
Structured agents for physical construction

Victor Bapst * 1 Alvaro Sanchez-Gonzalez * 1 Carl Doersch 1 Kimberly L. Stachenfeld 1 Pushmeet Kohli 1

Peter W. Battaglia 1 Jessica B. Hamrick 1

Abstract

Physical construction—the ability to compose ob-
jects, subject to physical dynamics, to serve some
function—is fundamental to human intelligence.
We introduce a suite of challenging physical con-
struction tasks inspired by how children play with
blocks, such as matching a target configuration,
stacking blocks to connect objects together, and
creating shelter-like structures over target objects.
We examine how a range of deep reinforcement
learning agents fare on these challenges, and in-
troduce several new approaches which provide su-
perior performance. Our results show that agents
which use structured representations (e.g., objects
and scene graphs) and structured policies (e.g.,
object-centric actions) outperform those which
use less structured representations, and general-
ize better beyond their training when asked to
reason about larger scenes. Model-based agents
which use Monte-Carlo Tree Search also outper-
form strictly model-free agents in our most chal-
lenging construction problems. We conclude that
approaches which combine structured representa-
tions and reasoning with powerful learning are a
key path toward agents that possess rich intuitive
physics, scene understanding, and planning.

1. Introduction
Humans are a “construction species”—we build forts out
of couch cushions as children, pyramids in our deserts, and
space stations that orbit hundreds of kilometers above our
heads. What abilities do artificial intelligence (AI) agents
need to possess to perform such achievements? This ques-
tion frames the high-level purpose of this paper: to explore
a range of tasks more complex than those typically studied
in AI, and to develop approaches for learning to solve them.

*Equal contribution 1DeepMind, London, UK. Correspondence
to: Jessica Hamrick <jhamrick@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Physical construction involves composing multiple elements
under physical dynamics and constraints to achieve rich
functional objectives. We introduce a suite of simulated
physical construction tasks (Fig. 1), similar in spirit to how
children play with toy blocks, which involve stacking and
attaching together multiple blocks in configurations that sat-
isfy functional objectives. For example, one task requires
stacking blocks around obstacles to connect target loca-
tions to the ground. Another task requires building shelters
to cover up target blocks and keep them dry in the rain.
These tasks are representative of real-world construction
challenges: they emphasize problem-solving and function-
ality rather than simply replicating a given target config-
uration, reflecting the way human construction involves
forethought and purpose.

Real-world physical construction assumes many forms and
degrees of complexity, but a few basic skills are typically
involved: spatial reasoning (e.g. concepts like “empty” vs
“occupied”), relational reasoning (e.g. concepts like “next
to” or “on top of”), knowledge of physics (e.g., predicting
physical interactions among objects), and planning the allo-
cation of resources to different parts of the structure. Our
simulated task environment (Fig. 1) is designed to exercise
these skills, while still being simple enough to allow careful
experimental control and tractable agent training.

While classic AI studied physical reasoning extensively
(Chen, 1990; Pfalzgraf, 1997), construction has not been
well-explored using modern learning-based approaches. We
draw on a number of techniques from modern AI, combin-
ing and extending them in novel ways to make them more
applicable and effective for construction. Our family of deep
reinforcement learning (RL) agents can support: (1) vec-
tor, sequence, image, and graph-structured representations
of scenes; (2) continuous and discrete actions, in absolute
or object-centric coordinates; (3) model-free learning via
deep Q-learning (Mnih et al., 2015), or actor-critic methods
(Heess et al., 2015; Munos et al., 2016); and (4) planning
via Monte-Carlo Tree Search (MCTS) (Coulom, 2006).

We find that graph-structured representations and reason-
ing, object-centric policies, and model-based planning are
crucial for solving our most difficult tasks, outperforming
standard approaches which combine unstructured represen-

Structured agents for physical construction

tations with policies that take absolute actions. Our results
demonstrate the value of integrating rich structure and pow-
erful learning approaches as a key path toward complex
construction behavior.

2. Related Work
Physical reasoning has been of longstanding interest in AI.
Early work explored physical concepts with an emphasis on
descriptions that generalize across diverse settings (Winston,
1970). Geometric logical reasoning was a major topic in
symbolic logic research (Chou, 1987; Arnon, 1988), leading
to geometric theorem-provers (Bouma et al., 1995), rule-
based geometric constraint solvers for computer-aided de-
sign (Aldefeld, 1988; Schreck et al., 2012), and logic-based
optimization for open-ended objectives in robotics (Tou-
ssaint, 2015). Classic work often focused on rules and
structured representations rather than learning because the
sample complexity of learning was often prohibitive for
contemporary computers.

Modern advances in learning-based approaches have opened
new avenues for using vector and convolutional representa-
tions for physical reasoning (Wu et al., 2015; 2016; 2017;
Mottaghi et al., 2016; Fragkiadaki et al., 2016; Finn et al.,
2016; Agrawal et al., 2016; Lerer et al., 2016; Li et al., 2016;
Groth et al., 2018; Bhattacharyya et al., 2018; Ebert et al.,
2018). A common limitation, however, is that due to their
relatively unstructured representations of space and objects,
these approaches tend not to scale up to complex scenes, or
generalize to scenes with different numbers of objects, etc.

