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Abstract

We study an online and streaming unsupervised
classification system. Our setting consists of a
collection of classifiers (with unknown confusion
matrices) each of which can classify one sam-
ple per unit time, and which are accessed by a
stream of unlabeled samples. Each sample is dis-
patched to one or more classifiers, and depending
on the labels collected from these classifiers, may
be sent to other classifiers to collect additional
labels. The labels are continually aggregated.
Once the aggregated label has high enough accu-
racy (pre-specified threshold for accuracy) or the
sample is sent to all the classifiers, the now la-
beled sample is ejected from the system. For any
given pre-specified accuracy threshold, the ob-
jective is to sustain the maximum possible sam-
ple arrival rate, such that the number of samples
in memory does not grow unbounded. In this pa-
per, we characterize the Pareto-optimal region of
accuracy and arrival rate, and develop an algo-
rithm that can operate at any point within this re-
gion. Our algorithm uses queueing-based rout-
ing and scheduling approaches combined with
a novel online tensor decomposition method to
learn the hidden parameters, to Pareto-optimality
guarantees. We finally verify our theoretical
results through simulations on two ensembles
formed using AlexNet, VGG, and ResNet deep
image classifiers.

1. Introduction

Computational outsourcing, via the cloud, is becoming in-
creasingly important. However, the efficacy of cloud com-
puting agents often remains unknown (e.g. task process-
ing on Mechanical Turk, where the human agents have
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unknown efficiencies). Furthermore, ground truth data
needed to evaluate the agents’ performance is often absent.

Such problems must be addressed through an ensemble of
classifiers, operating in an unsupervised setting (i.e. Unsu-
pervised Ensemble Learning—UEL). Over the past three
decades, significant theoretical and empirical research has
been performed in this area (Dawid & Skene, 1979; Li
etal., 2013; Zhang et al., 2014; Jain & Oh, 2014; Jaffe et al.,
2016; Shaham et al., 2016). In particular, crowdsourcing,
which focuses on selecting and aggregating a large num-
ber of classifiers, has an extensive literature (Karger et al.,
2011; 2014; Ok et al., 2016) culminating in optimal aggre-
gation schemes. The key focuses of most previous works
are 1) from a crowdsourcing perspective, choosing a small
subset of an effectively infinite pool of classifiers for each
sample, and 2) from an unsupervised learning perspective,
offline/one-shot classification of a set of samples (see Sec-
tion 7 for related work).

We take a somewhat different approach than the traditional
crowdsourcing and UEL. Our system consists of a fixed
ensemble of deterministic classifiers, each of which has
a fixed processing speed. Such classifiers are available in
many emerging fields such as cloud computation or human-
in-the-loop computation. As a motivating example, con-
sider an ensemble of both human experts and third party
neural network classifiers, which are jointly tasked to label
images in real time. The individual labeling characteristics
of these classifiers are often unknown; for human agents
because the agents have not been evaluated sufficiently in
the past, and for DNNs, due to contractual or privacy rea-
sons (e.g. the neural network was downloaded from the
web where it was previously trained on an unknown data
set). Importantly, these classifiers are deterministic when
the DNNs have fixed weights and the humans have fixed
opinions (i.e. repeatedly providing the same sample to an
agent will not result in changing labels).

In our streaming model, samples (e.g. images) arrive on-
line and are assigned to an ensemble of expert classifiers.
Each classifier is characterized by a latent confusion ma-
trix and can process one sample per time slot. For each
sample, the labels are continually collected and aggregated
as it sequentially passes through distinct classifiers. During
the process of aggregation once the sample achieves a pre-
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specified desired accuracy, it gets ejected from the system.
Furthermore, in our fixed ensemble, repeated access for a
specific classifier results in the same output. Thus, when
classification by all the classifiers gets completed, a sample
is removed even if desired accuracy is not achieved.

