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Abstract

We present an environment, benchmark, and deep
learning driven automated theorem prover for
higher-order logic. Higher-order interactive theo-
rem provers enable the formalization of arbitrary
mathematical theories and thereby present an in-
teresting, open-ended challenge for deep learning.
We provide an open-source framework based on
the HOL Light theorem prover that can be used
as a reinforcement learning environment. HOL
Light comes with a broad coverage of basic mathe-
matical theorems on calculus and the formal proof
of the Kepler conjecture, from which we derive
a challenging benchmark for automated reason-
ing. We also present a deep reinforcement learn-
ing driven automated theorem prover, DeepHOL,
with strong initial results on this benchmark.

1. Introduction

Formalization of mathematics and the automated creation
of new mathematical content is at the frontier of current
Al techniques. Given the fundamental nature of mathemat-
ics and its importance for most scientific disciplines, the
capability for high level formal mathematical reasoning is
both an important practical task as well as one of the most
challenging case studies in AI. However, traditional formal
computer mathematics has been a fragmented domain, ex-
ploring various approaches for different logical foundations.
This has led to a large number of incompatible theorem
proving systems, which added extra challenges for Al re-
searchers trying to push the limits of formal reasoning using
machine learning.

Well-defined, large-scale benchmarks were instrumental for
unifying disparate efforts in machine learning research: Lib-
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riSpeech (Panayotov et al., 2015) for speech recognition,
the Netflix prize (Bennett et al., 2007) for recommenda-
tion, ImageNet (Deng et al., 2009) for object recognition,
MSCOCO (Lin et al., 2014) for object detection and segmen-
tation, WMT (Bojar et al., 2014) for machine translation,
and SQuAD (Rajpurkar et al., 2016) for question answering
- just to name a couple of examples. Benchmarks have fos-
tered collaboration and competition and provide a means to
measure progress, contributing significantly to accelerated
progress and reproducible science.

This paper provides a benchmark and reinforcement learn-
ing environment for theorem proving. The long-term goal
is to enable the automatic formalization of large theories,
and hence we want to start with a theorem proving system
that has a track-record of large-scale formalization efforts
and includes a large corpus of foundational mathematics
for benchmarking and learning. Our choice fell on HOL
Light, the interactive theorem prover (ITP) in which the
proof of the Kepler conjecture (Hales et al., 2017) has been
formalized. The formalization of the proof of the Kepler
conjecture has been a huge effort, taking over 20 person-
years to complete, and required formalizing a significant
part of arithmetic, linear algebra, and multivariate analysis.
The resulting benchmark consists of 2199 definitions and
29462 theorems and lemmata, which capture a variety of
interesting mathematics and should be a practical seed for
new (auto-)formalization efforts.

To demonstrate the feasibility of the proposed learning
task, we present an automated theorem prover powered
by deep learning, called DeepHOL. Based on a simple
solver architecture, DeepHOL learns to prove theorems
based on imitating human proofs and improves itself using
reinforcement learning. Given a proof goal (represented as
a string) DeepHOL learns to predict the tactic (and its argu-
ments) that leads to a successful proof. Thereby, DeepHOL
achieves theorem proving capabilities that are comparable
to much more complicated state-of-the-art automated theo-
rem proving systems. In our open-source release, available
at http://deephol.org, we expose the APIs of our
modular theorem prover. This simplifies the development
of new provers significantly and allows researchers to focus
on the machine learning aspects.
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The contributions of our work are the following:

e An instrumented, pre-packaged version of HOL Light
that can be used as a reinforcement learning environ-
ment for theorem proving using our well-defined, sta-
ble Python API. Our solution comes with optimized
startup capabilities for proof search, while allowing
replay and strict verification of the produced proofs.

e Proof export and import capabilities that allow for man-
aging large theories programmatically from the Python
interface.

o A full-fledged, competitive automated neural theorem
proving system that can automatize theorem proving
in higher-order logic at tactic level directly.

e A large scale reinforcement learning system that was
used for training our prover.

e Comparison of neural model architectures for theorem
proving purposes.

e Well-defined benchmarks on our HOL Light based
environment to enable research and measuring progress
of Al driven theorem proving in large theories.