Several recent studies have explored learning construction,
including learning to stack blocks by placing them at pre-
dicted stable points (Li et al., 2017), learning to attach
blocks together to stabilize an unstable stack (Hamrick et al.,
2018), learning basic block-stacking by predicting shortest
paths between current and goal states via a transition model
(Zhang et al., 2018), and learning object representations and
coarse-grained physics models for stacking blocks (Janner
et al., 2019). Though promising, in these works the physical
structures the agents construct are either very simple, or
provided explicitly as an input rather than being designed
by the agent itself. A key open challenge, which this pa-
per begins to address, is how to learn to design and build
complex structures to satisfy rich functional objectives.

A main direction we explore is object-centric representa-
tions of the scene and agent’s actions (Diuk et al., 2008;
Scholz et al., 2014), implemented with graph neural net-
works (Scarselli et al., 2009; Bronstein et al., 2017; Gilmer
et al., 2017; Battaglia et al., 2018). Within the domain of
physical reasoning, graph neural networks have been used
as forward models for predicting future states and images
(Battaglia et al., 2016; Chang et al., 2017; Watters et al.,

2017; van Steenkiste et al., 2018), and can allow efficient
learning and rich generalization. These models have also
begun to be incorporated into model-free and model-based
RL, in domains such as combinatorial optimization, motor
control, and game playing (Dai et al., 2017; Kool & Welling,
2018; Hamrick et al., 2018; Wang et al., 2018; Sanchez-
Gonzalez et al., 2018; Zambaldi et al., 2019). There are
several novel aspects to our graph network policies beyond
these existing works, including the use of multiple actions
per edge and graphs that change size during an episode.

3. Physical Construction Tasks
Our simulated task environment is a continuous,
procedurally-generated 2D world implemented in
Unity (Juliani et al., 2018) with the Box2D physics engine
(Catto, 2013). Each episode contains unmoveable obstacles,
target objects, and floor, plus movable rectangular blocks
which can be picked up and placed.

On each step of an episode, the agent chooses an available
block (from below the floor), and places it in the scene
(above the floor) by specifying its position. In all but one
task (Covering Hard—see below), there is an unlimited sup-
ply of blocks of each size, so the same block can be picked
up and placed multiple times. The agent may also attach
objects together by assigning the property of “stickiness”
to the block it is placing. Sticky objects form unbreakable,
nearly rigid bonds with objects they contact. In all but one
task (Connecting) the agent pays a cost to make a block
sticky. After the agent places a block, the environment runs
physics forward until all blocks come to rest.

An episode terminates when: (1) a movable block makes
contact with an obstacle, either because it is placed in an
overlapping location, or because they collide under physical
dynamics; (2) a maximum number of actions is exceeded;
or (3) the task-specific termination criterion is achieved
(described below). The episode always yields zero reward
when a movable block makes contact with an obstacle.

Silhouette task (Fig. 1a). The agent must place blocks
to overlap with target blocks in the scene, while avoiding
randomly positioned obstacles. The reward function is: +1
for each placed block which overlaps at least 90% with a
target block of the same size; and −0.5 for each block set
as sticky. The task-specific termination criterion is achieved
when there is at least 90% overlap with all targets.

This is similar to the task in Janner et al. (2019), and chal-
lenges agents to reason about physical support of complex
arrangements of objects and to select, position, and attach
sequences of objects accordingly. However, by fully specify-
ing the target configuration, Silhouette does not require the
agent to design a structure to satisfy a functional objective,
which is an important component of our other tasks.

Structured agents for physical construction

(a) Silhouette (c) Covering (d) Covering Hard(b) Connecting
In

iti
al

Fi
na

l

Figure 1. Construction task suite. In all tasks, dark blue objects are regular blocks, light blue blocks are “sticky”, red objects are obstacles
which cannot be touched, and grey circles indicate points where blocks have stuck together. The black line indicates the floor separating
the scene above, which is subject to physics, from the blocks below, which can be picked up and placed. (a) Silhouette task. The agent
stacks blocks to match the target blocks (depicted as light green blocks). (b) Connecting task. The agent stacks blocks to connect the
small blue target objects to the floor. (c) Covering task. The agent stacks blocks to shelter the obstacles from above. (d) Covering Hard
task. Similar to Covering, but crucially the agent has a limited supply of movable blocks. Videos of agent behaviors in these tasks are
available at https://tinyurl.com/y7wtfen9 and in Supplemental Table G.1.

Connecting task (Fig. 1b). The agent must stack blocks to
connect the floor to three different target locations, avoiding
randomly positioned obstacles arranged in layers. The re-
ward function is: +1 for each target whose center is touched
by at least one block, and 0 (no penalty) for each block set
to sticky. The task-specific termination criterion is achieved
when all targets are connected to the floor.

By not fully specifying the target configuration, the Con-
necting task requires the agent to design a structure with a
basic function—connecting targets to the floor—rather than
simply implementing it as in the Silhouette task. A wider
variety of structures could achieve success in Connecting
than Silhouette, and the solution space is much larger be-
cause the task is tailored so that solutions usually require
many more blocks.

Covering task (Fig. 1c). The agent must build a shelter that
covers all obstacles from above, without touching them. The
reward function is: +L, where L is the sum of the lengths
of the top surfaces of the obstacles which are sheltered by
blocks placed by the agent; and −2 for each block set as
sticky. The task-specific termination criterion is achieved
when at least 99% of the summed obstacle surfaces are cov-
ered. The layers of obstacles are well-separated vertically
so that the agent can build structures between them.