Two key features in our system are: (i) the sequential se-
lection of classifiers depends on the current set of collected
labels, and (ii) the decision to either eject a sample or con-
tinue to acquire additional labels also depends on the cur-
rent set of collected labels. Sustaining a high arrival rate
requires that the average number of classifiers used to la-
bel a sample be small, because each classifier has limited
processing speed. Yet, obtaining a high threshold accuracy
requires that the average number of classifiers used to la-
bel a sample be large, because larger ensembles are more
accurate. This is a fundamental trade-off in our system.

1.1. Our Contribution
Our main contributions are as follows.

1. We define and characterize the notion of a Pareto region
for sample arrival rate and threshold accuracy in the stream-
ing, online Dawid-Skene model. We show that the poste-
rior class distribution for a set of samples under any history
dependent algorithm is independent of that history, given
the partial label collected by the samples (Lemma 3.4).
Using this conditional independence, we characterize the
Pareto region as a feasible network flow (Theorem 3.6).

2. We design a scheduling algorithm, which is inspired by
max-weight scheduling in stochastic networks, but uses a
threshold based departure and maximum likelihood label-
ing. We show it achieves any point in the interior of the
Pareto region (Theorem 4.1). The designed algorithm does
not assume knowledge of arrival rate or classifier statistics.
Using an explore-exploit strategy we learn these parame-
ters online, with a spectral estimation technique.

3. Off-the-shelf unsupervised learning techniques are com-
putationally prohibitive for the online learning of hidden
parameters. We develop a novel online Tensor decompo-
sition algorithm that reuses eigenvectors from the previous
round. We show such reuse along with the application of
the stopping criteria in (Anandkumar et al., 2015) decreases
the computational complexity (Lemma5.2).

4. Finally, we validate our theoretical results using en-
sembles comprised of Alexnet (Krizhevsky et al., 2012),
VGG (Simonyan & Zisserman, 2014) and Resnet (He et al.,
2016) deep convolutional neural nets. We perform experi-
ments on modified Cifar-10 datasets. Various classes were
merged into ’super-classes”, so that we work with datasets
containing only 3 or 5 classes. Our results highlight the
trade-off between threshold accuracy and arrival rate.

2. System Model

We consider a time-slotted online unsupervised classifica-
tion problem where in each time-slot (a.k.a. round) sam-
ples (e.g. images) arrive into the system for classification.
In the remaining section, we first define the description and
generation of the samples. We next provide the system’s
description and dynamics.

2.1. Notation

We define the set [V] = {0,1,..., N — 1} for all integer
N > 0. We further include the null element, denoted as e,
in this set to define [N]. = {€} U [N]. An ordered array is
denoted as {a; : © € [N]} and a ordered matrix is denoted
as {A;; : 1 € [N],j € [N']} . More generally an array can
be indexed by an ordered set I as {a; : i € I}.

2.2. Online Dawid-Skene Model

We adopt a model which is the online analogue of the gen-
eralized Dawid-Skene model (Dawid & Skene, 1979) for
unsupervised classification. We call our model “Online
Dawid-Skene” (OnDS) model. In our model, there are K
classes and M deterministic classifiers, with M/ > 1. Each
classifier i € [M] has a confusion matrix, C; := {C;(k,1) :
k,l € [K]}. We assume each classifier can process one
sample per timeslot, which can be easily generalized to
non-uniform processing speeds.'

The samples arrive online and are represented by their
unique ids. In our deterministic classification, the true label
and individual classifiers’ labels for each sample are gener-
ated once and fixed thereafter. Formally, the sample with id
j has a latent-tuple s; € [K]M*1). 5,(i) denotes the de-
terministic label received from classifier 4, for all ¢ € [M],
and s; (M) denotes the true label of the sample.

e E.g., with two classifiers (M = 2) and two classes (K =
2), if sample 0 contains the latent tuple sg = (0, 1, 1), then
for sample 0, (i) 0-th classifier’s label = 0, (ii) 1%¢ classi-
fier’s label = 1, and (iii) true label = 1.

The generation process of s;, for each j, is as follows:

1) For each sample an independently and identically dis-
tributed (i.i.d.) true-label s(M) is first chosen from the K
classes following a probability vector p,. Thus, for all j,
P[s;(M) = k] := py(k) for k € [K].