This paper is organized as follows. We discuss related work
in Section 2 before we describe our theorem proving envi-
ronment in Section 3. In Section 4 we present the organiza-
tion of the benchmark. The DeepHOL automated theorem
prover is described in Section 5 and we discuss first exper-
imental results for it in Section 6. Then we conclude in
Section 7.

2. Related Work

The earliest work of applying machine learning on reasoning
in large theories is (Urban et al., 2008). The most most sim-
ilar works to ours are TacticToe (Gauthier et al., 2017) and
GamePad (Huang et al., 2018). TacticToe is the first pub-
lished result on machine learning tackling higher-order the-
orem proving at a relatively large scale at tactic level (Gau-
thier et al., 2017). Although TacticToe is a great success
that came with significant improvements over previous au-
tomated theorem proving systems, they do not propose an
easy to use benchmark or environment for machine learn-
ing researchers. TacticToe does not employ deep learning
nor reinforcement learning. They rely on the HOL4 (Slind
& Norrish, 2008) system that has a significantly less theo-
rems with more complex human proof scripts with a larger
number of more elementary tactics.

GamePad has very similar objectives to ours (Huang et al.,
2018). They also provide an easy-to-use Python API for an
interactive theorem prover, and they present test and train-
ing sets. They chose to base their system on Coq (Bertot
& Castéran, 2013), an interactive theorem prover based on
the calculus of inductive constructions. While enabling
automatic code extraction, it comes with a much smaller

coverage of fundamental mathematics. Even including the
formalization of the Feit-Thompson theorem, their bench-
mark comprises only 1602 theorems and lemmas, while ours
features 29462 theorems and lemmas. Besides presenting
a much larger data set, we also demonstrate the feasibility
of achieving state-of-the-art prover performance based on
our data and environment by presenting a deep learning
based theorem prover. We also report the results as theorem
proving performance instead of proxy metrics.

Other interactive theorem provers we could have based
a learning environment on include Mizar (Mizar), Is-
abelle (Wenzel et al., 2008), HOL4 (Slind & Norrish, 2008),
and Lean (de Moura et al., 2015). The Mizar mathematical
library is probably the most comprehensive formalization
effort, but its declarative style makes it hard to employ proof
search, and its source code is not freely available. Like Coq
and HOL Light, also Isabelle (Wenzel et al., 2008) was used
for major formalization efforts, such as the formalization of
the selL.4 microkernel (Klein et al., 2009). We are not aware
of a comprehensive coverage of fundamental mathematics
in Isabelle, HOL4, or Lean.

In closely related work, Kaliszyk & Urban (2014) trans-
late from HOL Light and Flyspeck to automated theorem
provers and SMT solvers, for which they learn a premise
selector. In contrast to our work, they use neither deep
learning nor reinforcement learning. Similar methods for
premise selection on the HOL Light corpora were proposed
in (Kaliszyk & Urban, 2012).

The first use of deep neural networks for large scale theorem
proving was proposed in (Alemi et al., 2016). They have
used convolutional networks for premise selection in large
theories, particularly on Mizar mathematical library (Mizar).
Those methods were used as a pre-selection for applying the
first order logic automated theorem prover E (Schulz, 2002).
We have reused several ideas from that paper, including
some aspects of our neural network architecture and the
hard negative mining methodology.

Whalen (2016) proposed a purely deep reinforcement learn-
ing based solution for theorem proving for the Metamath
prover (Megill, 1997). This work was moderately success-
ful, finding mostly proofs for very simple theorems, espe-
cially in propositional logic. On the other hand, Metamath
is not considered to be a serious contender for large scale
mathematical formalization work.

Loos et al. (2017) proposed deep neural networks to aug-
ment theorem prover E (Schulz, 2002) to rank given clauses
during proof search. Here, we propose a neural prover writ-
ten from scratch, relying solely on a small set of preexisting
tactics and neural networks for all high level decisions.