The Covering task requires richer reasoning about function
than the previous tasks: the purpose of the final construction
is to provide shelter to a separate object in the scene. The
task is also demanding because the obstacles may be ele-
vated far from the floor, and the cost of stickiness essentially
prohibits its use.

Covering Hard task (Fig. 1d). Similar to Covering, the

agent must build a shelter, but the task is modified to encour-
age longer term planning: there is a finite supply of movable
blocks, the distribution of obstacles is denser, and the cost of
stickiness is lower (−0.5 per sticky block). It thus incorpo-
rates key challenges of the Silhouette task (reasoning about
which blocks to make sticky), the Connecting task (rea-
soning about precise block layouts), and the Covering task
(reasoning about arch-like structures). The limited number
of blocks necessitates foresight in planning (e.g. reserving
long blocks to cover long obstacles). The reward function
and termination criterion are the same as in Covering.

4. Agents
With our suite of construction tasks, we can now tackle
the question we posed at the top of the Introduction: what
would an agent need to perform complex construction be-
haviors? We expect agents which have explicit structured
representations to perform better, due to their capacity for
relational reasoning, compositionality, and combinatorial
generalization. We implement seven construction agents
which vary in the degree of structure in their observation
types, internal representations, learning algorithms, and ac-
tion specifications, as summarized in Table 1 and Fig. 2.

4.1. Observation formats

Each construction task (Sec. 3) provides object state and/or
image observations. Both types are important for construc-
tion agents to be able to handle: we ultimately want agents
that can use symbolic inputs, e.g., the representations in
computer-aided design programs, as well as raw sensory
inputs, e.g., photographs of a construction site.

https://drive.google.com/drive/folders/1lC9rQTuKYe-XxY0KedK49ymJS0eyicqr?usp=sharing

Structured agents for physical construction

Agent Observation Encoder Policy Planning Learning alg. Action space

RNN-RS0 Object RNN MLP/vector - RS0 Continuous
CNN-RS0 Image CNN MLP/vector - RS0 Continuous
GN-RS0 Object - GN/graph - RS0 Continuous
GN-DQN Object - GN/graph - DQN Discrete
GN-DQN-MCTS Object - GN/graph MCTS DQN Discrete
CNN-GN-DQN Seg. image Per-object CNN GN/graph - DQN Discrete
CNN-GN-DQN-MCTS Seg. image Per-object CNN GN/graph MCTS DQN Discrete

Table 1. Full agent architectures. Each component is as described in Sec. 4 and also illustrated in Fig. 2. All agents can be trained with
either relative or absolute actions.

Object state: These observations contain a set of feature
vectors that communicate the objects’ positions, orienta-
tions, sizes, types (e.g., obstacle, movable, sticky, etc.).
Contact information between objects is also provided, as
well as the order in which objects were placed in the scene
(see Supplemental Sec. C).

Image: Observed images are RGB renderings of the scene,
with (x, y) coordinates appended as two extra channels.

Segmented images: The RGB scene image is combined
with a segmentation mask for each object, thus comprising
a set of segmented images (similar to Janner et al., 2019).

4.2. Encoders

We use two types of internal representations for comput-
ing policies from inputs: fixed-length vectors and directed
graphs with attributes.

CNN encoder: The convolutional neural network (CNN)
embeds an input image as a vector representation.

RNN encoder: Object state input vectors are processed se-
quentially with a recurrent neural network (RNN)—a gated
recurrent unit (GRU) (Cho et al., 2014)—in the order they
were placed in the scene, and the final hidden state vector is
used as the embedding.

Graph encoder: To convert a set of state input vectors into
a graph, we create a node for each input object, and add
edges either between all nodes or a subset of them (see
Supplemental Sec. C.2).

Per-object CNN encoder: To generate a graph-based rep-
resentation from images, we first split the input image into
segments, and generate new images with only single objects.
Each of these are passed to a CNN, and the output vectors
are used as nodes in a graph, with edges added as above.

4.3. Policies

MLP policy: Given a vector representation, we obtain a
policy using a multi-layer perceptron (MLP), which outputs

actions or Q-values depending on the learning algorithm.

GN policy: Given a graph-based representation from a
graph encoder or a per-object CNN, we apply a stack of
three graph networks (GN) (Battaglia et al., 2018) arranged
in series, where the second net performs some number of
recurrent steps, consistent with the “encode-process-decode”
architecture described in Battaglia et al. (2018). Unless
otherwise noted, we used three recurrent steps.

4.4. Actions

In typical RL and control settings that involve placing ob-
jects, the agent takes absolute actions in the frame of refer-
ence of the observation (e.g. Silver et al., 2016; 2018; Zhang
et al., 2018; Ganin et al., 2018; Janner et al., 2019). We
implement this approach in our “absolute action” agents,
where, for example, the agent might choose to “place block
D at coordinates (5.3, 7.2)”. However, learning absolute
actions scales poorly as the size of the environment grows,
because the agent must effectively re-learn its construction
policy at every location.