2) Next, for all ¢ € [M], s;(4) is chosen according to
the following conditional probability; for all k,I € [K]
Ps;(i) = l]s;(M) = k] := Ci(k,1).

"For each i € [M], if classifier 4 labels at most j; sam-
ples/round, for any finite integer x; > 1, we can replace the i-th
classifier with pu; separate classifiers each with confusion matrix
C,; and one sample per round processing speed.
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2.3. Memory

In our time-slotted system there exists a common mem-
ory where past samples reside. At the beginning of round
7 > 1, the memory contains a set of samples, denoted as
S7. At each time 7, a sample j in memory is associated
with a label-tuple 8] € (K] M which changes with time.
Specifically, for all classifiers ¢ € [M] and rounds 7 > 1,
at the beginning of round 7:

(i) if the sample is labeled by classifier i then 7 (i) = s (i),
(ii) otherwise, 57 (i) = €.

A sample j is partially labeled, if any of its coordinates
are unobserved (i.e. for some i, 87 (i) = €). Otherwise, it
is completely labeled. For each label -tuple ¢ € [K]M, the
number of samples with that label-tuple at the beginning of
round 7 is denoted as Q,(7) = |7 € ST : 57 = {|.

eE.g. with M = 2and K = 2, letsample 0 (sg = (0, 1,1))
be labeled by classifier O in round 7 = 1, and classifier 1
in round 7 = 3. Then we have 8} = (e,e), 83 = (0,e),
$3 = (0,e),and 8] = (0,1) forall 7 > 4.

2.4. System Dynamics

Each round has four sequential stages: 1) scheduling, 2)
labeling, 3) departure, and 4) arrival.

Scheduling: Initially, there are samples in memory which
are matched with the classifiers. The system schedules a
matching in the bipartite graph G7 with the two partites:
ST (the samples) and [M] (the classifiers). For each sample
j € ST and classifier i € [M], there is an edge (j,1) if
and only if 87(i) = €. Let A" denote the set of feasible
matchings, and A” be the scheduled matching in round 7.
If classifier ¢ is matched with sample j then A7 (i) = j.
Otherwise A7 (i) = e.

Labeling: The labels obtained from classifiers are denoted
as CI™ € [K]|M. If classifier i is not matched with any
sample then CI7 (i) = e. Otherwise, for sample j = A7 (i)
the latent label s;(¢) is revealed, ie. Cl7(i) = s;(4).
Therefore, for the sample j the observed-tuple changes to
87 S0, 87V = s;1i], and 87TV [i7] = 7[#] for all
i’ # i € [M]. For all unmatched samples thelr respective
observed-tuples remain unchanged.

Departure: Next, each sample either obtains a final label
and exits the system, or reenters the memory. The set of
departing samples is denoted as D7. Each sample j € D7
has an associated final label k7. The set of partially labeled
departing samples is denoted as D C D".

Arrival: Finally, a random number of new samples, N7,
(generated following OnDS model) arrive into the system.
Here N7 isi.i.d., for each 7, with finite mean A., = E[N7]
and bounded support sup,~; N7 < Apax. Let the set of

arriving samples be N7.
cording to their arrival.

Update: In (7 + 1)-th time-slot the set of samples in
storage changes to S(7+1), where S("+1) = S™\ DTUN,.
The number of samples that changes into the label-tuple
¢ from another and re-enters the system in round 7 is
denoted as Ny(7). Further, the number of samples that
changes from one label-tuple, ¢, to another in round 7 is
denoted as R, (7). Formally, for all £ € [K }M

Ny(r)=1j:j € ST+ 50 =g, 57 £ 4],
Ry(r)=[j:jesm,s A(T“) #L,3 §:f|~
At time 7, label-tuple £ € [K ]e
Qe(T+1) = (Qe(7) — sz.(T))Jr

The sample ids are ordered ac-

+ Ng(T).

