
Pareto Optimal Streaming Unsupervised Classification

A. Proof of Results of Section 3
We now provide the proofs of the main results in our paper.

Filtration for General System: We setup some nota-
tions before proceeding to the proofs. Let the underly-
ing probability space on which the system is evolving be
(⌦,F ,P). We recall from Sec.2 that the system evolves
in stages, where each round ⌧ � 1 has four stages st 2

{0, 1, 2, 3}. In stage 0 the samples in the memory are
matched with the classifiers. In stage 1 the classifiers la-
bel the alloted samples and the sample labels get updated.
In stage 2 based on the updated labels samples either re-
enter the system or leave the system with a final label.
The history at the beginning of stage st in round ⌧ is de-
noted as H⌧

st. The sigma algebra generated by the his-
tories H⌧

st are F
⌧
st = �(H⌧

st) for i = 0, 1, 2, 3 for all
⌧ � 1. These sigma algebras further forms a filtration
F

⌧
0 ✓ F

⌧
1 ✓ F

⌧
2 ✓ F

⌧
3 ✓ F

(⌧+1)
0 , 8⌧ � 1.

There exists a sequence of r.v.s {U⌧ : ⌧ � 1} which is
independent of any other randomness in the system such
that the following statements hold for any causal policy �
and for all rounds ⌧ � 1.2
(i) The matching decision A⌧ = �0(U⌧ , H⌧

0).
(ii) The departure and the final labeling decisions
{D⌧ , {k⇤j : j 2 D⌧

} = �2(U⌧ , H⌧
2).

A.1. Independence of Routing and Belief

Proof of Lemma 3.4. Let us consider a causal policy �,
under which at slot ⌧ � 1 the state is S⌧ . For any t 2 T =
[K]|S

⌧ |, let E(t) = {sj [M] = tj : j 2 S⌧
} denote that

t is the true label for the samples in S⌧ . From Bayes’ rule
the probability of event E(t) conditioned on the past is

P(E(t)|F⌧
0) =

P(H⌧
0 |E(t))P(E(t))P

t02T P(H⌧
0 |E(t0))P(E0(t0))

We next quantify the probability of any specific history h⌧
0

given a particular event E(t).3

P(h⌧
0 |E(t)) = P(h(⌧�1)

3 \Nex(⌧�1)|E(t))

(i)
= P(h(⌧�1)

0 |E(t))P(Nex(⌧�1))
3Y

i=1

P(h(⌧�1)
i |h(⌧�1)

(i�1) , E(t))

(ii)
= P(h(⌧�1)

0 |E(t))
Y

i=1,3

P(h(⌧�1)
i |h(⌧�1)

(i�1))⇥ . . .

· · ·⇥ P(h(⌧�1)
2 |h(⌧�1)

1 , E(t))

2The existence is guaranteed for our system which evolves in
discrete time with countable decision sets at each stage.

3Here we slightly abuse notation to denote P(H⌧
i = h

⌧
i |E(t))

as P(h⌧
i |E(t)) for all E(t), i and ⌧ .

(iii)
= P(h(⌧�1)

0 |E(t))
Y

i=1,3

P(h(⌧�1)
i |h(⌧�1)

(i�1))⇥ . . .

· · ·⇥

0

BBB@
Y

i2[M]:j 6=e,
j=A(⌧�1)(i)

P(sj [i] = ŝ⌧j [i]|sj [M] = tj)

1

CCCA

(iv)
= �(h⌧

0)
⌧�1Y

⌧ 0�1

Y

i2[M]:j 6=e,
j=A(⌧�1)(i)

Ci(tj , ŝ
(⌧ 0+1)
j [i])

(v)
= �(h⌧

0)
Y

j2S⌧

Y

i2[M]

Ci(tj , ŝ
⌧
j [i]). [with Ci(k,e)=1]

In equality (iii) we use the notation

�(h⌧
0) =

⌧�1Y

⌧ 0�1

Y

i=1,2,4

P(hi(⌧
0)|h(i�1)(⌧

0)).

The terms �(h⌧
0) denote the contribution of the policy and

arrival process towards the probability P(h⌧
0 |E(t)). We ex-

plain the equalities as follows.

• In equality (i), we use the independence of the arrival
process from any other processes.

• Under the causal policy � the matching, departure and la-
beling decisions are independent of the true label, hence
E(⌧), given the history at the time of the decisions. This
is true because A⌧ = �0(U⌧ , H⌧

0) and {D⌧ , {k⇤j : j 2

D⌧
} = �2(U⌧ , H⌧

2). Thus, equality (ii) follows.

• However, the labeling events are dependent on the true
labels of the samples. Furthermore, due to independence
of the label assignment process for the OnDS model we
obtain the product form in equality (iii).

• The equality (iv) follows by iteratively carrying out the
above steps. We also use the fact that due to Assump-
tion 3.3, P(h0(1)|E(t)) = 1.

• The equality (v) follows from the observation that the
terms present in the product corresponds to the labels of
the samples in S⌧ . This holds as once the sample is la-
beled by a classifier it may never change due to the de-
terministic labeling of classifiers.

Furthermore, we have for the OnDS model

P(E(t)) =
Y

j2S⌧

P[sj [M] = tj] =
Y

j2S⌧

pg(tj).

Now by substituting the value of P(h⌧
0 |E(t)) and P(E(t)),

we obtain the following.

P(sj [M] = tj : j 2 S⌧
|F

⌧
0)

Pareto Optimal Streaming Unsupervised Classification

=
�(H⌧

0)
Q

j2S⌧ pg(tj)
Q

i2[M] Ci(tj , ŝ⌧j [i])

�(H⌧
0)
P

t02T

Q
j2S⌧ pg(tj)

Q
i2[M] Ci(tj , ŝ⌧j [i])

(vi)
=

Q
`2[K]Me ,k2[K]

⇣
pg(k)

Q
i2[M] Ci(k, `[i])

⌘n(⌧,0)
k ` (t)

P
t02T

Q
`,k

⇣
pg(k)

Q
i2[M] Ci(k, `[i])

⌘n(⌧,0)
k ` (t0)

(vii)
=

Q
`2[K]Me ,k2[K] P (`, k)

n(⌧,0)
k ` (t)

P
t02T

Q
`,k P (`, k)

n(⌧,0)
k ` (t0)

Here, n(⌧,0)
k ` (S, t) = |{j 2 S⌧ : tj = k, ŝ⌧j = `}|, 8k2[K],

`2[K]Me . By rearranging all the j that has tj = k and
the partial label as ` we obtain equality (vi). Finally, (vii)
follows simply from definition of P (`, k). This concludes
the proof for the part with st = 0 in Lemma 3.4.

For the other stages, similar argument can be used to arrive
at the conclusion presented in the lemma statement.

A.2. Pareto Region Conserving Compression of History

We now prove the characterization of the capacity region.
Before getting into the main proof we first present an out-
line for the proof.

Proof outline: The key to the proof of Theorem 3.6 is
to show that the evolution of the random variables Q`(⌧)
and infj2Dp(⌧) Accj(⌧) under any causal policy � can be
matched (in a sense which we shortly make precise) with
another causal policy, namely c�, which is a function of
a compressed history. This compress history is obtained
from the history by retaining only the partial labels of the
sample; while discarding the sample ids. This will imply
that that the policy c� achieves the same throughput and
threshold accuracy as the causal policy �. Finally, we show
as the decisions only depend on the partial labels, these can
be mapped to the choice of hyper-edges in a network as
function of (�ex, ✓th). Furthermore, we show the question
of Pareto optimality can be reduced to feasibility of a net-
work flow problem in the constructed network. As a final
step, we show the feasibility of this network flow is equiva-
lent to the feasibility of the network flow problem in Sec. 3.