To support learning compositional behaviors which are more
invariant to the location in the scene (e.g. stacking one block
on top of another), we develop an object-centric alternative
to absolute actions which we term relative actions. With
relative actions, the agent takes actions in a reference frame
relative to one of the objects in the scene. This is a natural
way of expressing actions, and is similar to how humans
are thought to choose actions in some behavioral domains
(Ballard et al., 1997; Botvinick & Plaut, 2004).

The different types of actions are shown at the bottom of
Fig. 2, with details in Supplemental Sec. B.

Continuous absolute actions are 4-tuples (X,x, y, s),
where X is a horizontal cursor to choose a block from the
available blocks at the bottom of the scene, “snapping” to
the closest one, (x, y) determines its placement in the scene
and the sign of s indicates stickiness (see Sec. 3).

Continuous relative actions are 5-tuples, (X,x, y,∆x, s),

Structured agents for physical construction

Figure 2. Summary of our construction agents’ components. Each
agent is defined by an observation format, encoder, policy, learning
algorithm, and output action space. We evaluated many of the
compatible combinations of these components, as indicated by the
grey arrows. For “continuous absolute” actions, the agent picks
a block from the bottom (solid green circle), and places it in the
scene (empty green circle). For “continuous relative” actions, the
agent picks a block from the bottom (solid green circle), and places
it in the scene (empty green circle) with a relative horizontal offset
from the nearest block it snaps to. “Discrete absolute” actions
are similar to continuous absolute actions, except with discrete
coordinates. For “discrete relative” actions, the agent picks an
edge between a block at the bottom (solid green circle) and block
in the scene (empty green circle), and a relative horizontal offset.

where X and s are as before, (x, y) is used to choose a
reference block (by snapping to the closest one), and ∆x
determines where to place the objects horizontally relatively
to the reference object, the vertical positioning being auto-
matically adjusted.

Discrete absolute actions are 4-tuples (u, i, j, s) where u
is an index over the available objects, i, j indicate the dis-
crete index at which to place the object in a grid-like 2D
discretization of space, and s indicates stickiness.

Absolute actions and continuous relative actions are easily

Figure 3. Structure of the GN-DQN agents. The agent takes in
a graph-structured representation of the scene where each object
corresponds to a node in the graph, and passes this representation
through a GN. The GN produces a vector of Q-values for each
edge, corresponding to relative actions for picking a block (the
start node of the edge) and placing it on another object (the end
node of the edge) at a given offset (the edge attribute). To choose
actions, the agent takes an argmax across all edges’ Q-values and
then converts the edge and offset into (x, y) positions.

implemented by any agent that outputs a single fixed-length
continuous vector, such as that output by an MLP or the
global output feature of a GN.

Discrete relative actions are triplets, (e, i, s), where e :=
(u, v) is an edge in the input graph between the to-be-placed
block u and the selected reference block v, i is an index
over finely discretized horizontal offsets to place the chosen
block relatively to the reference block’s top surface, and s
is as before.

Discrete relative actions are straightforward to implement
with a graph-structured internal representation: if the nodes
represent objects, then the edges can represent pairwise
functions over the objects, such as “place block D on top of
block B” (see Fig. 3).

4.5. Learning algorithms

The internal vector and graph representations are used to
produce actions either by an explicit policy or a Q-function.

RS0 learning algorithm: For continuous action outputs,
we use an actor-critic learning algorithm that combines re-
trace with stochastic value gradients (denoted RS0) (Munos
et al., 2016; Heess et al., 2015; Riedmiller et al., 2018).

DQN learning algorithm: For discrete action outputs, we
use Q-learning implemented as a deep Q network (DQN)
from Mnih et al. (2015), with Q-values on the edges, similar
to Hamrick et al. (2018). See Sec. 4.4 and Fig. 3.

MCTS: Because the DQN agent outputs discrete actions,
it is straightforward to combine it with standard planning
techniques like Monte-Carlo Tree Search (Coulom, 2006;
Silver et al., 2016) (see Fig. 3). We use the base DQN

Structured agents for physical construction

0
2
4
6
8

S
ilh

o
u
e
tt

e
R

e
w

a
rd

(a) All levels (b) Hardest levels
Absolute actions

RNN-RS0

CNN-RS0

GN-RS0

GN-DQN

0

1

2

3

C
o
n
n
e
ct

in
g

R
e
w

a
rd

Relative actions

RNN-RS0

CNN-RS0

GN-RS0

GN-DQN

0
2
4
6
8

C
o
v
e
ri

n
g

R
e
w

a
rd

Absolute Relative
0

2

4

6

C
o
v
.

H
a
rd

R
e
w

a
rd

Absolute Relative

GN-RS0 R: 6.0

S
ilh

o
u
e
tt

e

(c) Best Absolute

GN-DQN R: 7.5

(d) Best Relative

RNN-RS0 R: 2.0

C
o
n
n
e
ct

in
g

GN-DQN R: 3.0

GN-RS0 R: 3.8

C
o
v
e
ri

n
g

GN-DQN R: 6.7

GN-RS0 R: 4.4

C
o
v
.