3. Pareto Region of OnUEL

3.1. Preliminaries and Definitions

System History: The history of the system is the set of all
the events that happened in the past. Formally, at various
stages of round 7 > 1 the histories can be defined recur-
sively as follows: Let the initial history of the system be
H{} and H{ be history in the beginning of round 7.

(i) After scheduling history is H{ := H] N A”.

(ii) After labeling history is H] := H] N CI".

(iii) After departure itis H] := H3N{D7,{k}j:j€D }}.
(iv) After the new arrivals it is H(T+1) = H]n{NZ}.

Stability: A policy is a sequence of matching, departure
and labeling decisions {A7, D7, {k} :j € D7} :7 > 1}.
Time average backlog of the system under a policy ¢ is

. T
qum = lim SUPr_ 500 % ZT 1 [Zfeﬁ QE | HO}
A policy ¢ stabilizes the system if and only if Q¢

sum < O0.

Threshold Accuracy: Our objective is to ensure that each
sample either achieves required confidence or is processed
using best-effort. Specifically, we ensure ‘on average’ a
sample with a final label either i) has been labeled by all
classifiers, or ii) has a probability of correct labeling greater
or equal to a given threshold ;. We formalize this using
the notion of threshold accuracy.

At time 7, the accuracy of a departing sample j € D7 with
true label s;[M] is Acc;(7) := P [k} = s;[M]|HJ |. The
event {inf;e p; Acc;(7) < 0} indicates that some partially
labeled sample has accuracy less than 6, i.e. condition (i)
above is not satisfied. Threshold accuracy of 6 implies the
rate of such events is zero.

Threshold accuracy under a stabilizing policy ¢ is 0y, if

and only if for all 6 < 6,

lim sup + 23:1 inf Acc;(1) < 0| =0.
T—o0 JjeD}
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The stabilizing policy ¢ is called 8,y -accurate.

The OnDS parameters ¥ = (pg,{C; : i € [M]}), the
arrival rate A\, and the desired threshold accuracy 6y, de-
scribes a system completely. Therefore, we define P =
(U, Ae, O:r) as the OnUEL instance.

Causal Policy: A policy ¢ is causal if and only if for each
7 > 1, the matching A™ is a random function of history
H{, the parameters P, the departure D7; also, the final
labeling {k7 : j € D"} is a random function of history H3
and parameters P. The class of causal policies is C.

Pareto Region: We now define the Pareto region of a
causal policy and of the OnUEL.

Definition 3.1. Given a OnDS model VU, the Pareto region
of a causal policy ¢, N®(¥), is the set of all tuple (N, 011
such that the system is stable under policy ¢ for A\, and
the policy ¢ is Oy, -accurate.

Definition 3.2. Given a OnDS model ¥, the Pareto region
A(W), is the convex closure of the Pareto regions of the in-
dividual causal policies, i.e. A(V) = conv (A(V)) where,

A(\IJ) = {(Aewveth) : El(b € Ca (Aewveth) € A¢(\P)} .

A policy ¢* is Pareto-optimal if and only if Ve, > 0, and
V(Aea, Oen) (11€g) € A(T), (Aew, Our) € A” (D).

Remark: The notions of Pareto region and Pareto optimal-
ity is similar, but not identical, to the concept of capacity
region and throughput optimality, resp., in stochastic op-
timization literature (Tassiulas & Ephremides, 1992; Stol-
yar, 2005). The key difference is that throughput optimality
concerns a set of feasible arrival rates, whereas Pareto op-
timality relates arrival rates to accuracy.

3.2. Evolution of Posterior Distribution of Samples

We consider a fixed causal policy ¢ and an OnUEL instance
P. Consider any stage st € {0,1,2,3}, in round 7 > 1.
ST is the set of samples in memory; and for each sample
J € ST the true label is s;[M]. Given a vector t = {t; €
[K] :j € ST}, we are interested in the posterior probability
of the true labels being t given the history upto the time 7,
ie. P? ({s;[M]=t; : jeST} HT,).