Notation: In the following discussion, we use the notion
of multi-sets where the elements can be repeated. Further,
the sets are assumed to be sorted with respect to the entries.
Thus, the sets are ordered. All the equalities involving ran-
dom variables hold in almost sure sense, if not mentioned
otherwise. To differentiate a quantity related to compressed
causal policies from the same quantity for causal policies
we add the prescript c, i.e. X in causal policy is denoted as
cX in compressed causal policy.

Compressed History: We now present the compressed
history where the sample partial labels are kept but the

sample ids are dropped. Recall, for round ⌧ � 1, the
matching decision is A⌧ and the departure and the label-
ing decisions are {D⌧ , {k⇤j : j 2 D⌧

}}. The compressed
memory is given as the multi-set cS⌧ = {ŝ⌧j : j 2 S⌧

}.
Let us denote the compressed matching decisions as cA⌧

where for all i 2 [M] cA⌧ (i) = ŝ⌧j for j = A⌧ (i). The
compressed departure decisions are given as a multi-set
cD⌧ = {ŝ(⌧+1)

j : j 2 D⌧
}. Similarly, the partial labels

are cD⌧
p = {ŝ(⌧+1)

j : j 2 D⌧
p}. Finally, the labeling deci-

sions are {k⇤` : ` 2 cD⌧
}. Note that the classifier labels are

unchanged as they do not contain sample ids. These labels
are given as Cl⌧ .

The compressed histories are iteratively defined as in gen-
eral system with A⌧ replaced with cA⌧ and {D⌧ , {k⇤j : j 2
D⌧

} replaced with {cD⌧ , {k⇤` : ` 2 cD⌧
}. For all ⌧ � 1

and st 2 {0, 1, 2, 3}. Let us call the compressed version of
history H⌧

st as cH⌧
st. Similarly, we define the sigma alge-

bras cF
⌧
i and the filtrations with the random variables cH⌧

i

for i = 1, 2, 3 and ⌧ � 1.

Therefore, we have deterministic maps mapping the deci-
sions and histories with their compressed counterpart. The
deterministic maps are fA(·) for the matching decisions,
and fD(·) for the departure and labeling decisions. For
each i = 0, 1, 2, 3, there exist deterministic maps gi(·),
which maps each realization of H⌧

i to a realization of cH⌧
st,

for all ⌧ . We also define their inverse maps f�1
A (·), f�1

D (·),
and g�1

i (·).4 Note that these maps are same for all rounds
⌧ � 1.

Compressed Causal Policy: A policy is compressed
causal if the decisions depend on the compressed histories.
Specifically, for each ⌧ � 1 under a causal policy c�, the
matching cA⌧ is a random function of history cH⌧

0 and pa-
rameters P , and the departure cD⌧ and and final labeling
{k⇤` : ` 2 cD⌧

} is a random function of history cH⌧
2 and

parameters P . The class of compressed causal policies is
denoted as cC.

We now prove in the equivalence of compressed causal pol-
icy class and causal policy class w.r.t. the queue length
evolution and the accuracy of the departing samples.
Lemma A.1. Given a system P and a causal policy �,
there exists a compressed causal policy c� satisfying:
1) the queue lengths have the same distribution:

8⌧ � 1; Pc�(Q(⌧)|H1
0)=P�(Q(⌧)|H1

0) a.s.,
2) the minimum accuracy of the departing partially labeled
samples have the same distribution:

8⌧ � 1, Pc�

✓
{ inf
j2cD⌧

p

Accj(⌧)<✓th}|H
1
0

◆

= P�

✓
{ inf
j2D⌧

p

Accj(⌧)<✓th}|H
1
0

◆
a.s.

4For any map f : X ! Y , its inverse map f
�1(·) is a set

valued function f
�1(C) = {x 2 X : f(x) 2 C} for all C ✓ Y .

Pareto Optimal Streaming Unsupervised Classification

We prove Lemma A.1 shortly. Given a causal policy �, let
us first construct a compressed causal policy c� = CC(�)
which we use in the proof of Lemma A.1. The policy c�
is given as follows. For all ⌧ � 1, matching decisions
ca⌧ , departure decisions cd⌧ , and histories ch⌧

st for stages
st 2 {0, 1, 2, 3}.

P1) Pc� (cA
⌧ = ca

⌧
|cH

⌧
1 = ch

⌧
1)

= P�
�
A⌧

2 f�1
A (ca

⌧)|H⌧
1 2 g�1

1 (ch
⌧
1)
�

P2) P�Q

(cD
⌧ = cd

⌧
|cH

⌧
3 = ch

⌧
3)

= P�
�
D⌧

2 f�1
D (cd

⌧)|H⌧
3 2 g�1

3 (ch
⌧
3)
�

The following lemma relates the evolution of compressed
histories for policies c� and �.

Lemma A.2. For a given system P and a causal policy �,
the policy c� = CC(�) satisfies the following statements,
for all round ⌧ � 1 and stages st 2 {0, 1, 2, 3}, and for all
feasible histories ch⌧

(st+1), ch
⌧
st (where, H⌧

4 = H(⌧+1)
0)

P�
⇣
H⌧

(st+1) 2 g�1
(st+1)(ch

⌧
(st+1))|H

⌧
st 2 g�1

st (ch
⌧
st)
⌘

= Pc�
⇣
cH

⌧
(st+1) = ch

⌧
(st+1)|cH

⌧
i = ch

⌧
st

⌘
.

The following corollary is an easy consequence of the
above lemma.

Corollary A.3. For a given system P and a causal policy
�, the policy c� = CC(�) satisfies the following equation
for all round ⌧ � 1, stages st 2 {0, 1, 2, 3}, and feasible
histories h⌧

st.

Pc�
�
cH

⌧
st=ch

⌧
st|H

1
0

�
= P�

�
H⌧

st 2 g�1
st (ch

⌧
st)|H

1
0

�
(4)

Proof Sketch. From Lemma A.2 through repeated iteration
over the stages the proof follows.

Similar to the class of causal policies, the Pareto region of
the compressed causal policy class is defined as: c⇤() =
conv

�
c⇤()

�
, where c⇤() = {(�ex, ✓th) : 9c� 2 cC :

(�ex, ✓th) 2 ⇤c�()}. Also, recall ⇤() and ⇤() are the
counterparts for the causal policy class.

Lemma A.4. Given a OnDS model , the Pareto region of
the compressed causal policy class is equal to the Pareto
region of the class of causal policies c⇤() = ⇤()

Proof. For each (�ex, ✓th) 2 ⇤(), there exists a pol-
icy � so that (�ex, ✓th) 2 ⇤�(). But, Lemma A.1 im-
plies that there exists a compressed causal policy c� such
that (�ex, ✓th) 2 ⇤c�(). This further implies, ⇤() =

c⇤(). Finally, taking the convex closure in both sides we
obtain, ⇤() = c⇤().

Due to Lemma A.4, characterizing the Pareto region for
compressed causal policies suffice to prove Theorem 3.6.
To recap the compressed history only contain the partial
labels of the samples and is oblivious to sample ids.

A.3. Pareto Region of Compressed Causal Policy Class

As the compressed history is oblivious to the sample ids,
the evolution of the system is fully described by the evo-
lution of the count of partial labels in the system, namely
Q`(⌧) for ⌧ � 1 and ` 2 [K]Me . Further, the matching, the
departure and labeling decisions can be mapped to network
resource allocation decisions. In each round the decisions
are taken in two stages. Such two staged decision problems
arise in stochastic optimization literature (Gopalan et al.,
2012). We now describe this network resource allocation
problem.

Network of Virtual Queues: The network is formed by
virtual queues Q`(⌧) for ` 2 [K]Me . Thus, the set of nodes
is [K]Me .

Departure: The matching decisions are between the
classifiers and partial labels. We can view a matching
as an outgoing hyper-edge Ho. The set of all possi-
ble outgoing hyper-edges are ({e} [[K]Me)M . Here,
Ho(i) 6= e implies a virtual packet exists node ` =
Ho(i). Therefore, the service (maximum possible depar-
ture) for any label `, for the choice of hyper-edge Ho is
(
P

i2[M] (Ho(i) = `)). The number of departures from
node ` is min{Q`(⌧), (Ho(i) = `)}.