H
a
rd

GN-DQN R: 5.0

Figure 4. Comparison of absolute and relative actions for model-free agents. (a) Comparison of rewards, averaged across all levels of the
curricula. (b) The same as in (a), but for the hardest level of each curricula. (c-d) Qualitative comparison between the best-performing
absolute and relative seeds at the hardest curriculum levels in Silhouette, Connecting, and Covering.

agent as a prior for MCTS, and use MCTS with various
budgets (either only at test time, only during training, or
both), thereby modifying the distribution of experience fed
to the learner. As a baseline, we also perform MCTS without
the model-free policy prior. In all results reported in the
main text, we use the environment simulator as our model;
we also explored using learned models with mixed success
(see Supplemental Sec. E.3).

5. Experiments and results
We ran experiments to evaluate the effectiveness of different
agent architectures (see Table 1) on our construction tasks;
we also tested several heuristic baselines to estimate bounds
on our tasks (see Supplemental Sec. A.2). We focused on
quantifying the effect of structured actions (Sec. 5.1), the
effect of planning both during training and at decision time
(Sec. 5.2), zero-shot generalization performance on larger
and more complex scenes (Sec. 5.3). In all experiments,
we report results for 10 randomly initialized agents (termed
“seeds”) which were trained until convergence. Each seed
is evaluated on 10,000 scenes, and in all figures we report
median performance across seeds as well as errorbars indi-
cating worst and best seed performance.

For efficient training, we found it was important to apply
a curriculum which progressively increases the complex-

ity of the task across training episodes. In Silhouette, the
curriculum increases the number of targets. In Connecting,
it increases the elevation of the targets. In the Covering
tasks, it increases the elevation of the obstacles. Details
are available in Supplemental Sec. A.2. In our analysis, we
evaluated each seed on scenes generated either uniformly
at random across all difficulty levels, or only at the hardest
difficulty level for each task.

5.1. Relative versus absolute actions

We find that agents which use relative actions consistently
outperform those which use absolute actions. Across tasks,
almost every relative action agent converges at a similar or
higher median performance level (see Fig. 4a), and the best
relative agents achieve up to 1.7 times more reward than the
best absolute agents when averaging across all curriculum
levels. When considering only the most advanced level, the
differences are larger with factors of up to 2.4 (Fig. 4b).

Fig. 4c shows examples of the best absolute agents’ con-
structions. These outcomes are qualitatively worse than the
best relative agents’ (Fig. 4d). The absolute agents do not
anticipate the long term consequences of their actions as
well, sometimes failing to make blocks sticky when nec-
essary, or failing to place required objects at the base of a
structure, as in Fig. 4c’s Silhouette example. They also fall
into poor local minima, building stacks of blocks on the

Structured agents for physical construction

0

2

4

6

8

R
e
w

a
rd

(a) Silhouette

Train Budget

0 10
0

1

2

3
(b) Connecting

0 5 10 20 50 100
Test Budget

0

2

4

6

8

R
e
w

a
rd

(c) Covering

0 5 10 20 50 100
Test Budget

0

2

4

6
(d) Cov. Hard

R: 7.0

(e) Silhouette
R: 3.0

(f) Connecting
R: 9.0

(g) Covering
R: 2.7

(h) Cov. Hard

R: 6.5 R: 3.0 R: 7.2 R: 3.6

R: 6.0 R: 3.0 R: 10.2 R: 2.0

Figure 5. (a-d) Comparison of different training and testing budgets for the model-based GN-DQN-MCTS agents on the hardest curricula
levels. The gray dashed line corresponds to a pure-planning agent with a search budget of 1000. (e-h) Representative structures built
by GN-DQN-MCTS agents, chosen from a set of 10 random episodes for each task. The Silhouette and Connecting agents use training
budgets of 0 and test budgets of 50; the Covering agent uses a training budget of 0 and test budget of 5, and the Covering Hard agent uses
a train and test budget of 10. An example of sub-optimal behavior has been chosen for the third row when available. The entire set of
random episodes are shown in Supplemental Sec. H.

sides of the scene which fail to reach or cover objects in the
center, as in Fig. 4c’s Connecting and Covering examples.

By contrast, the best relative agents (which, across all tasks,
were GN-DQN) construct more economical solutions (e.g.,
Fig. 4d, Connecting) and discover richer strategies, such as
building arches (Fig. 4d, Covering). The GN-DQN agent’s
superior performance suggests that structured representa-
tions and relative, object-centric actions are powerful tools
for construction. Our qualitative results suggest that these
tools provide invariance to dimensions such as spatial loca-
tion, which can be seen in cases where the GN-DQN agent
re-uses local block arrangements at different heights and
locations, such as the T structures in Fig. 4g.

Most agents achieve similar levels of performance of Cover-
ing Hard: GN-RS0 has the best median performance, while
GN-DQN has the best overall seed. But inspecting the qual-
itative results (Fig. 4), even the best relative agent does not
give very strong performance. Though Covering Hard in-
volves placing fewer blocks than other tasks because of their
limited supply, reasoning about the sequence of blocks to
use, which to make sticky, etc. is indeed a challenge, which
we will address in the next section with our planning agent.

Interestingly, the GN-RS0 and GN-DQN agents have
markedly different performance despite both using the same
structured GN policy. There are a number of subtle dif-
ferences, but notably, the object-centric information con-
tained in the graph of the GN-RS0 agent must be pooled and
passed through the global attribute to produce actions, while
the GN-DQN agent directly outputs actions via the graph’s
edges. This may allow its policy to be more analogous to
the actual structure of the problem than the GN-RS0 agent.

