
Supplementary Materials
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample

Likelihoods in GANs

1. Proof of Theorem 1
Using the Baye’s rule, one can compute the log-likelihood
of an observed sample y as follows:

log fY (y) = log fY ∣X=x(y) + log fX(x) − log fX ∣Y =y(x)

(1.1)

= logC − `(y,G(x)) − log
√
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−
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− log fX ∣Y =y(x),

where the second step follows from Equation 2.4 (main
paper).

Consider a joint density function PX,Y such that its marginal
distributions match PX and PY . Note that the equation 1.1
is true for every x. Thus, we can take the expectation of
both sides with respect to a distribution PX ∣Y =y. This leads
to the following equation:

log fY (y) =EPX∣Y =y
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+KL (PX ∣Y =y∣∣fX ∣Y =y) +H (PX ∣Y =y) ,
(1.4)

where H(.) is the Shannon-entropy function. Please note
that Corrolary 2 follows from Equation (1.4).

Next we take the expectation of both sides with respect to

PY :

E [log fY (Y )] = −
1

λ
EPX,Y

[`(y,G(x))] −
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2
log 2π

+ logC + EfX [−
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2
] (1.5)

+ EPY
[KL (PX ∣Y =y∣∣fX ∣Y =y)]

+H (PX,Y ) −H (PY ) .

Here, we replaced the expectation over PX with the expec-
tation over fX since one can generate an arbitrarily large
number of samples from the generator. Since the KL diver-
gence is always non-negative, we have

E [log fY (Y )] ≥ −
1

λ
{EPX,Y

[`(y,G(x))] − λH (PX,Y )}

+ logC − log(m) −
r + log 2π

2
(1.6)

Moreover, using the data processing inequality, we have
H(PX,Y ) ≥H(PG(X),Y ) (Cover & Thomas, 2012). Thus,

E [log fY (Y )]
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sample likelihood
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GAN objective with entropy regularizer

+ logC − log(m) −
r + log 2π

2
(1.7)

This inequality is true for every PX,Y satisfying the
marginal conditions. Thus, similar to VAEs, we can pick
PX,Y to maximize the lower bound on average sample log-
likelihoods. This leads to the entropic GAN optimization
2.3 (main paper).

Algorithm 1 Estimating sample likelihoods in GANs

1: Sample N points xi
i.i.d
∼ PX(x)

2: Compute ui ∶= PX(xi) exp (v∗ (ytest,G∗(xi)) /λ)
3: Normalize to get probabilities pi = ui

∑N
i=1 ui

4: Compute L = − 1
λ
[∑

N
i=1 pil(y

test,G∗(xi)) +

λ∑
N
i=1 pi log pi] − ∑

N
i=1 pi

∥xi∥2
2

5: Return L
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2. Optimal Coupling for W2GAN
Optimal coupling P∗

Y,Ŷ
for the W2GAN (quadratic GAN

(Feizi et al., 2017)) can be computed using the gradient of
the optimal discriminator (Villani, 2008) as follows.

Lemma 1 Let PY be absolutely continuous whose support
contained in a convex set in Rd. Let Dopt be the optimal
discriminator for a given generator G in W2GAN. This
solution is unique. Moreover, we have

Ŷ
dist
= Y −∇Dopt

(Y ), (2.1)

where dist
= means matching distributions.

3. Sinkhorn Loss
In practice, it has been observed that a slightly modified
version of the entropic GAN demonstrates improved com-
putational properties (Genevay et al., 2017; Sanjabi et al.,
2018). We explain this modification in this section. Let

W`,λ(PY ,PŶ ) ∶= min
PY,Ŷ

E [`(Y, Ŷ )] + λKL (PY,Ŷ ) ,

(3.1)

where KL(.∣∣.) is the KullbackLeibler divergence. Note that
the objective of this optimization differs from that of the
entropic GAN optimization 2.3 (main paper) by a constant
term λH(PY ) + λH(PŶ ). A sinkhorn distance function is
then defined as (Genevay et al., 2017):

W̄`,λ(PY ,PŶ ) ∶=2W`,λ(PY ,PŶ ) −W`,λ(PY ,PY )

−W`,λ(PŶ ,PŶ ). (3.2)

W̄ is called the Sinkhorn loss function. Reference (Genevay
et al., 2017) has shown that as λ → 0, W̄`,λ(PY ,PŶ ) ap-
proaches W`,λ(PY ,PŶ ). For a general λ, we have the
following upper and lower bounds:

Lemma 2 For a given λ > 0, we have

W̄`,λ(PY ,PŶ ) ≤ 2W`,λ(PY ,PŶ ) ≤ W̄`,λ(PY ,PŶ ) (3.3)
+ λH(PY ) + λH(PŶ ).

Proof From the definition (3.2), we have W`,λ(PY ,PŶ ) ∶≥

W̄`,λ(PY ,PŶ )/2. Moreover, since W`,λ(PY ,PY ) ≤

H(PY ) (this can be seen by using an identity coupling
as a feasible solution for optimization (3.1)) and simi-
larly W`,λ(PŶ ,PŶ ) ≤ H(PŶ ), we have W`,λ(PY ,PŶ ) ≤

W̄`,λ(PY ,PŶ )/2 + λ/2H(PY ) + λ/2H(PŶ ).

Since H(PY )+H(PŶ ) is constant in our setup, optimizing
the GAN with the Sinkhorn loss is equivalent to optimizing
the entropic GAN. So, our likelihood estimation framework

can be used with models trained using Sinkhorn loss as well.
This is particularly important from a practical standpoint as
training models with Sinkhorn loss tends to be more stable
in practice.