Here, we note that the departure from any label node ` in
round ⌧ is at most Q`(⌧). Thus even if Ho(i) 6= e the
classifier i may remain idle if there are not enough samples
of type `.

Labeling: Once matched with samples, the classifiers
provide the labels Cl⌧ to the matched samples. Due to
Lemma 3.4, if a classifier is allotted a sample with partial
label `, the labeling is i.i.d. across rounds. Specifically,
given any Ho the probability that the new labels are cl for
some cl 2 ({e}[[K])M is given as a constant P (cl,Ho).

Let L(cl,Ho) 2 ({e} [[K]Me)M denote the updated partial
labels for the samples matched with the classifiers under
ho. This implies the updated label for the sample matched
with classifier i is L(cl,Ho)(i).

Arrival: The stage 2 decisions are that of departure and
final labeling. The departure and final labeling decision is
a function of the new labels cl and the matching decision
Ho, denoted as H(Ho,cl)

in . For all cl and Ho, the set of stage
2 decisions is given as ([K] [{e})M . Here, H(Ho,cl)

in (i) =
k 2 [K] implies the sample matched with classifier i is
given a final label k and exits the system. Otherwise, if
H

(Ho,cl)
in (i) = e then the sample matched with classifier i

Pareto Optimal Streaming Unsupervised Classification

re-enters the system.

The source node {e}M has a constant arrival rate �ex. For
the choice Ho, new labels cl, and the choice H

(Ho,cl)
in , the

average number of arrival to the label node ` isP
i2[M] (H(cl,Ho)

in (i) = e ^ L
(cl,Ho)(i) = `).

Pareto Region: We now apply standard techniques in
network optimization literature (Tassiulas & Ephremides,
1992; Stolyar, 2005), to obtain the Pareto region for com-
pressed causal policies. A policy that choses the decisions
independently according to a fixed distribution is known as
static-split policy in the literature(Tassiulas & Ephremides,
1992). It is known that static-split policies can achieve the
capacity region in the two staged network resource alloca-
tion problems (Gopalan et al., 2012).

In our setting, for each (�ex, ✓th) in the Pareto region, it
suffices to consider an appropriate probability distribution
over the possible (Ho,Hin) (as function of (,�ex, ✓th)).
In particular, this distribution should ensure two things.
Firstly, to ensure stability the time average inflow and out-
flow for a non-destination node must be balanced. Thus,
feasibility of flow balance equations implies stability of the
system. Further, the distribution should satisfy a thresh-
old accuracy condition. This feasibility can be described
efficiently as a flow polytope. We next describe this flow
polytope.

Let us denote the set of partial labels which have re-
ceived labels from all classifiers as Lcmp ⌘ {`0 : 8i 2

[M], `0(i) 6= e}. The following flow polytope encodes
the sustainability of the flow conditioned on meeting the
threshold accuracy.

Remarks on Flow Polytope FP-II(,�ex, ✓th):
• In the flow balance equations, x(Ho) denotes the fraction
of time the stage 1 decision Ho is chosen. Further, given
Ho is chosen and cl are the new labels, y(H(cl,Ho)

in) denotes
the fraction of time the stage 2 decision H

(cl,Ho)
in is chosen.

• The condition (i) denotes the sample matched with classi-
fier i departs the system. Further, (ii) and (iii) denotes that,
due to random labeling, the departing sample has the partial
label ` which is a) not complete and b) the given final la-
bel has accuracy less than threshold. Thus, (i)-(iii) together
implies the threshold accuracy is violated for the choice of
H

(cl,Ho)
in , given the new labels cl and stage 1 decision Ho.

We now present our the characterization of the Pareto re-
gion of compressed causal policies.

Theorem A.5. Given a OnDS model , a pair (�ex, ✓th) 2
c⇤() if and only if flow polytope, FP-II(,�ex, ✓th) is
feasible.

Flow Polytope: FP-II(,�ex, ✓th)
Time-sharing Constraintss 8Ho, x(Ho) � 0, s X

Ho

x(Ho) = 1.

s 8Ho, cl, 8H
Ho,cl
in , y(H(Ho,cl)

in) � 0,s 8Ho, cl,
X

H
(Ho,cl)
in

y(H(Ho,cl)
in) = 1.

Flow Balance Equations:s �in({e}M) = �ex, s 8` 2 [K]Me ,�out(`) � �in(`)s 8` /2 Lcmp,�out(`) =
X

Ho

x(Ho)
X

i2[M]

(Ho(i) = `)

s 8` 2 [K]Me ,�in(`) =
X

cl,Ho

x(Ho)P (cl,Ho)⇥ . . .

· · ·⇥

X

H
Ho,cl
in

y(H(Ho,cl)
in)

X

i2[M]

arr(H(cl,Ho)
in)(i)

h
arr(H(cl,Ho)

in)(i)⌘
⇣
H

(cl,Ho)
in (i)=e ^ L

(cl,Ho)(i)=`
⌘i

Threshold Accuracy Condition:s 8Ho, cl, 8H
(cl,Ho)
in , y(H(cl,Ho)

in) = 0,

If 9i 2 [M], ` 2 ([K]Me \ Lcmp), k 2 [K],

such that (i)-(iii) hold

(i) H(cl,Ho)
in (i) = k, (Departure)

(iii) L(cl,Ho)(i) = `, (Partial label ` at departure)

(ii) acc(`, k) < ✓th.(Accuracy below threshold)

A.4. Proof of Theorem 3.6

In this subsection we prove the main theorem in Sec 3. In
the next lemma, we show that the FP-II(,�ex, ✓th) can be
reduced to FP(,�ex, ✓th) which is used in the statement
of Theorem 3.6. Lemma A.6 combined with Theorem A.5
and Lemma A.4 completes the proof of Theorem 3.6.

Lemma A.6. For a given OnUEL instance (,�ex, ✓th),
FP-II(,�ex, ✓th) is feasible if and only if FP(,�ex, ✓th)
(in Sec.3) is feasible.

Proof. We first recall, T (✓th) = {` : ` 2 [K]Me , acc⇤(`) �
✓th} [Lcmp and T

c(✓th) = [K]Me \ T (✓th).

FP feasible) FP-II is feasible: Let the FP(,�ex, ✓th)
be feasible. Then there exists at least one vector x =
{xh : h 2 T

c(✓th))} such that all the conditions for
FP(,�ex, ✓th) are met. In FP-II, we fix x as the proba-
bility distribution of the stage 1 decisions. Next, we fix the
stage 2 probability y. For each updated sample, the final
label k⇤(`i) is given if the accuracy is above the threshold,

Pareto Optimal Streaming Unsupervised Classification

otherwise the sample re-enters the system. Therefore, by
construction of y the Threshold accuracy condition is sat-
isfied. Formally, for each H

(cl,Ho)
in ,

1) y(H(cl,Ho)
in) = 1 if (1a) and (1b) hold:

(using notation `i ⌘ L
(cl,Ho)(i) below)

(1a) 8i2[M] if acc⇤(`i)�✓th, H(cl,Ho)
in (i)=k⇤(`i);

(1b) for all i2[M] if acc⇤(`i)<✓th, H(cl,Ho)
in (i)=e.

2) Otherwise, y(H(cl,Ho)
in) = 0.

For the above, choice we have in FP-II: 8` 2 T (✓th),

�in(`) =
X

cl,Ho

x(Ho)P (cl,Ho)
X

i2[M]

(L(cl,Ho)(i) = `)

=
X

Ho

x(Ho)
X

i2[M]

X

cl

P (cl,Ho) (L(cl,Ho)(i) = `)

!

=
X

Ho

x(Ho)
X

i2[M]

P (`|i,Ho(i)).