The CNN-RS0 agent’s performance is generally poorer than
the GN-based agents’, but the observation formats are also
different: the CNN agent must learn to encode images, and
it does not receive distinct, parsed objects. To better control
for this, we train a GN-based agent from pixels, labelled
CNN-GN-DQN, described in Sec. 4. The CNN-GN-DQN
agent achieves better performance than the CNN-RS0 agent
(see Supplemental Fig. C.2). This suggests that parsing
images into objects is valuable, and should be investigated
further in future work.

5.2. Model-based versus model-free

Generally, complex construction should require longer-
term planning, rather than simply reactive decision-making.
Given a limited set of blocks, for example, it may be crucial
to reserve certain blocks for roles they uniquely satisfy in
the future. We thus augment our GN-DQN agent with a
planning mechanism based on MCTS (see Sec. 4.5) and
evaluate its performance in several conditions, varying the
search budget at training and testing time independently (a
search budget of 0 corresponds to no planning).

Our results (Fig. 5) show that planning is generally helpful,
especially in Connecting and Covering Hard. In Connecting,
planning with a train budget of 10 and test budget of 100
improves the agent’s median reward from 2.17 to 2.72 on
the hardest scenes, or from 72.5% to 90.6% of the optimal
reward of 3. In Covering Hard, planning with a train and
test budget of 10 improves the agent’s median reward from
3.60 to 4.61. Qualitatively, the planning agent appears to be
close to ceiling (Fig. 5h). Note that a pure-planning agent
(Fig. 5a-d, gray dashed line) with a budget of 1000 still
performs poorly compared to learned policies, underscoring

Structured agents for physical construction

8* 9 16

0
3
6
9

12
15

R
e
w

a
rd

(a) Silhouette
Targets

Same* Diff.

0

1

2

3

(b) Connecting
Target Locs.

RNN-RS0

CNN-RS0

GN-RS0

GN-DQN

GN-DQN-MCTS (Test Only)

3* 4

0

1

2

3

(c) Connecting
Layers

(d) Silhouette
(16 Targets)

(e) Connecting
(Diff. Target Locs.)

(f) Connecting
 (4 Layers)

Figure 6. Zero-shot generalization performance of various agents.
In all cases, asterisks indicate values seen during training. (a) In
Silhouette, we varied the number of targets from 8 to 16. (b) In
Connecting, we first varied the location of the target locations to be
either on the same level or on different levels. (c) In Connecting,
we also varied the number of obstacle layers from three to four. (d-
f) Examples of the GN-DQN-MCTS generalizing to new scenes. In
each case, the agent has a train budget of 0 and a test budget of 50.
(d) Generalization to 16 targets in Silhouette. (e) Generalization to
multi-level targets in Connecting. (f) Generalization to 4 layers of
obstacles and higher targets in Connecting.

the difficulty of the combinatorially large search space in
construction. In Supplemental Sec. E, we discuss of the
trade-offs of planning during training, testing, or both.

5.3. Generalization

We next ask: how do our agents generalize to conditions
beyond those on which they were trained? In Silhouette,
our agents only experience 1-8 targets during training, so
we test them on 9 and 16 targets. In Connecting, agents
always experience targets at the same elevation within one
scene during training, so we test them on targets appearing
at multiple different levels in the same scene (in one condi-
tion) and all at a higher elevation than experienced during
training.

We find that the GN-DQN and especially GN-DQN-MCTS
agents with relative actions generalize substantially better
than others. In Silhouette, the GN-DQN-* agents cover
nearly twice as many targets as seen during training, while
the other agents’ performances plateau or fall off dramat-
ically (Fig. 6a). In Connecting with targets at multiple
different levels, the GN-DQN and GN-DQN-MCTS agents’
performances drops only slightly, while other agents’ per-

formance drops to near 0 (Fig. 6b). With increased numbers
of obstacle layers in Connecting, both agents’ performances
drop moderately but remain much better than the less struc-
tured agents (Fig. 6c). Fig. 6d-f show the qualitative gener-
alization behavior of the GN-DQN-MCTS agent. Overall,
these generalization results provide evidence that structured
agents are more robust to scenarios which are more complex
than those in their training distribution. This is likely a con-
sequence of their ability to recognize structural similarity
and re-use learned strategies.

5.4. Iterative relational reasoning

Recurrent GNs support iterative relational reasoning by
propagating information across the scene graph. We vary
the number of recurrent steps in our GN-DQN agent to un-
derstand how its relational reasoning capacity affects task
performance. We find that increasing the number of propa-
gation steps from 1 to 3 to 5 generally improves performance
(to a point) across all tasks: in Silhouette, the median re-
wards were 3.75, 4.04 and 4.06; in Connecting, 2.49, 2.84,
and 2.81; in Covering, 3.41, 3.96, and 4.01; and in Covering
Hard, 2.62, 3.03, and 3.02, respectively.

6. Discussion
We introduced a suite of representative physical construc-
tion challenges, and a family of RL agents to solve them.
Our results suggest that graph-structured representations,
model-based planning under model-free search policies, and
object-relative actions are valuable ingredients for achiev-
ing strong performance and effective generalization. We
believe this work is the first to demonstrate agents that can
learn rich construction behaviors in complex settings with
large numbers of objects (up to 40-50 in some cases), and
can satisfy challenging functional objectives that go beyond
simply matching a pre-specified goal configuration.