Kaliszyk et al. (2017) proposed a machine learning bench-
mark for higher-order logic reasoning based on the HOL
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Light corpus. It features a few static datasets and it re-
mains unclear how performance of machine learning mod-
els on this dataset relates to real world prover perfor-
mance. (Kaliszyk et al., 2018) demonstrated the viabil-
ity of reinforcement learning with XGBoost and LIBLIN-
EAR (Fan et al., 2008) on hand engineered features in first
order logic context using leanCoP (Otten & Bibel, 2003) on
Mizar mathematical library (Mizar).

Earlier works on employing (non-deep) machine learning
for theorem proving in general and for reasoning in large
theories include (Schulz, 2000; Duncan et al., 2004; Urban
et al., 2011; Kiihlwein et al., 2012; Kaliszyk & Urban, 2013;
Kiihlwein et al., 2013; Alama et al., 2014; Bridge et al.,
2014; Kaliszyk et al., 2014b;a; Farber & Kaliszyk, 2015;
Kaliszyk & Urban, 2015c; Kaliszyk et al., 2015; Kaliszyk &
Urban, 2015a;b; Gauthier & Kaliszyk, 2015; Blanchette
et al., 2016). Recently, Wang et al. (2017) proposed a
premise selection method utilizing deep graph embeddings.

3. Architecture of the Environment

Here we describe the architecture of the evaluation and train-
ing environment. The goal of the environment is to enable
artificial agents to interact with the HOL Light interactive
theorem prover (ITP) in a replicable manner.

3.1. ITP Terminology

In order to describe our changes to HOL Light, it is helpful
to establish some common terminology. To prove a theorem
in an ITP, the human user starts with entering the theorem’s
statement as the goal of a new proof. The ITP provides a
small number of tactics to manipulate the goal. Tactics may
have ractic arguments, which can be a previously proven
theorem or a list of previously proven theorems. (There
are also tactics that take terms as arguments, but we do not
support them currently.) Applying a tactic to a goal can lead
to a failure, when not all conditions are met, or is successful
and produces a list of subgoals. The goal is only proven
successfully, if all its subgoals are proven. In particular, if
the goal is proven if the tactic application produces an empty
list of subgoals. We refer to tactic applications sometimes
also as proof steps.

We can think of proofs as trees, where goals are nodes
and tactic applications are (hyper-)edges to other goals. In a
successful proof, all leaves are goals with a tactic application
that produced an empty list of subgoals.

3.2. Instrumentation to HOL Light

In order to create a stable, well-defined environment, we
fix a particular version of HOL Light with a pre-selected
subset of tactics and a fixed library of basic theorems, which
are proved in one well-defined order. This is the ITP part

of the environment which is written in OCaml with a few
additional C++ functions. Since it is non-trivial to find and
build the exact correct set of libraries for this environment,
we provide a prepackaged docker image. It can be used
as a reliable black box for proof search and as reinforce-
ment learning environment, communicated with using a
simple API. We have also open sourced all the changes to
the HOL Light system so that new modifications and forks
are possible by third parties.

The prepackaged version we provide has the following ad-
ditional instrumentation, which we describe below in detail:

Logging of human-written proofs shipped with HOL
Light.

A new API to interact with HOL Light for proof search.
Fast startup for distributed proof search.

A proof checker to remove the need to trust search
algorithms.

3.3. Proof Logging for Human Proofs

We want to utilize the existing human proofs for both train-
ing and evaluation. To that effect, we have instrumented
the prove method in HOL Light with extra logging code.
If HOL Light is executed in proof-dump mode, each invo-
cation of the prove function dumps the proven theorems
and their proofs into files. These proof logs can then be
converted to training examples (see Section 4.1).

3.4. Proof Assistant API

The API provides two functions: (1) to apply tactics to
goals and (2) to register theorems for future use in tactic
applications. Tactic applications are completely stateless
and contain the goal, the tactic to be applied, and the tactic
arguments. The poof assistant (i.e. HOL Light in our im-
plementation) returns the outcome of the tactic application,
including the list of subgoals for successful applications.
The stateless tactic application interface frees us from the
strict order on subgoals that HOL Light enforces in the
human interface, and allows us to easily implement more
advanced proof search strategies.