Dependence on Entire History: The history H], is
formed by stacking up the snapshots of the system in each
stage upto the stage st in round 7. What does this history
include? It includes all other possible events that have hap-
pened in the past. A tiny part of it is the partial label of the
samples present in the system. Recall, the partial labels are
{87 : j € ST} for stages st = 0,1, and {§§T+1) :jesT}
for stages st = 2, 3.

Let us consider a specific event: In round T and stage O,
sample j is in the memory with partial label 7.

The set of events that lead to this observation are as follows.
(1) The sample j arrives at some round before 7.

(2) In each round, from arrival upto 7, it was either kept
unmatched or it is matched with a specific classifier.

(3) In each round, from arrival upto 7, when matched to a
classifier it obtained a specific label.

(4) In each round, from arrival upto 7, the sample is not
evicted from the system.

The events in step (3) are independent of the evolution of
other samples as the labels are generated independently
given the true label s;[M]. However, the events in step (1),
(2) and (4) couple the posterior evolution with the history.
In step (1), we know all the samples j° < j have arrived,
because the samples are numbered in the order of their ar-
rival into the system. In step (2), the matching events im-
pose a fixed order in which the labels are collected for this
sample. Further, these matching events in step (2) and de-
parture events in step (4) are taken collectively for all the
samples present. This implies that the evolution of all the
other samples which were present in the system from ar-
rival of j upto 7, are tightly coupled with the event under
consideration.

Notations for Posterior Evolution: We now setup some
notations for describing the posterior evolution.

o We adopt the convention C;(k,e) = 1 for all k € [K]
and i € [M].
o Let us denote V/ € [K|M Kk € [K],
Pyt k) i=py(k) T Cilk, £4)). (1)
i€[M]

e Forall £ € [K|M, k € [K], let acc({, k) := %

e For all ic[M], k€[K], and for any ¢ € [K|M let

0, if £[] # e,
e x) P (k) C (K k)
S r wrre i) PeGE)C (K E7)
e For all i€[M], and for any two (¢ € [K|M
if vi‘ e [M],i # ,0(i) = (i) we define
Py (03, £) := Py (£ (i)li, £). Otherwise, Py (¢'|i,£) := 0.
e Given a vector te[K]I97I, let n\";*"(t) denote the
number of samples in memory with partial label ¢ and
candidate label k, in round 7 > 1 immediately after stage
st € {0,1,2,3}.
Specifically, for all ke[K], (e[K]M,
n () = |{j € 57 et =

a0 () = i€ STty = k8]

Py (i, 0) :=

o/w.

0}], Vst # 3.

Conditional Independence: We show that under a causal
policy the posterior probability of the true labels of each
sample is independent of the history given the collected la-
bels for that sample.

Assumption 3.3. The initial state is finite, |S'|<oc, and
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there is no labeled sample, i.e. Q¢(1)=0V(c[K]M\{e}M.

The following lemma gives exact expression for the joint
posterior of the samples conditioned on the history. The
above assumption ensures the prior distribution of the sam-
ples present in round 1 is well behaved.

Lemma 3.4. For a given problem instance P satisfying
Assumption 3.3, under any causal policy ¢, the follow-
ing statements hold w.p. 1, for all T > 1, stage st €
{0,1,2,3}, and tc[K]¥7],

P(Vjes™, sj[M]=t;|H],) = H P (s;[M]=t;|Hg)
jEST
St Tst - T0,T1 =T
o« IT (mott) T1 Citey 55700 [TQ,MTH)]
jeST 1€[M]
x [ Peltryi®. )
Le[K]YM ke[K]

Remarks on Lemma 3.4: Firstly, Lemma 3.4 shows that
the posterior admits a product form across all the samples
present in the system. Secondly, for each sample the prob-
ability is independent of the history given only the partial
labels. Finally, this implies the posterior is independent of

the sample ids given the counts n\";*" (t).

The following statements are simple consequences of the
above lemma.

Corollary 3.5. For a given problem instance P satisfying
Assumption 3.3, the following statements are true for all
T > 1 and sample j with true label s;[M].