Given the power of object-centric policies, future work
should seek to integrate methods for detecting and seg-
menting objects from computer vision with learned re-
lational reasoning. Regarding planning, this work only
scratches the surface, and future efforts should explore
learned models and more sophisticated search strategies,
perhaps using policy improvement (Silver et al., 2018) and
gradient-based optimization via differentiable world models
(Sanchez-Gonzalez et al., 2018). Finally, procedurally gen-
erating problem instances that require complex construction
solutions is challenging, and adversarial or other learned
approaches may be promising future directions.

Our work is only a first step toward agents which can con-
struct complex, functional structures. However we expect
approaches that combine rich structure and powerful learn-
ing will be key making fast, durable progress.

Structured agents for physical construction

7. Acknowledgements
We would like to thank Yujia Li, Hanjun Dai, Matt
Botvinick, Andrea Tacchetti, Tobias Pfaff, Cédric
Hauteville, Thomas Kipf, Andrew Bolt, Piotr Trochim, Vic-
toria Langston, Nicole Hurley, Tejas Kulkarni, Vlad Mnih,
Catalin Ionescu, Tina Zhu, Thomas Hubert, and Vinicius
Zambaldi for helpful discussions, input, and feedback on
this work.

References
Agrawal, P., Nair, A., Abbeel, P., Malik, J., and Levine, S.

Learning to poke by poking: Experiential learning of in-
tuitive physics. In Proceedings of the 30th Conference on
Neural Information Processing Systems (NeurIPS 2016),
2016.

Aldefeld, B. Variation of geometries based on a geometric-
reasoning method. Computer-Aided Design, 20(3):117–
126, 1988.

Arnon, D. Geometric reasoning with logic and algebra.
Artificial Intelligence, 37(1–3):37–60, 1988.

Azizzadenesheli, K., Yang, B., Liu, W., Lipton, E. B.
Z. C., and Anandkumar, A. Surprising negative results
for generative adversarial tree search. arXiv preprint
arXiv:1806.05780, pp. 1–25, 2018.

Ballard, D. H., Hayhoe, M. M., Pook, P. K., and Rao, R. P.
Deictic codes for the embodiment of cognition. Behav-
ioral and Brain Sciences, 20(4):723–742, 1997.

Battaglia, P., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. Interaction networks for learning about
objects, relations and physics. In Proceedings of the 30th
Conference on Neural Information Processing Systems
(NeurIPS 2016), 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, pp. 1–38, 2018.

Bhattacharyya, A., Malinowski, M., Schiele, B., and Fritz,
M. Long-term image boundary prediction. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intelli-
gence (AAAI-18), 2018.

Botvinick, M. and Plaut, D. C. Doing without schema
hierarchies: a recurrent connectionist approach to normal
and impaired routine sequential action. Psychological
review, 111(2):395, 2004.

Bouma, W., Fudosa, I., Hoffmann, C., Cai, J., and Paige, R.
Geometric constraint solver. Computer-Aided Design, 27
(6):487–501, 1995.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Catto, E. Box2D. https://box2d.org/, 2013.

Chang, M. B., Ullman, T., Torralba, A., and Tenenbaum,
J. B. A compositional object-based approach to learning
physical dynamics. In Proceedings of the 5th Interna-
tional Conference on Learning Representations (ICLR
2017), 2017.

Chen, S.-s. Advances in Spatial Reasoning, volume 2. Intel-
lect Books, 1990.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Chou, S.-C. Mechanical geometry theorem proving. Kluwer
Academic, 1987.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Dai, H., Khalil, E., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing
Systems, pp. 6348–6358, 2017.

Diuk, C., Cohen, A., and Littman, M. L. An object-oriented
representation for efficient reinforcement learning. In Pro-
ceedings of the 25th international conference on Machine
learning, pp. 240–247. ACM, 2008.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., and Levine,
S. Visual foresight: Model-based deep reinforcement
learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Finn, C., Goodfellow, I., and Levine, S. Unsupervised learn-
ing for physical interaction through video prediction. In
Proceedings of the 30th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2016), 2016.

Fragkiadaki, K., Agrawal, P., Levine, S., and Malik, J.
Learning visual predictive models of physics for play-
ing billiards. In Proceedings of the 4th International
Conference on Learning Representations (ICLR 2016),
2016.

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S., and
Vinyals, O. Synthesizing programs for images us-
ing reinforced adversarial learning. arXiv preprint
arXiv:1804.01118, 2018.

Structured agents for physical construction

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. arXiv preprint arXiv:1704.01212, 2017.

Groth, O., Fuchs, F. B., Posner, I., and Vedaldi, A. Shapes-
tacks: Learning vision-based physical intuition for gener-
alised object stacking. In Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

Guo, X., Singh, S., Lee, H., Lewis, R. L., and Wang, X.
Deep learning for real-time atari game play using offline
monte-carlo tree search planning. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 27, pp. 3338–3346. Curran Associates, Inc.,
2014.