The tactic arguments can consist of a list of theorems. Im-
plemented naively, this list could make the tactic application
request very large and could slow down the prover. In the
argument list of tactics we therefore allow theorems to be
referenced by a fingerprint number. The second API func-
tion allows us to register theorems such that HOL Light
can resolve the fingerprints to theorems. The registration of
theorems is hence stateful, in contrast to tactic applications.
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3.5. Fast Startup

Starting HOL Light and loading all the potentially needed
libraries can take a long time - we measured it at up to 20
minutes. This would be inhibitively long for proof search,
especially in a distributed setting with thousands of workers
and the startup time has to be paid for every worker. The
Proof Assistant API allows us to load only a minimal core
of HOL Light and register the remaining theorems from the
libraries using the API. This brings the startup time of our
HOL Light to mere seconds.

3.6. Proof Checking

Any bug in the implementation of a theorem prover could
make its reasoning unsound, rendering the whole formaliza-
tion effort futile. For that reason, HOL Light is designed
around a small trusted core of about 400 lines of OCaml
code that builds proofs from few very basic rules. OCaml’s
type system guarantees that a theorem object can only be
constructed by this trusted core, and the rest of the HOL
Light system can be seen as mere convenience features.

Our API allows researchers to implement proof search al-
gorithms outside of OCaml. The correctness of any proof
found through the API thus relies on the correctness of our
API implementation and the proof search itself. We thus
implemented a proof checker that avoids the need for trust-
ing the proof search and even the API. The proof checker
compiles proofs into OCaml code that can be loaded in HOL
Light, where they have to pass through the trusted core.

4. Benchmark

CEINY3

We present three different corpora: “core”, “complex”, and
“flyspeck.” The core corpus contains the basic theorems
that needed to define the tactics and the complex corpus
consists of theorems of complex calculus. While proofs of
core theorems are useful for training, we omit them in vali-
dation, since some tactics assume those theorems. Flyspeck
contains most of the lemmas and theorems of the Kepler
conjecture. Together these three corpora encompass almost
30k theorems and proofs (see Table 1).

We propose two tasks that can be measured on these bench-
marks:

e Predict the tactic and tactic arguments that were em-
ployed in the human proof.

e Prove each of the theorems in the corpora while utiliz-
ing only those theorems as tactic arguments that also
humans had available. For that purpose, we provide all
theorems in the three corpora in one unified list, in the
order they were proven by humans.

Definitions Theorems Proof states
core 239 2320 23512
complex 398 16623 509621
flyspeck 1563 10519 538540
all 2200 29462 1071673

Table 1. The three corpora of the benchmark.

4.1. Training Examples

Our training examples consist of a goal, a tactic, an arglist,
and a negarglist. The goal is a provable statement, i.e. it
is either a theorem from one of the corpora or a subgoal
of a successful proof. The tactic is the ID of one of a
preselected small set of tactics (currently consisting of 41
tactics) that led to a successful proof. The arglist is the
list of theorems that were passed to a tactic application
as arguments. Additionally, there is a special argument
signifying that the argument list was empty.

The negarglist is an optional list of non-arguments that is
not actually necessary for any proof. negarglist consists
of high-scoring theorems that were not actually needed as
arguments. They are collected during proof search in our
reinforcement learning pipeline, and the list is empty for all
the examples generated from the human proof logs.

4.2. Splits

Before training and evaluation, we have split the top level
theorems into three subsets: training, validation and test set
in a 60:20:20 ratio. Since the goals occurring in the proof
of a theorem are likely correlated with the theorem itself,
we assign them the same split as the theorem. The valida-
tion set can be used for continuous monitoring for proxy
metrics of the model during training. The validation set
is also occasionally used to measure the end-to-end prover
performance of the models during training. The test set,
on the other hand, must only be used extremely rarely for
final assessment of a few models before publishing a paper
alongside their validation set performance.