Therefore, as we know that FP(,�ex, ✓th) is feasible
for the choice x, FP-II(,�ex, ✓th) flow balance equa-
tions are also feasible. Therefore, any feasible point in
FP(,�ex, ✓th) is a feasible point in FP-II(,�ex, ✓th).

FP-II feasible) FP is feasible: Let the FP-II(,�ex, ✓th)
be feasible. Further, let (x,y0) is a feasible point in FP-II.
We now consider the previous construction of y. We claim
that (x,y) is another feasible point in FP-II(,�ex, ✓th).
Let �0

in and �in denote the outflow vectors under y0 and
y, respectively. We want to show that for all `, �in(`) 

�0in(`). This will imply that under (x,y) the flow balance
equations are satisfied. The Threshold condition is already
satisfied by (x,y) due to our construction. Moreover, the
feasibility of (x,y) will, in turn, imply (due to the first part)
that the flow polytope FP(,�ex, ✓th) is also feasible for x.

Let us fix an arbitary node `. If ` is a terminal node, i.e.
` 2 T (✓th), we have �in(`) = 0  �0in(`). If ` is a non-
terminal node, i.e. ` 2 T

c(✓th) then due to threshold ac-
curacy condition all the flow re-enters the system. Specif-
ically, we have the following where equality (i) is due to
threshold accuracy condition.

�0in(`) =
X

cl,Ho

x(Ho)P (cl,Ho)
X

H
Ho,cl
in

y0(H(Ho,cl)
in)⇥ . . .

· · ·⇥

X

i2[M]

⇣
H

(cl,Ho)
in (i)=e ^ L

(cl,Ho)(i)=`
⌘

(i)
=
X

cl,Ho

x(Ho)P (cl,Ho)
X

H
Ho,cl
in

y0(H(Ho,cl)
in)⇥ . . .

· · ·⇥

X

i2[M]

⇣
L
(cl,Ho)(i)=`

⌘

=
X

cl,Ho

x(Ho)P (cl,Ho)
X

i2[M]

⇣
L
(cl,Ho)(i)=`

⌘

= �in(`)

This completes the proof.

A.5. Proof of Technical Lemmas

Notations: We setup some notations to reduce notational
complexity. Recall, that hi(⌧) and hQ

i (⌧) represents a real-
ization of the history Hi(⌧) and cHi(⌧), resp., for all ⌧ �

1, i = {0, 1, 2, 3}. Also,we denote H0(⌧ +1) = H4(⌧) for
all ⌧ � 1. We abbreviateP(Hi(·) = hi(·)|·) as P(hi(·)|·)
for notational simplification.The term s P(chi(·)|·) are used
similarly. When the round ⌧ is clear from context, we
may drop the time index ⌧ , i.e. we may use hi and chi in-
stead of hi(⌧) and chi(⌧), respectively. We also use the
arrow notation ‘a e

! b’ to denote that the event e changes
system state a to system state b.

Proof of Lemma A.1. Consider the system (OnUEL in-
stance) P = (pg, {Ci :2 [M]},�ex, ✓th). Also con-
sider a fixed causal policy �. From � we now construct
a compressed causal policy c�, that controls the network of
queues through the decisions cA(⌧) and cD(⌧), for ⌧ � 1.
We consider the first equality next.

Pc�(Q(⌧)|H1
0) =

X

ch⌧
0

Pc�(Q(⌧)|ch
⌧
0)Pc�(ch

⌧
0 |H

1
0)

(i)
=
X

ch⌧
0

Pc�(Q(⌧)|ch
⌧
0)P�

�
H⌧

0 2 g�1
0 (ch

⌧
0)|H

1
0

�

(ii)
=
X

ch⌧
0

P�(Q(⌧)|g�1
0 (ch

⌧
0))P�

�
H⌧

0 2 g�1
0 (ch

⌧
0)|H

1
0

�

= P�
�
Q(⌧)|H1

0

�

Here, equality (i) is true from Eq. 4 in Corollary A.3 and
equality (ii) is true because the queue length Q(⌧) is a
function of the compressed history g(cH⌧

0).

Let for all ⌧ � 1, cAcc⌧min = {infj2cDp(⌧) Accj(⌧)<✓th}
and Acc⌧min = {infj2Dp(⌧) Accj(⌧)<✓th}.

Pc�(cAcc⌧min|H
1
0) =

X

ch⌧
3

Pc�(cAcc⌧min|ch
⌧
3)Pc�(ch

⌧
3 |H

1
0)

(i)
=
X

ch⌧
3

Pc�(cAcc⌧min|ch
⌧
3)P�

�
H⌧

0 2 g�1
3 (ch

⌧
3)|H

1
0

�

(ii)
=
X

ch⌧
3

P�(Acc⌧min|g
�1
3 (ch

⌧
3))P�

�
H⌧

0 2 g�1
3 (ch

⌧
3)|H

1
0

�

= P�
�
Acc⌧min|H

1
0

�

Equality (i) is true from Eq. 4 in Corollary A.3. We observe
that, due to Lemma 3.4,

Pareto Optimal Streaming Unsupervised Classification

i) for c�, infj2cD⌧
p
Accj(⌧) = inf`2cD⌧

p
acc(`, k⇤`), and

ii) for �, infj2D⌧
p
Accj(⌧) = infj2D⌧

p
acc(ŝ(⌧+1)

j , k⇤j).

It easily follows that inf`2cD⌧
p
acc(`, k⇤`) is a function of

cH⌧
3 . Further, as acc(ŝ(⌧+1)

j , k⇤j) does not depend on the

sample id j given its labels, infj2D(p)(⌧) acc(ŝ
(⌧+1)
j , k⇤j) is

a function of g3(cH⌧
3) under policy � .

This completes the proof.

Proof of Lemma A.2. Outline: The proof is divided into
three main parts. In the first part we prove the lemma for
stage st = 3, where the events under consideration are the
arrivals in time slot ⌧ . In the second part we prove the
lemma for stages st = 0, 2, where we consider the schedul-
ing and the departure events under the two policies. For this
part we crucially use the properties of c�. Finally, in the
third part we prove the stage st = 1. In this case the clas-
sifiers provide new labels to the samples sent to them. The
Lemma 3.4 plays the key role in showing the equivalence
between causal and compressed-causal policies.

Full Proof: We fix an arbitrary timeslot ⌧ � 1 and proceed
to the outlined case by case analysis for system P , and poli-
cies �, c�. Recall, for all ⌧ � 1, that h⌧

4 = h(⌧+1)
0 and the

corresponding compression operator is g0(·). Also, as we
consider round ⌧ we may drop the superscript ⌧ .

Stage 3 (Arrival): Let ch3 and ch4 be compression
of consequent histories h3 and h4. Under our arrival
model, there exists a unique arrival event (set of sam-

ples) arr(h3, h4) such that h3
arr(h3,h4)

! h4. Further,
for all h3 2 g�1

3 (ch3) and h4 2 g�1
0 (ch4), we have

|arr(h3, h4)| = carr(ch3, ch4), which is the number of
arrivals that uniquely determines the transition ch3 ! ch4.

P�
�
g�1
0 (ch4)|g

�1
3 (ch3)

�

=
X

h32g�1
3 (ch3)

P�
�
g�1
0 (ch4)|h3

�
P�
�
h3|g

�1
3 (ch3)

�

=
X

h32g�1
3 (ch3)

P�
�
{arr(h3, h4) : h4 2 g�1

0 (ch4)}|h3

�
⇥

⇥ P�
�
h3|g

�1
3 (ch3)

�

= P (carr(ch3, ch4))
X

h32g�1
3 (ch3)

P�
�
h3|g

�1
0 (ch3)

�

= Pc� (ch4|ch3) .

Stage 1 (Matching) and 3 (Departure+Labeling): The
cases where i = 1 correspond to decisions of matching and
i = 3 to decisions of departures and final labeling. The
proofs are identical for the two stages and uses the defini-
tion of c� = CC(�), crucially. We prove the statement for

st = 1. We skip the proof of the case st = 3, which is
similar.