4. Approximate Likelihood Computation in
Un-regularized GANs

Most standard GAN architectures do not have the entropy
regularization. Likelihood lower bounds of Theorem 1 and
Corollary 2 hold even for those GANs as long as we obtain
the optimal coupling P∗

Y,Ŷ
in addition to the optimal gen-

erator G∗ from GAN’s training. Computation of optimal
coupling P∗

Y,Ŷ
from the dual formulation of OT GAN can

be done when the loss function is quadratic (Feizi et al.,
2017). In this case, the gradient of the optimal discriminator
provides the optimal coupling between Y and Ŷ (Villani,
2008) (see Lemma 2 in Supplementary material).

For a general GAN architecture, however, the exact com-
putation of optimal coupling P∗

Y,Ŷ
may be difficult. One

sensible approximation is to couple Y = ytest with a single
latent sample x̃ (we are assuming the conditional distribu-
tion P∗X ∣Y =ytest is an impulse function). To compute x̃ corre-
sponding to a ytest, we sample k latent samples {x′i}

k
i=1 and

select the x′i whose G∗(x′i) is closest to ytest. This heuristic
takes into account both the likelihood of the latent variable
as well as the distance between ytest and the model (simi-
larly to Eq 3.7). We can then use Corollary 2 to approximate
sample likelihoods for various GAN architectures.

We use this approach to compute likelihood estimates for
CIFAR-10 (Krizhevsky, 2009) and LSUN-Bedrooms (Yu
et al., 2015) datasets. For CIFAR-10, we train DCGAN
while for LSUN, we train WGAN. Fig. 1a demonstrates
sample likelihood estimates of different datasets using a
GAN trained on CIFAR-10. Likelihoods assigned to sam-
ples from MNIST and Office datasets are lower than that of
the CIFAR dataset. Samples from the Office dataset, how-
ever, are assigned to higher likelihood values than MNIST
samples. We note that the Office dataset is indeed more
similar to the CIFAR dataset than MNIST. A similar exper-
iment has been repeated for LSUN-Bedrooms (Yu et al.,
2015) dataset. We observe similar performance trends in
this experiment (Fig. 1b).

5. Training Entropic GANs
In this section, we discuss how WGANs with entropic regu-
larization is trained. As discussed in Section 3 (main paper),
the dual of the entropic GAN formulation can be written as
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(a) (b)

Figure 1: (a) Sample likelihood estimates of MNIST, Office and CIFAR datasets using a GAN trained on the CIFAR dataset.
(b) Sample likelihood estimates of MNIST, Office and LSUN datasets using a GAN trained on the LSUN dataset.

min
G∈G

max
D1,D2

E [D1(Y )] − E [D2(G(X))]

− λEPY ×PŶ
[exp (v(y, ŷ)/λ)] ,

where

v(y, ŷ) ∶=D1(y) −D2(ŷ) − `(y, ŷ).

We can optimize this min-max problem using alternating
optimization. A better approach would be to take into ac-
count the smoothness introduced in the problem due to the
entropic regularizer, and solve the generator problem to sta-
tionarity using first-order methods. Please refer to (Sanjabi
et al., 2018) for more details. In all our experiments, we
use Algorithm 1 of (Sanjabi et al., 2018) to train our GAN
model.

5.1. GAN’s Training on MNIST

MNIST dataset constains 28 × 28 grayscale images. As a
pre-processing step, all images were resized in the range
[0,1]. The Discriminator and the Generator architectures
used in our experiments are given in Tables. 1,2. Note that
the dual formulation of GANs employ two discriminators -
D1 and D2, and we use the same architecture for both. The
hyperparameter details are given in Table 3. Some sample
generations are shown in Fig. 2

5.2. GAN’s Training on CIFAR

We trained a DCGAN model on CIFAR dataset using the
discriminator and generator architecture used in (Radford
et al., 2015). The hyperparamer details are mentioned in
Table. 4. Some sample generations are provided in Figure 4

5.3. GAN’s Training on LSUN-Bedrooms dataset

We trained a WGAN model on LSUN-Bedrooms dataset
with DCGAN architectures for generator and discriminator
networks (Arjovsky et al., 2017). The hyperparameter de-
tails are given in Table. 5, and some sample generations are
provided in Fig. 5

Table 1: Generator architecture

Layer Output size Filters
Input 128 -

Fully connected 4.4.256 128→ 256
Reshape 256 × 4 × 4 -

BatchNorm+ReLU 256 × 4 × 4 -
Deconv2d (5 × 5, str 2) 128 × 8 × 8 256→ 128

BatchNorm+ReLU 128 × 8 × 8 -
Remove border row and col. 128 × 7 × 7 -

Deconv2d (5 × 5, str 2) 64 × 14 × 14 128→ 64
BatchNorm+ReLU 128 × 8 × 8 -

Deconv2d (5 × 5, str 2) 1 × 28 × 28 64→ 1
Sigmoid 1 × 28 × 28 -

Table 2: Discriminator architecture

Layer Output size Filters
Input 1 × 28 × 28 -

Conv2D(5 × 5, str 2) 32 × 14 × 14 1→ 32
LeakyReLU(0.2) 32 × 14 × 14 -

Conv2D(5 × 5, str 2) 64 × 7 × 7 32→ 64
LeakyReLU(0.2) 64 × 7 × 7 -

Conv2d (5 × 5, str 2) 128 × 4 × 4 64→ 128
LeakyRelU(0.2) 128 × 4 × 4 -

Reshape 128.4.4 -
Fully connected 1 2048→ 1
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Figure 2: Samples generated by Entropic GAN trained on MNIST

Figure 3: Samples generated by Entropic GAN trained on MNIST-1 dataset

Figure 4: Samples generated by DCGAN model trained on CIFAR dataset
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Figure 5: Samples generated by WGAN model trained on LSUN-Bedrooms dataset
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