Hamrick, J. B., Ballard, A. J., Pascanu, R., Vinyals, O.,
Heess, N., and Battaglia, P. W. Metacontrol for adaptive
imagination-based optimization. In Proceedings of the
5th International Conference on Learning Representa-
tions (ICLR 2017), 2017.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. In Proceedings of the 40th Annual Conference
of the Cognitive Science Society, 2018.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y.,
and Erez, T. Learning continuous control policies by
stochastic value gradients. In Proceedings of the 29th
Conference on Neural Information Processing Systems
(NeurIPS 2015), 2015.

Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B.,
Finn, C., and Wu, J. Reasoning about physical interac-
tions with object-oriented prediction and planning. In
International Conference on Learning Representations,
2019.

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H.,
Mattar, M., and Lange, D. Unity: A general platform
for intelligent agents. arXiv preprint arXiv:1809.02627,
2018.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M. (eds.), Machine Learning: ECML 2006, pp. 282–293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Kool, W. and Welling, M. Attention solves your TSP. arXiv
preprint arXiv:1803.08475, 2018.

Lerer, A., Gross, S., and Fergus, R. Learning physical
intuition of block towers by example. In Proceedings of
the 33rd International Conference on Machine Learning
(ICML 2016), 2016.

Li, W., Azimi, S., Leonardis, A., and Fritz, M. To fall or not
to fall: A visual approach to physical stability prediction.
arXiv preprint arXiv:1604.00066, pp. 1–20, 2016.

Li, W., Leonardis, A., and Fritz, M. Visual stability predic-
tion and its application to manipulation. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence
(AAAI-17), 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Mottaghi, R., Bagherinezhad, H., Rastegari, M., and
Farhadi, A. Newtonian image understanding: Unfolding
the dynamics of objects in static images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), 2016.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 1054–1062, 2016.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L.,
Racanière, S., Reichert, D., Weber, T., Wierstra, D., and
Battaglia, P. Learning model-based planning from scratch.
arXiv preprint arXiv:1707.06170, pp. 1–13, 2017.

Pfalzgraf, J. On geometric and topological reasoning in
robotics. Annals of Mathematics and Artificial Intelli-
gence, 19:279, 1997.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., De-
grave, J., van de Wiele, T., Mnih, V., Heess, N., and
Springenberg, J. T. Learning by playing solving sparse
reward tasks from scratch. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4344–4353, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.
Graph networks as learnable physics engines for infer-
ence and control. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), 2018.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in neural information processing systems, pp. 4967–4976,
2017.

Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20:61–80, 2009.

Structured agents for physical construction

Scholz, J., Levihn, M., Isbell, C., and Wingate, D. A physics-
based model prior for object-oriented mdps. In Interna-
tional Conference on Machine Learning, pp. 1089–1097,
2014.

Schreck, P., Mathis, P., and Narboux, J. Geometric con-
struction problem solving in computer-aided learning. In
Proceedings of the IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), volume 24, pp.
1139–1144, 2012.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of Go without human knowledge.
Nature, 550:354–359, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. SIGART Bull., 2(4):160–163, July
1991. ISSN 0163-5719. doi: 10.1145/122344.122377.

Toussaint, M. Logic-geometric programming: an
optimization-based approach to combined task and mo-
tion planning. In Proceedings of the International Con-
ference on Artificial Intelligence (IJCAI), volume 24, pp.
1930–1936, 2015.

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber,
J. Relational neural expectation maximization: unsuper-
vised discovery of objects and their interactions. In Pro-
ceedings of the 6th International Conference on Learning
Representations (ICLR 2018), 2018.

Wang, T., Liao, R., Ba, J., and Fidler, S. Nervenet: Learning
structured policy with graph neural networks. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2018.

Watters, N., Tacchetti, A., Weber, T., Pascanu, R., Battaglia,
P., and Zoran, D. Visual interaction networks: Learning a
physics simulator from video. In Proceedings of the 31st
Conference on Neural Information Processing Systems
(NeurIPS 2017), 2017.

Winston, P. Learning structural descriptions from examples.
AI Technical Reports (1964 - 2004), 1970.

Wu, J., Yildirim, I., Lim, J. J., Freeman, W. T., and Tenen-
baum, J. B. Galileo: Perceiving physical object properties
by integrating a physics engine with deep learning. In Pro-
ceedings of the 29th Conference on Neural Information
Processing Systems (NeurIPS 2015), 2015.

Wu, J., Lim, J. J., Zhang, H., Tenenbaum, J. B., and Free-
man, W. T. Physics 101: Learning physical object proper-
ties from unlabeled videos. In Proceedings of the British
Machine Vision Conference (BMVC), 2016.

Wu, J., Lu, E., Kohli, P., Freeman, W. T., and Tenenbaum,
J. B. Learning to see physics via visual de-animation. In
Proceedings of the 31st Conference on Neural Informa-
tion Processing Systems (NeurIPS 2017), 2017.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D., Lillicrap, T.,
Lockhart, E., Shanahan, M., Langston, V., Pascanu, R.,
Botvinick, M., Vinyals, O., and Battaglia, P. Deep rein-
forcement learning with relational inductive biases. In
International Conference on Learning Representations,
2019.

Zhang, A., Lerer, A., Sukhbaatar, S., Fergus, R., and Szlam,
A. Composable planning with attributes. In Proceed-
ings of the 35th International Conference on Machine
Learning (ICML 2018), 2018.