4.3. Representation of Expressions

All expressions are presented as S-expressions that have
only few types of non-leaf nodes: function applications,
abstractions (i.e. lambda functions), variables, constants,
and function types. All other information, such as variable
names, constant names, and type names, is given as leaf-
nodes. For example, the expression f(z) for a function
f : R — R looks as follows: (a (v (fun (real)
real) f) (v real x)). These S-expressions have
a unique correspondence to terms in HOL Light and are
easy to parse into a tree. However, our current models only
observe the string version of these expressions. Expressions
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are quite long in this representation: The average number of
tokens in the goals is around 500, and the median is around
300.

For many operations, HOL Light automatically invents new
generic types (e.g. 7345882) and generic variables (e.g.
GEN%PVAR%9675) on the fly. This leads to thousands of
types and variables that often occur in only one (or a few)
expressions, and hence would hardly get meaningful embed-
dings in typical deep learning approaches. Further, tokens
that are shared only between few expressions bear the risk of
unintentionally giving away information about the relations
between these statements. We therefore decided to nor-
malize the data sets by mapping generic types and generic
variables to a much smaller set of names while maintaining
the semantics of all expressions. After normalization, the
number of distinct tokens is 1254.

5. DeepHOL Prover architecture

In this section, we describe the high-level architecture of
our reference neural prover. The intelligence is fully learned
without any hand-crafted features, and with very simple data
preprocessing. In particular, we have not implemented any
tweaks for the particular logic or interactive theorem prover
(ITP). All the engineering went into the neural network
architecture, which is very generic, and into maintaining
the proof search graph without any special regard for the
particular ITP system. In other words, DeepHOL currently
uses HOL Light and its logic (HOL), but is not specialized
to it. We believe that our solution would also work with
other goal-tactic based prover like Coq (Bertot & Castéran,
2013), HOL4 (Slind & Norrish, 2008), or Lean (de Moura
et al., 2015). Here we describe the details of our reference
prover solution in detail.

5.1. Action Generator

The most crucial part of our prover is the action generator
that produces a list of tactic applications for a given goal.
‘We have split this into two subtasks:

e To rank the tactics, and
e to create an argument list for each of the tactics (com-
prised of a list of theorems).

As noted earlier, DeepHOL is currently not using tactics
that take arbitrary terms (formulas) as parameters.

For both subtasks, the action generator employs a neural
network, which we describe in Section 5.4. The ranking of
tactic applications it produces is used in the proof search
(Section 5.3) to expand the proof search graph (Section 5.2).

5.2. Proof Search Graph

The proof search graph is our data structure that captures
the state of the proof search, and allows us to detect when
a proof for the original goal is available. The nodes of
the proof search graph are the goals that we have seen in
the proof search, including the original goal statement that
we want to prove. Each goal can have multiple alternative
tactic applications, each of which might result in multiple
subgoals. That is, tactic applications are labelled hyperedges
in the proof search graph.

The proof search graph provides some features that allow
us to prune some subtrees of the search early: First, when-
ever a tactic application closes a subgoal, this information is
traced back to the parent subgoals and each alternate tactic
application (and its whole sub-branch) is marked as closed
is discarded from the queue to be processed. If during this
recursive process the root node is reached, then the proof is
closed and the proof process stops. Second, when all tactic
applications for a goal fail we mark that goal as unsuccess-
ful. Similar to tracing closed goals, the proof search graph
automatically traces the siblings of unsuccessful subgoals
that become superflous, and mark them unsuccessful as well.
Third, when tactic applications produce identical subgoals,
we let them point to the same node in the proof search graph.
We refer to this as subgoal sharing, and once a subgoal is
newly shared, previously stored information about subgoals
being closed or ignored is be propagated through the search
graph.