We first fix an arbitrary pair of realizations ch0 and ch1.
We denote by a(h0, h1) the unique scheduling decision that
takes h0 to h1 under �. Similarly, ca(ch1, ch2) denotes the
unique scheduling decision that takes ch1 to ch2 under c�.
From the connection of the cA(⌧) and A(⌧) we have

f�1
A (ca(ch1, ch2)) = {a(h1, h2) : hi 2 g�1

st (chi), st = 0, 1}.

We now use the above to show the equality in the lemma
statement for st = 1.

Pc� (ch1|ch0) = Pc� (ca(ch0, ch1)|ch0)

= P�
�
f�1
A (ca(ch0, ch1))|g

�1
0 (ch0)

�
[property of c�]

=
X

h02g�1
0 (ch0)

P�
�
f�1
A (ca(ch0, ch1))|h0

�
P�
�
h0|g

�1
0 (ch0)

�

=
X

h02g�1
0 (ch0)

h12g�1
1 (ch1)

P� (A(h0, h1)|h0)P�
�
h0|g

�1
0 (ch0)

�

=
X

h02g�1
0 (ch0)

h12g�1
1 (ch1)

P� (h1|h0)P�
�
h0|g

�1
0 (ch0)

�

= P�
�
g�1
1 (ch1)|g

�1
0 (ch0)

�

Stage 2 (Classifier Labels): This scenario the systems
makes transition due to classification events.

We consider the general system first. For the history h1,
let a(h1) be the matching between samples and the classi-
fiers at time ⌧ . Here, a(h1)(i)denotes the sample received
by classifier i, if a(h1)(i) 6= e. Otherwise, the classifier
i is idle. Let us consider the event that under a(h1) the
true label of the sample allotted to classifier i is ti. We
denote this event as Ecl(a(h1), t) = {sj [M] = ti : j =
a(h1)(i), i 2 [M]}. In this classification stage a unique
set Cl(h1, h2) 2 [K]Me (i.e. the new labels in round ⌧)
maps the history h1 to history h2. Given Ecl(a(h1), t) and
the matching a(h1), the labeling events Cl(h1, h2) are in-
dependent of the policy � in the general system (due to
property of OnDS model).

The dynamics of the compressed causal policy is described
next. We denote by ca(ch1) the matching between queues
and classifiers (at time ⌧) under policy c� for history ch1.
Here, ca(ch1) corresponds to the set of matching events
[h12g�1

1 (ch1)
a(h1) in under the (original) policy �. 5

For any fixed pair ch1, ch2, and for all h1 2 g�1
1 (ch1),

h2 2 g�1
2 (ch2), the following statements are true.

5Also, ca(ch1) = [ch0ca(ch0, ch1) and f
�1
A (ca(ch1)) =

[ch0f
�1
A (ca(ch0, ch1)) = [h12g�1

1 (ch1)
a(h1).

Pareto Optimal Streaming Unsupervised Classification

(2a) The classifications events are identical, i.e.
Cl(h1, h2) := Cl(ch1, ch2).

(2b) The probabilities P(Cl(h1, h2)|Ecl(a(h1), t)) admit
the same value for any fixed t.

(2c) The probabilities P(Ecl(a(h1), t)|h1) admit the same
value for any fixed t.

From (2a),(2b), and (2c) it follows that for any
fixed pair ch1, ch2, and for all h1 2 g�1

1 (ch1),
P� (Cl(ch1, ch2)|h1) = Pc� (Cl(ch1, ch2)|ch1). This
equality essentially says that given an assignment between
classifiers and partial labels, the labels given by the classi-
fiers are identically distributed.

We now proceed with the rest of the proof. We fix a pair of
compressed histories ch1 and ch2.

P�
�
g�1
2 (ch2)|g

�1
1 (ch1)

�

=
X

h12g�1
1 (ch1)

P� (Cl(ch1, ch2)|h1)P�
�
h1|g

�1
1 (ch1)

�

=
X

h12g�1
1 (ch1)

Pc� (Cl(ch1, ch2)|ch1)P�
�
h1|g

�1
1 (ch1)

�

= Pc� (Cl(ch1, ch2)|ch1)
X

h12g�1
1 (ch1)

P�
�
h1|g

�1
1 (ch1)

�

= Pc� (ch2|ch1)

Validity of (2a),(2b), and (2C): Due to the compres-
sion property we have (2a). To see the validity of
(2b), we first observe that due to the compression prop-
erty, for all such a(h1), the partial label for the sample
matched with classifier i is the same. Formally, 8h1 2

g�1
1 (ch1), i 2 [M], ŝa(h1)(i) = ca(ch1)(i). Next, due to

Lemma 3.4, the true label distribution of any set of sam-
ples (through marginalization over the entire set) is inde-
pendent of any history given the partial labels. Therefore,
P(Cl(h1, h2)|Ecl(a(h1), t)) is a function of the partial la-
bels {ŝa(h1)(i) : i 2 [M]} and t. This implies, due to the
first observation, P(Cl(h1, h2)|Ecl(a(h1), t)) is identical
for all 8h1 2 g�1

1 (ch1) and all t. Therefore, (2b) is valid.
Similarly, due to Lemma 3.4, we have (2c). This completes
the proof of the lemma.

B. Proof of Results in Section 4
We use Lyapunov optimization techniques to provide the
delay guarantees for our algorithm. Specifically, we show
that the term L(⌧) =

P
`2[K]Me

Q2
`(⌧) has an expected neg-

ative drift. The Lemma B.1 (below) shows that in each step
the drift is negative for large enough Q2

`(⌧) and round ⌧ .
Lemma B.1. Given an OnUEL instance P=(,�ex, ✓th)
such that (�ex, ✓th)(1 + ✏g) 2 ⇤() for some ✏g > 0, and
an (↵, �) oracle with ↵,� > 0; under Algorithm 1 with

parameters ✏s(⌧) =
log(⌧)

⌧ and ✏✓(⌧) = 2
log(⌧)↵ ;

E [L(⌧ + 1)� L(⌧)|Q(⌧)]

 �
✏g�min

(1+✏g)

X

`2T c(✓th(1+✏g))

Q`(⌧) +MC1 (⌧ < C1)

+ C0 +M2 +O
⇣

1
log(⌧)min(↵,�)

⌘
Q`(⌧), (5)

where C0 := M2 + �2max, C1 := O(exp(✏�1/↵
g)), and

�min :=
�
min`2T c(✓th(1+✏g))

P
k P (`, k)

�
�ex.

The proof has a two key steps. Firstly, we need to make
use of Lemma 3.4, to show that the max-weight schedul-
ing maximizes the expected drift conditioned on the queue
length. Secondly, we need to show that with log(⌧)/⌧ ex-
ploration rate and ✏✓(⌧) cushion for accuracy the effect of
oracle error can be nullified. In this step, we note that the
underlying network changes as the terminal sets changes
as a function of the oracle output. We first present a brief
review of the necessary parts for the proof of this Lemma.
We then prove the lemma. Finally, we provide a sketch of
how this lemma leads to the Theorem 4.1.

B.1. Preliminaries

Recalling Necessary parts in Sec 3: Let us recall some
necessary notations from Sec 3. The terminal set is given as
T (✓th) refers to the terminal labels nodes. For each of these
nodes, either (i) all classifiers are used or (ii) its accuracy
acc(`, k) � ✓th.

