k-means clustering.
arXiv preprint arXiv:1812.10854, 2018.

Strack, B., DeShazo, J. P., Gennings, C., Olmo, J. L., Ven-
tura, S., Cios, K. J., and Clore, J. N. Impact of hba1c
measurement on hospital readmission rates: analysis of
70,000 clinical database patient records. BioMed research
international, 2014, 2014.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