5.3. Proof Search

Our proof search is a simple breadth first search. In each
iteration, its expands all leaf nodes (i.e. goals that have
not been expanded yet). To exand a goal, it calls the action
generator to generate a list of tactic applications, and applies
them in order. It stops applying tactics to a goal, when it
reaches a maximum number of unsuccessful tactic applica-
tions or a minimum number of successful tactic applications.
Whenever a complete proof is found for the top level goal,
the proof search is stopped and the whole proof search graph
is serialized and stored as the result. Also, the proof search
finishes if the search graph reaches a prescribed limit on the
number of subgoals or the proof search times out.

Note that subgoal sharing, as explained in Section 5.2, is
crucial for our proof search: Without subgoal sharing the
search process could end up oscillating between two formu-
las by rewriting the same subterm back and forth using the
same equation.

5.4. Neural Architectures

For the generation and ranking of actions in the action gen-
erator, we use a deep, two-tower neural network depicted in



HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving

Goal (g) Premise (t)

I R I B

{ ozl Eg)coder J { Premise Encoder (P)J
Goal Embedding (G(g)) Theorem Embedding (P(t))

/

-

Tactic Classifier | Combiner Network Theorem Scorer
) © (R)

Figure 1. Two-tower neural architecture for ranking actions.

Figure 1. The predictions of the neural network are based
on a single goal, represented as an S-expression of the HOL
Light term (i.e. a string). (In HOL Light, each goal consists
of a list of hypotheses and a conclusion, and we currently
drop the hypotheses before we feed a goal to the neural
network.)

The neural network has two separate prediction heads S and
R. The goal tower G' computes an embedding G(g) of the
current goal g and infers a scoring vector S(G(g)) for the
fixed set of tactics where the tactic classifier .S is a linear
layer producing logits of a softmax classifier. The premise
tower P computes a fixed size embedding P(t;) of all possi-
ble tactic arguments ¢; in the scope of the goal to be proved.
The ranking of the premises is performed by a combiner net-
work C' that takes the concatenation of the goal embedding,
the premise embedding and possibly that of the tactic T} to
be applied: r(t;) = C(G(g), P(t;),T;), where r(t;) is the
score of theorem ¢; for its being a useful tactic argument for
transforming the current goal g towards a closed proof. We
have also tried the unconditioned setup, in which the ranking
of the tactic arguments is independent of that of the tactic to
be applied, that is r(¢;) = C(G(g), P(t;)). In essence, we
propose a hybrid architecture that both predicts the correct
tactic to be applied, as well as rank the premise parameters
required for meaningful application of the tactics.

5.5. Supervised Learning

We started training DeepHOL in a supervised learning setup,
for which we use the human proof logs. We have split our
data into test, train, and validation set on the theorem level,
as described in Section 4. We always report both validation
and test set performance for the final result to verify that
we did not over-fit on the validation set. Continuous mea-
surements and ablation analyses are reported only on the
validation or training set.

5.6. Reinforcement Learning Loop

In the reinforcement learning loop, we have both a trainer
and multiple provers running continuously. The training

is (optionally) seeded with training examples from exist-
ing (human/generated) proof logs. Then, we run the neu-
ral prover in rounds, each round trying to prove a random
sample of theorems in the training set. Training examples
extracted from successful proof logs of each round of our
neural prover are mixed in continuously. Training examples
of more recent rounds (fresh examples) can be weighed dif-
ferently from older rounds (historical examples) during the
training process.

To summarize, our loop works with the following four kinds
of training example pools:

1. (optional) Human training examples as seed.

2. (optional) Inherited computer generated examples as
seed: in addition to using human training examples as
seed, examples generated during any previous exper-
iments with our prover can also be used as seed. In
our current experiments, we used examples that were
generated by a prover that was run on the whole train-
ing set utilizing a model that was trained in purely
supervised manner.

3. Fresh generated loop examples (examples that were
produced in the last k£ rounds, where k is a user-settable
parameter).

4. Historical training loop examples (examples that were
produced in all but the last k£ rounds).

During training, batches are filled with examples from each
pool according to a prescribed split ratio. This means that
the ratio of different kinds of examples the model is trained
on does not shift as more examples are generated by the
loop. Most importantly, it also ensures that examples from
freshly constructed new proofs show up quickly and deter-
ministically during the training process. Note that although
we can make use of human and inherited proof traces, the
system can learn without any supervision or initial seed data.
However, preliminary experiments have shown that, in its
current form, it learns inferior models compared to those
that were seeded with human proofs.