We are given a OnUEL instance P = (,�ex, ✓th). Addi-
tionally, for some ✏g > 0 we know that (�ex, ✓th)(1+✏g) 2
⇤(). Therefore, in view of Theorem 3.6, there exists a
probability distribution over the hyper-edge, namely xSS ,
such that FP(,�ex(1+✏g), ✓th(1+✏g)) is feasible. There-
fore, the following equations are true.

s �in({e}M) = �ex(1 + ✏g) s 8`,�out(`) � �in(`)s 8` 6= {e}M ,�in(`) =
X

h

xh

X

i2[M]

P (`|i, h(i))

s 8` /2 T (✓th(1+✏g)),�out(`)=
X

h

xh

X

i2[M]

(h(i)=`)

Recalling Dynamics of Algorithm 1: Let us recall that the
hyper-edges h in the graph define matchings in our system.
The max-weight algorithm in any round ⌧ � 1, selects the
matching/hyper-edge that maximizes the function
X

`2bT c(⌧�1)

X

i2[M]

Q`(⌧)
⇣

(h(i) = `)� bP (`|i, h(i))
⌘
. (opt1)

Let us call the selected matching as h⌧ in round ⌧ , for all
⌧ � 1. Further, this maximization involves the estimation

Pareto Optimal Streaming Unsupervised Classification

error. Let in round ⌧ , for all ⌧ � 1, h⇤⌧ be the optimal
matching without any error, i.e. h⇤⌧ maximizes (note bP
is replaced with P)
X

`2bT c(⌧�1)

X

i2[M]

Q`(⌧) ((h(i) = `)�P (`|i, h(i))) . (opt2)

Further, after the partial label h⌧ (i) is matched with i, un-
der Algorithm 1, we denote the event that the new partial
label is `0, as (`0|i, h⌧ (i)). Therefore, the decrease in
Q`(⌧) due to matching, R`(⌧) =

P
i2[M] (h⌧ (i) = `)

and the increase in Q`(⌧) due to subsequent label update is
N`(⌧) =

P
i2[M] (`0|i, h⌧ (i)).

Finally, we recall that the oracle in consideration is an
(↵,�) oracle which has been defined as follows (repeated
here for easy reference).

(✏(�), �(�)) Oracle: An oracle is an‘(↵, �) oracle’ if and
only if, for all (i) partial labels `, `0 2 [K], (ii) classifiers
i 2 [M], and (iii) classes k 2 [K], the oracle with access
to � exploration samples satisfies,
(1) |acc(`, k)� cacc(`, k)|  ��↵ w.p. � (1� ���),
(2) |P (`0|i, `)� bP (`0|i, `)|  ��↵ w.p. � (1� ���).

Dynamic Terminal Sets: The terminal nodes are fixed for
a given thetath. However, when estimation error is there,
the set of terminal nodes change across rounds. We need
to define the terminal sets at different rounds. The comple-
ments in the following definition are w.r.t. the set [K]Me .

For round ⌧ � 1, let us define
(i) the terminal set estimated by oracle inputs cacc⌧ (`, k) as

bT (⌧) = Lcmp [{` : cacc⇤⌧ (`) � ✓th + ✏✓(⌧)};
(ii) the intersection between the estimated non-terminal
sets in round (⌧�1) and ⌧ as bT c

\ (⌧) := bT c(⌧) \ bT c(⌧�1);
(iii) the parts which are not in the intersection bT c

\ (⌧) are
bT c
\ (⌧

0) := bT c(⌧ 0) \ bT c
\ (⌧), for ⌧ 0 = ⌧, ⌧�1;

(iv) the labels in the estimated terminal set that are not in
the original terminal set are denoted as

bT c
+(⌧) := bT c(⌧) \ T c(✓th(1 + ✏g));

(v) the labels in the original terminal set that are not in the
estimated terminal set are denoted as

bT c
�(⌧) := T

c(✓th(1 + ✏g)) \ bT c(⌧).

B.2. Proof of Lemma B.1

One of key aspect of the designed algorithm is that there
are two separate stages of decisions involved in the dynam-
ics of the queues. We need to account for the effect of such
dynamic changes in terminal sets in our analysis. The idea
is to separate out the effect of estimation error and explo-
ration events. Let us denote the estimation in round ⌧ as
cacc⌧ (·) and bP ⌧

 (·)

L(⌧ + 1)� L(⌧) = 1
2

X

`2[K]Me

�
Q2

`(⌧ + 1)�Q2
`(⌧)

�

= 1
2

0

@
X

`2bT c(⌧)

Q2
`(⌧ + 1)�

X

`2bT c(⌧�1)

Q2
`(⌧)

1

A

= 1
2

X

`2bT c(⌧�1)

�
Q2

`(⌧ + 1)�Q2
`(⌧)

�

+ 1
2

X

`2bT c
\ (⌧)

Q2
`(⌧+1)

(⇤1)
= 1

2

X

`2bT c(⌧�1)

�
Q2

`(⌧ + 1)�Q2
`(⌧)

�
+M2.

Validity of (*1): The term 1
2

P
`2bT c

\ (⌧) Q
2
`(⌧+1) admits

the upper bound M2. This is true because for all ` 2

bT c
\ (⌧), Q`(⌧) = 0. Therefore, Q`(⌧+1) for ` 2 bT c

\ (⌧) can
only increase through arrivals in round ⌧ . Further, there are
at most M arrivals in each round, which leads to the upper
bound. Finally, for all ` 2 bT c

\ (⌧), Q`(⌧) = 0 as at the
end of round (⌧�1) the terminal set is bT (⌧�1). Recall, all
samples in the terminal set departs under Algorithm 1.

We now proceed with bounding the first term in the final
equality (⇤1) above as,

1
2

X

`2bT c(⌧�1)

�
Q2

`(⌧ + 1)�Q2
`(⌧)

�



X

`2bT c(⌧�1)

Q`(⌧)(R`(⌧)�N`(⌧)) +
1
2

X

`2bT c(⌧�1)

(N2
` +R2

`)



X

`2bT c(⌧�1)

Q`(⌧)(R`(⌧)�N`(⌧)) + C0

(⇤2)
=

X

`2bT c(⌧�1)
i2[M]

Q`(⌧) ((`|i, h⌧ (i))� (h⌧ (i)=`))

+ C0 +Q{e}M (⌧)Nex(⌧). [Here, C0 := (M2 + 0.5�2max)]

Next our objective is to bound the expectation of such event
conditioned on the current queue length vector Q(⌧). For
this purpose, we need to consider three separate events in
round ⌧ � 1.

• The first event E⌧
1 is exploration which happens with

probability ✏s(⌧) = log(⌧)
⌧ , by construction of our algo-

rithm.

• The second event E⌧
2 is that the error in estimating pa-

rameter cacc(·) and bP (·) is greater than log(⌧)�↵. Us-
ing Chernoff bounds, the number of exploration samples
up to time ⌧ is ⌦(log(⌧)) with probability at least (1 �

1/⌧ log(⌧)). Therefore, using union bound and the property
of an (↵,�) oracle, the probability of E⌧

2 is upper bounded
as O(log(⌧)��).

• The third event E⌧
3 is the ‘good event’, where the Algo-

Pareto Optimal Streaming Unsupervised Classification

rithm 1 exploits and the oracle ensures that the estimation
error is less than log(⌧)�↵.

The Event E⌧3: We consider the good event first and con-
tinue bounding the queue dependent term in equation (⇤2),
To avoid clutter let E⌧

3 [·] = E[·|Q(⌧), E⌧
3].