1) Vke[K], Le[K]M, P(s;[M] = k[8] =€) = acc(L, k).
2NVie[M), ke[K],te{t! € [KIM . V] = e},
P(CIT[i] = k|AT[i] = j A8] =) = Py (kli, {).

The maximum likelihood estimate (MLE) of the true la-
bel for any sample with partial label ¢ is the same. We
denote it as k*(¢) := arg max,¢(gjacc(l, k). Also, we de-

note acc*(¢) := acc(l, k*(¥)).

3.3. Characterization of the Pareto Region

Network Model: We construct a network-flow instance
to characterize the Pareto region for the problem instance
(U, Aew, Oir ). The feasibility of the flow instance will im-
ply that (A, 6;1,) is in the Pareto region, as proven in The-
orem 3.6 below.

The network consists of |[K]}| label nodes. The label
nodes ¢, for which either acc*(¢) > 0y, (desired accu-
racy is reached) or Vi € [M],£(i) # e (all labels are col-
lected), comprise the set of terminal nodes T (61,). Thus
TC(0) : =[K]M\T (0:1,) The set of non-terminal nodes is
[K]M\ T (64,). The label node {€} is the unique source

node. There are hyper-edges connecting the nodes. Each
hyper-edge corresponds to the allocation of labels to classi-
fiers. Specifically, a hyper-edge h € (T¢(0;1,))™ indicates
the non-terminal label h(i) is matched with classifier ¢, for
all i € [M].

The movement of flow is decided based on the selection of
a hyper-edge. In particular, when a hyper-edge h is cho-
sen, at most [{i € [M] : h(¢) = £}| amount of flow can
exit the label node ¢. Further, the amount of flow enter-
ing label node € is 3,57 Pu(£]i, h(i)). The all empty
label node {€}* has a incoming flow A.,. A pdf over the
hyper-edges, denoted as x, determines a flow in the net-
work. The non-emptiness of the following polytope de-
scribes the feasibility of network flow corresponding to the
tuple (U, Aoy, O11,).

Flow Polytope, FP(V, \..., 0;1)
o Vh,xhzo o Z$h§1

o Nin({edM)y=Xp ® VO Agui(£) > Nin(0)
o V0 #{e} Nin(0) th > Py(lli,h(i

i€[M]

=2 3

1€[M]

o Y/ ¢ T(eth out

The following theorem characterizes the Pareto region of
the OnUEL corresponding to OnDS V.

Theorem 3.6. Given a OnDS model V satisfying Assump-
tion 3.3, the Pareto region is: A(¥)=[0, c0] X [0, |Pg|co] U
{()\emeth) : ch > |pg‘oovFP(\I/>/\ew79th) 7& (Z)

Remarks on Pareto Region: For 6;, < |pg|oo, techni-
cally, any data rate (\., = 00) can be supported by giving
a final label k* = argmax{p,(k) : k € [K]}. In the net-
work flow formulation the source {€}™ itself becomes a
terminal. Further, for all 6y, > |pg|oo the maximum ar-
rival rate is less or equal to M, as each classifier processes
at most one sample per round.

4. Learning Aided Scheduling

In this section we design dynamic matching, departure and
labeling policies. Further, we do not assume the knowledge
of the parameters P except 6, (a design specification).
Our algorithm tries to stabilize the system while maintain-
ing accuracy. Therefore, different classifiers may see dif-
ferent true label distribution for the incoming sample. We
resort to an explore-exploit learning strategy.

In the explore phase, we select an unlabeled sample and
send it to all the classifiers.This ensures the true label dis-
tributions of the incoming exploration samples are same for
all the classifiers. Using the samples classified in this phase



Pareto Optimal Streaming Unsupervised Classification

we gradually learn the hidden parameters with an online
variant of a spectral method.

In the exploit phase, we match samples to classifiers based
on the current queue length vector. For departure and
labeling we use a Bayesian threshold based approach.
Our algorithm resembles max-weight matching (Tassiulas
& Ephremides, 1992) in network optimization.