5.6.1. PROOF PRUNING

The argument lists of tactic applications in the reinforcement
learning loop are quite long, and they contain superfluous
elements. In order to obtain high quality training data for
tactic argument prediction, we prune the parameter list be-
fore using them for training. For all tactics that take a list of
theorems as an argument, our current implementation gener-
ates a list of fixed length. For successful tactic applications,
we then iterate over the arguments in reverse score order and
greedily omit those arguments that do not change the out-
come of the tactic application. While a non-greedy approach
might yield even shorter argument lists, it would also take
longer to compute. In practice, our approach produces short
argument lists with minimal effort. Removed parameters
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’ Description \ Proof success ‘
ASM_MESON_TAC 6.1%
ASM_MESON_TAC +
argument selection 9.2%
WaveNet 31.72%
Deeper WaveNet 32.65%
Wider WaveNet 27.60%
Loop 36.3%
Trained on loop output 36.8%
Loop tactic dependent 38.9%

Table 2. Percentage of theorems closed using various models on
the validation set of the complex corpus comprising of 3225 the-
orems. First two lines are trivial baselines that call HOL Light’s
built-in first order theorem prover with and without utilizing our
argument selection model. The middle section shows results of
models trained in a supervised scenario on human proofs. The last
four lines report results using our reinforcement learning loops.

are stored as ‘“hard negatives” and utilized during training.

6. Results and Comparisons

In this section, we first present several baseline results based
on imitation (i.e. fully supervised) learning. Then we come
to our reinforcement learning results using a WaveNet (Van
Den Oord et al., 2016) based encoder architecture, but with
three different training methodologies.

6.1. Model Training Hyperparameters

All models were trained with the Adam optimizer (Kingma
& Ba, 2014) and exponentially decreasing learning rate
starting at 0.0001 with decay rate 0.98 at every 100000
steps. For evaluation, we use moving exponential parame-
ter averaging at a rate of 0.9999 per step (Polyak, 1990;
Polyak & Juditsky, 1992). First, we established trivial
baselines by running the built-in first-order theorem prover
ASM MESON_TAC on each theorem on the dataset with
empty argument list and with an argument list predicted
with our baseline WaveNet model. Next, we compare the
performance of various WaveNet style architectures. Fi-
nally, we report our reinforcement learning experiments on
the complex analysis corpus. Our final prover performance
numbers are summarized in Table 2.

6.2. Comparison of Model Architectures

We trained and evaluated a large number of networks and
present a sample of our findings. During our experiments,
we looked at the following proxy metrics:

1. Accuracy of tactic prediction out of the 41 possible
tactics. (Ranging between 38% and 42% for most

6000 I I I I I =
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Figure 2. This figure presents the cumulative number of proofs
closed by the tactic dependent loop. The total number of theorems
in the training set is 10199.

models.)

2. Success rate of selecting a positive tactic argument
over a randomly selected negative argument. (Around
1% error rate).

For the decoders, we have tried WaveNet (Van Den Oord
et al., 2016) style networks with different hyper-parameters.
The various results on the complex analysis corpus are based
on imitation learning and the combination of imitation learn-
ing and reinforcement learning. In the base model we used
two WaveNet blocks of four layers each. The number of
filters in each block was either 128 or 256. As one can see
in Table 2, the network with less filters did better. Then we
tried a deeper variant with four blocks of five layers each,
in this case with depth 128. Here the deeper network with
more blocks turned out to be superior. Both architectures
incorporate fully connected combiner layers with additional
dropout layers before each of them. The ratio of dropped
out neurons during training was 0.3. Note that the reinforce-
ment learning experiments was performed earlier and was
ran with the narrow architecture (with 128 filters in each
layer) and with two wavenet blocks.