E⌧
3

2

6664
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) ((`|i, h⌧ (i))� (h⌧ (i)))

3

7775

(i)
= E⌧

3

2

6664
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) (P (`|i, h
⌧ (i))� (h⌧ (i)))

3

7775

 E⌧
3

2

6664
X

`2bT c(⌧�1)
i2[M]

Q`(⌧)
⇣
bP (`|i, h⌧ (i))� (h⌧ (i)=`)

⌘

3

7775

+
X

`2bT c(⌧�1)
i2[M]

Q`(⌧)E⌧
3

h
| bP (`|i, h⌧ (i))� bP (`|i, h⌧ (i))|

i

(ii)
 E⌧

3

2

6664
X

`2bT c(⌧�1)
i2[M]

Q`(⌧)
⇣
bP (`|i, h⌧ (i))� (h⌧ (i)=`)

⌘

3

7775

+
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

(iii)
 E⌧

3

2

6664
X

`2bT c(⌧�1)
i2[M]

Q`(⌧)
⇣
bP (`|i, h⇤⌧ (i))� (h⇤⌧ (i)=`)

⌘

3

7775

+
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

(iv)
 E⌧

3

2

6664
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) (P (`|i, h
⇤⌧ (i))� (h⇤⌧ (i)=`))

3

7775

+ 2
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

(v)
 E⌧

3

2

6664
X

h

x̃h

X

`2bT c(⌧�1)
i2[M]

Q`(⌧) (P (`|i, h)� (h(i)=`))

3

7775

+ 2
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

(vi)


X

h

x̃h

X

`2T c(✓th(1+✏g))
i2[M]

Q`(⌧) (P (`|i, h)� (h(i)=`))

+M
X

`2bT c
+(⌧)

Q`(⌧) + 2
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

(vii)


X

h

x̃h

X

`2T c(✓th(1+✏g))
i2[M]

Q`(⌧) (P (`|i, h)� (h(i)=`))

+MC1 (⌧ < C1) + 2
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

(⇤3)
 �

✏g
(1+✏g)

X

`2T c(✓th(1+✏g))\{e}M

Q`(⌧)�̃in(`)

� (1 + ✏g)�exQ{e}M (⌧) + 2
X

`2bT c(⌧�1)
i2[M]

Q`(⌧) log(⌧)
�↵

+MC1 (⌧ < C1)

Validity of the Relations (i)-(vii):

Case (i): To obtain the expectation we average over the
classifier labeling events. Due to Lemma3.4 the equality
follows.
Case (ii), and Case (iv): The validity is due to the bounded
error under event E3.
Case (iii): The validity is due to the fact that h⌧ optimizes
the term in equation (opt1).
Case (v): This follows because h⇤⌧ optimizes the term in
equation (opt2).
Case(vi): Firstly, the inner term is a function of Q(⌧),
therefore the expectation E⌧

3 [·] can be removed. Secondly,
Q`(⌧) = 0 for all ` /2 bT (⌧�1). Therefore, we only need to
consider the queue lengths for ` 2 bT c

+(⌧).
Case(vii): Furthermore, due to the bounded error property
of the oracle, we know that there exists a C1 ⌘ ⌧0 

O(exp(✏�1/↵
g)), such that conditioned on E

⌧
3 for all ⌧ � ⌧0

cacc⇤,⌧ (`, k) + ✏✓ < ✓th + ✏g . Thus for all ⌧ � ⌧0 we have
under bE⌧

3 , ` 2 bT (⌧�1) \ T
c(✓th(1 + ✏g)), which implies

bT c
+(⌧) = ;.

Validity of the Relation (*3): The validity of (*3) is stan-
dard in network optimization literature, at least dating back
to (Tassiulas & Ephremides, 1992). As a proof sketch, we
may view that ✏g�ex fictitious flow is passing through the
network . Under this flow, the unused capacity for each
` is ✏g

(1+✏g)
flow of the input flow �in(`). Thus the gap

of ✏g
(1+✏g)

�̃in(`) is present between the output flow �̃out(`)

Pareto Optimal Streaming Unsupervised Classification

and the input flow �̃in(`). The distribution over h is given
as xSS , which then consists of two parts x̃ � xSS that
corresponds to the real part of the flow. The reaming part
(xSS

� x̃) corresponds to the fictitious part of the flow.

Furthermore, due to Bayesian routing it can be argued that
at label node ` 2 T

c(✓th(1 + ✏g)), the flow �̃in(`) is
at least

P
k P (`, k)�ex. Therefore, the uniform bound

over all ` for a fixed �ex, ✓th, and ✏g is �min :=�
min`2T c(✓th(1+✏g))

P
k P (`, k)

�
�ex.

The Event E
⌧
1 and E

⌧
2 : We next consider the other two

events next. In both these events, we have the trivial upper
bound of 2M

P
`2T c(✓th(1+✏g))

Q`(⌧).

The Drift Inequality: We now provide the drift bound.
Putting the cases together along with their respective proba-
bilities, and accounting for the other terms in (1*) and (2*),
we obtain the following.

E [L(⌧ + 1)� L(⌧)|Q(⌧)]

 �
✏g�min

(1+✏g)

X

`2T c(✓th(1+✏g))

Q`(⌧) +MC1 (⌧ < C1)

+ C0 +M2 +O
⇣

1
log(⌧)min(↵,�)

⌘
Q`(⌧). (6)

B.3. Proof of Theorem 4.1

Proof Sketch. Following standard arguments in Lyapunov
stability (Neely et al., 2005) we can argue that QMW

sum 

O
⇣

max(�2
max,M

2)
✏g�min

⌘
. This completes the first part of Theo-

rem 4.1.

The second part of the proof follows from the Bayesian
departure and the properties of the oracle. Specifically,
for the choice of the parameter ✏✓ = 2 log(⌧)�↵, given
the event E

⌧
3 , the terminal set at round ⌧ contains the

set T (✓th), i.e. bT (⌧)  T (✓th). This is true because,
underE⌧

3 the error in accuracy cacc(`, k) � acc(`, k)| 

log(⌧)�↵. Therefore, due to Lemma 3.4 this means that
under E⌧

3 , {infj2D⌧
p
Acc(j)} � ✓th. Furthermore, E⌧

3 hap-
pens with probability at least ⌧�log(⌧). Thus, we obtain
P({infj2D⌧

p
Acc(j)} < ✓th)  ⌧�log(⌧). Averaging these

quantities over time completes the proof.

C. Proof of Section 5
In this section we provide proof and elaborations on the
results presented in Section 5.

Inefficiency of the Previous Oracle: The algorithm de-
signed in (Zhang et al., 2014) uses a robust tensor decom-
position step (line 2b in Algo.1 therein) which is the most
time consuming part. In order to achieve the desired accu-
racy we require performing tensor power updates starting
from O(K log(K) log(1/�U)) randomly initialized points.

For an (↵,�) oracle in each round O(� log(�)) time is
required once � exploration samples are collected. As
� ! 1 the time required per round also grows unbounded.

Proof Sketch of Lemma 5.2. We provide a proof sketch of
Lemma 5.2 where we ignore the dependence on constant
terms such as K, M , and the minimum and maximum
eigenvalues of the tensor. Our focus is solely on the de-
pendence on ⌧ .

To recall, instead of reinitializing the eigenvectors, we
reuse the recovered eigenvectors from past rounds. In
particular, we keep track of the eigenvectors recovered
from stage (⌧�1) and check whether it satisfies the
stopping criterion (i.e. Eq. 3 in Algorithm 2) developed
in (Anandkumar et al., 2015). If the condition is satisfied
we do not require any initialization.

Rare Initialization: As long as the noise in the estimated
tensor do not change, the set of eigenvectors continues
to satisfy the condition by Lemma 5.1 and Lemma C.2
(Anandkumar et al., 2015), conditioned on the event that
the tensor error is bounded by a constant value. At round
⌧ � 1, with probability at least (1 � log(⌧)��) this event
holds for large enough ⌧ . We assume this event holds for
the following paragraph for any � < 2.

Fast Decay: If such a restart happens, at time ⌧ , due to
quadratic decay of robust tensor power method (Lemma
5.1 in (Anandkumar et al., 2015)), we achieve an error less
than log(⌧)��0

within a O(log log log(⌧)) time frame de-
terministically, for any constant �0 > 0, given the tensor
estimation error is of the same order. Due to Lemma 1 in
Appendix A in (Zhang et al., 2014), we know that the ten-
sor error after round ⌧ will be of the order of log(⌧)�1.
Thus we may take any �0 < 1 for this step.