6.3. Reinforcement Learning

In our reinforcement learning set up, the model training runs
on a single GPU, while theorem proving is performed in
a distributed manner: we attempt to prove 2000 randomly
selected theorems from the training set of the union of the
complex and core corpora in every round. At the start of
each round, we fetch the latest trained model checkpoint
and precompute the theorem argument embedding for each
theorem in the complex and core libraries. This precomputa-
tion greatly accelerates the ranking of the tactic arguments.
The proof search is distributed over 1000 cores and we set a
computation limit of 100 explored proof states and a total
timeout of 300 seconds. Each individual tactic application
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Maximum number of top tactics explored | [6,16]
Maximum successful tactic applications (3, 6]
Number of selected tactic arguments [1, 32]

Table 3. Randomized proof search parameters and their ranges.

Theorems proved
(% of training set)
5679 (55.7%)
5518 (54.1%)
1988 (19.5%)
5919 (58.0%)

Name

Loop

Loop tactic dependent
Loop on subgoals
Union

Table 4. Total count of proofs found by each loop.

has a timeout of 5 seconds. Additionally, for each example,
we pick prover options uniformly in the ranges described
by Table 3, to increase the diversity of the generated proofs.
This also increases the chance of finding a proof at all for
harder statements.

Given the high computational cost of running the reinforce-
ment learning loop, we have only tried a couple of vari-
ants. Each of our these experiments use the same version of
WaveNet (Van Den Oord et al., 2016) architecture (with 128
filters in each layer). In our first loop experiment, “Loop”,
we trained a loop with tactic independent argument selec-
tion. That is, the tactic argument ranking was independent
of the tactic chosen, and we pick only top level theorems to
be proved by proof search in the reinforcement learning sce-
nario. Alongside our first loop, we trained a separate model
“Trained on loop output” that was not used in the loop for
proof search guidance, but did benefit from a curriculum-
style learning, since it trained in parallel to the loop. In our
second loop experiment, “Loop tactic dependent”, we have
trained a model in which the arguments ranking depends on
the selected tactic. In our third loop experiment, “Loop on
subgoals”, the proof search can pick from any of the internal
proof states from the training set of the joined core+complex
corpus. This was motivated partially by the success of (Zom-
bori et al., 2019), we tried to run a reinforcement learning
loop in which we train for solving each subgoal separately,
hoping that it will help for learning longer proofs. This
means, that we expected a bigger variety of theorems to be
generated during proof search. However, our naive imple-
mentation did not seem to end up with improved results.
Performance of each loop’s final checkpoint on the vali-
dation set is presented in Table 2. We also ran the final
checkpoint of the “Loop” on a sample of 2000 proofs from
the flyspeck dataset; we closed 752 (37.0%) of these proofs
automatically.

While it was too computationally expensive to track the
validation performance on every round of the loop, we did

45 i I 1 I 1 I 1 N

Percent proved

— Loop on subgoals
10 - Loop -
— Loop tactic dependent
55 | | 1 | 1 | 1 l‘
1] 50 100 150 200 250 300 350 400
Loop round

Figure 3. Percentage of theorems proved in each round of the loop.
Each round samples 2000 theorems from the training set.

record the performance on the training set. In Fig. 2, we
show the cumulative number of proofs closed by the tactic
dependent loop at each round. Recall that in each round
we sample theorems from the training set and use the most
recent checkpoint to guide the proof search. In Fig. 3, we
show the percentage of the sampled theorems that are proved
in each round.

7. Conclusion

We presented a machine learning oriented open source en-
vironment for higher-order theorem proving as well as a
neural network based automated prover, trained on a large-
scale reinforcement learning system. We also suggest a
benchmark for machine reasoning in higher-order logic on
a relatively large and practically relevant corpus of theo-
rems with varying complexity. Our benchmark includes
purely neural network based baselines, which demonstrate
strong automated reasoning capabilities, including premise
selection from a large number of theorems. We hope that
our initial effort fosters collaboration and paves the way
for strong and practical Al systems that can learn to reason
efficiently in large formal theories.
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