Decay completion before restart: Let prst(⌧) be the prob-
ability of such a restart at time ⌧ . Then for by union
bound we have the probability of failure events as at most
prstO(log log log(⌧)), at round ⌧ . Finally, we note that the
tensor is updated ‘only’ during the exploration instances.
Therefore, at time ⌧ the probability of restart is log(⌧)/⌧ .
Therefore, prstO(log log log(⌧)) = Õ(log(⌧)/t).

Bounding the Bad events: Therefore, it follows through
union bound over the two bad events— (i) tensor error is
less than a given constant and (ii) the last failure events
happened within O(log log log(⌧)) rounds, that with prob-
ability at least (1 � log(⌧)��) we have the error in time ⌧
bounded from above by log(⌧)��0

.

Furthermore, we know that with extremely high probability
(1�⌧� log(⌧)) �(⌧), i.e. the number of exploration samples
at time ⌧ , is of the order ⇥(log�2(⌧)). Therefore, we have
for Algorithm 2 error in cacc(·) and bP (·) is bounded by
���0/2 with probability (1 � ���/2). This completes the

Pareto Optimal Streaming Unsupervised Classification

proof of the above lemma, with any ↵ < 1/2 and with any
� < 1.

Time Complexity: Finally, the time taken by the algorithm
comprises of the time spent in the while loop (in line 8) and
in the remaining parts. In the remaining parts the time com-
plexity is constant (depending on M and K). To complete
the proof we consider the amortized time complexity in the
while loop. As discussed earlier, the while loop is not en-
tered if there is no exploration events, thus the rate at which
the while loop is entered at time ⌧ is log(⌧)/⌧ . Further-
more, at time ⌧ , we spent log log(log(⌧)) iterations in the
while loop with high probability. Therefore, the amortized
time complexity of computations inside the while loop is
vanishing as Õ(log(⌧)/⌧).

D. Ensemble Property
The first ensemble comprises of three Alexnet, one VGG-
19, and two Resnet-18 neural networks.(Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014; He et al., 2016). The
confusion matrices for this matrices are given in Fig.4.

2

4
0.632 0.165 0.203
0.185 0.655 0.160
0.272 0.131 0.597

3

5

(a) First AlexNet

2

4
0.610 0.154 0.236
0.230 0.633 0.137
0.296 0.159 0.545

3

5

(b) Second AlexNet2

4
0.635 0.123 0.241
0.226 0.583 0.191
0.279 0.098 0.623

3

5

(c) Third AlexNet

2

4
0.888 0.041 0.071
0.052 0.916 0.032
0.123 0.043 0.834

3

5

(d) Second VGG-192

4
0.897 0.044 0.059
0.057 0.914 0.029
0.131 0.049 0.820

3

5

(e) First Resnet-18

2

4
0.925 0.022 0.053
0.057 0.917 0.026
0.134 0.035 0.831

3

5

(f) Second Resnet-18

Figure 3: Confusion Matrices of Ensemble-1

The second ensemble comprises of one VGG-11, one
VGG-16, two VGG-19, and two Resnet-18 neural net-
works.(Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; He et al., 2016). The confusion matrices for this ma-
trices are given in Fig.4.

2

66664

0.81 0.015 0.045 0.091 0.031
0.012 0.913 0.018 0.030 0.026
0.048 0.019 0.857 0.037 0.039
0.082 0.033 0.030 0.820 0.035
0.027 0.038 0.034 0.035 0.866

3

77775

(a) VGG-112

66664

0.799 0.018 0.066 0.076 0.041
0.009 0.903 0.018 0.025 0.043
0.064 0.028 0.824 0.024 0.061
0.087 0.037 0.043 0.797 0.035
0.015 0.033 0.030 0.025 0.898

3

77775

(b) VGG-162

66664

0.822 0.009 0.060 0.090 0.019
0.011 0.919 0.022 0.018 0.030
0.053 0.019 0.864 0.025 0.038
0.081 0.036 0.057 0.794 0.032
0.018 0.028 0.036 0.034 0.884

3

77775

(c) First VGG-192

66664

0.808 0.009 0.052 0.099 0.032
0.015 0.888 0.017 0.046 0.033
0.058 0.021 0.838 0.040 0.044
0.079 0.025 0.038 0.820 0.037
0.022 0.032 0.041 0.030 0.875

3

77775

(d) Second VGG-192

66664

0.850 0.017 0.049 0.067 0.018
0.019 0.925 0.015 0.024 0.016
0.050 0.017 0.881 0.019 0.032
0.084 0.028 0.035 0.827 0.026
0.021 0.027 0.027 0.025 0.900

3

77775

(e) First Resnet-182

66664

0.825 0.019 0.057 0.067 0.032
0.011 0.924 0.018 0.019 0.027
0.054 0.024 0.859 0.015 0.048
0.101 0.041 0.035 0.792 0.032
0.019 0.038 0.026 0.024 0.892

3

77775

(f) Second Resnet-18

Figure 4: Confusion Matrices of Ensemble-2

E. Performance Comparison
In this section we show that our proposed algorithm per-
forms better than a random scheduler.

Random Scheduler: The random scheduler is a param-
eterized by the number of classifiers per sample, nclf 2

(0,M), where M is the number of classifiers. In each
time-slot, a we schedule a random matching between the
samples and the classifiers. Each sample leaves the sys-
tem after either receiving dnclfe number of labels w.p.
(nclf � bnclfc), or bnclfc number of labels. The sam-
ples are returned to the memory until it collects the required

Pareto Optimal Streaming Unsupervised Classification

number of labels. Upon leaving the system, the maximum
a posteriori prediction is used as the sample label.

Pareto Region of Random Scheduler: As we increase
nclf , the average accuracy of the random scheduler in-
creases, whereas the maximum arrival rate supported ,
which is equal to M/nclf , decreases as the number of clas-
sifiers are fixed. The random scheduler is not adaptive to
the labels collected by any sample as the number of classi-
fiers are a-priori determined. Due to this reason, the ran-
dom scheduler can not support threshold accuracy larger
than kpgk1 for nclf < M (i.e. each sample is sent to
all the classifiers). Therefore, the random scheduler has a
bi-modal Pareto region (�, ✓th) 2 [0,1) ⇥ [0, kpgk1] [
[0, 1)⇥ (kpgk1, 1].

Empirical Evaluation: We use the same experimental
setup as Section 6. Recall that in the first the first set-
ting, the dataset has three groups: (airplanes, ships, trucks,
cars), (birds, frogs cats), and (dogs, deer, horses) and the
ensemble has 6 classifiers - three Alexnet, one VGG-19,
and two ResNet-18 neural nets (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; He et al., 2016).

In the second, we have the dataset with five groups- (air-
planes, ships), (trucks, cars), (birds, frogs) (cats, dogs)
and (deer, horses), and the ensemble with 6 classifiers- one
VGG-11 , one VGG-16, two VGG-19, and two ResNet-18
neural nets.

(a) Max-weight Scheduler
and Bayesian Labeling

(b) Random Scheduler
and Bayesian Labeling

Figure 5: Comparison for Ensemble 1

(a) Max-weight Scheduler
and Bayesian Labeling

(b) Random Scheduler
and Bayesian Labeling

Figure 6: Comparison for Ensemble 2

We compare the performance of our algorithm against the
Random Scheduler, for the two above mentioned settings
by showing the average accuracy vs arrival rate plots. In

the two figures, the circles’ sizes (also the varying color)
depict the logarithm of the average queue length. In Fig. 5,
for the first setting we observe that for arrival rate between
1 to 3 samples/slot the difference in average accuracy is
2.5% to 5% larger for the proposed algorithm. Similarly,
in Fig. 6, for the second setting we observe that for arrival
rate between 2 to 3 samples/slot the difference in average
accuracy is 1.5% to 2% larger for the proposed algorithm.
In summary, over the range of arrival rates we examined,
our proposed algorithm performs better than, or equiva-
lently to random scheduling.

Theoretically and empirically comparing the proposed
Pareto optimal algorithm with other simple algorithms is
an interesting future work.