The algorithm is structured in two separate parts. In the
first part, we present the routing algorithm along with the
exploration events. Here, we assume that, for all labels
0,0 € [K)M, classifiers i € [M] and classes k € [K],
ace(l, k) and Py(¢']i, ) are provided by an oracle (pos-
sibly erroneous). This oracle also has access to labels ob-
tained during exploration events. Further, in each round the

algorithm receives the queue length vector Q(7).

In the second part, deferred to Sec. 5, we construct an or-
acle which uses the explored samples to learn the hidden
parameters, i.e. the classifiers’ confusion matrices and the
true class distribution. The oracle computes ace(4, k) and

Py (0], 0) as queries arrive.

4.1. Max-weight Matching

Bipartite Graph: In any time step 7 > 1, the samples
and the classifiers form the bipartite graph, G”, as given
in Sec.2. We assign a weight for each edge in the graph
as a function of the queue length vector Q(7). Consider
an edge (i,7) for some j € S™ and some ¢ € [M]. For
notational convenience, let sample j have the partial label
¢ (ie. £ = 87). Also, let £, denote the unique label for
which ¢} (i") = ¢(") for all i’ # 4, and ¢ (i) = k whereas
£(i) = e. The weight of the edge (i, j) at time 7 is given as

w7 (i,5) = (Qe(j)(T)— > P\P(Zﬁfiaé(j))Qe;c(T)>~
kE[K]

To account for the idle machines let w(i, €) = 0 Then, the
weight of matching A is W7 (A) = >, w7 (i, A(4)).

Description: In each round 7 > 1 the algorithm is pro-
vided with an explore flag Ex(7) which is a 0-1 r.v. drawn
independently with mean e,(7) > 0. Here, €,(7) is the ex-
ploration rate parameter. If exploration flag is 1, the algo-
rithm explores by sending a sample, j, to all the classifiers.
Otherwise, it creates the graph, G, and solves the maxi-
mum bipartite matching problem to compute the matching,
AT . Here it requires oracle access of Py ().

For each classifier ¢, using the label CI7 (i) the algorithm
updates the label for sample j = A" (i) to é;“. Next, the
MLE accuracy acc*(é}“) is obtained from the oracle. If
the estimated accuracy is larger than (6}, +¢€¢(7)), the sam-
ple j departs the system with label @(é}’“) Otherwise, it
re-enters the system. The error parameter €y(T) accounts

for the errors in oracle estimates.

Exploration: In each of the exploration rounds, a single

Algorithm 1 Max-weight with Bayesian Departure

1: forall™ > 1do

2: Obtain Explore flag Fxz(7), and queue length Q(7)

3 if Ex(7) and Qy(7) > 0 then > Explore
4 Find a j s.t. 87=e, set A"[i] = j, Vi€[M]
5: else > Exploit
6.
7
8

Set A7 = argmax 4co- W7 (A)
for all i € [M] do
Update label of j: =A7[i] to §;+1 using CI7 ()

9: if acc” (§;+1) > O, + €9(7) then > Departure
10: Sample j departs with label @(é;“)

11: else

12: Sample j re-enters the system

sample is sent to all classifiers. Further, the labels acquired
in this round are sent to the oracle, which may use them for
learning the hidden parameters.

Query Complexity: The algorithm makes oracle queries
while both computing A™ and deciding whether a sample
should depart the system. Each of the M |Q(7)|; edges in
the network, G7, requires at most K Pq,(-)-queries. Thus,
computing A” requires K M|Q(7)|1 queries. For each
matched sample, K acc(-)-queries are required to take de-
parture and final labeling decisions. This leads to an addi-
tional KM queries. Therefore, the query complexity per
round is O(KM|Q(7)]1).

Time Complexity: The creation of the graph G7 re-
quires O(K M|Q(7)]1) time. On the unbalanced graph G”
with (possibly) |Q(7)|1 >> M, solving the Max-weight
matching takes another O(max{M?log(M), M|Q(7)|1})
time. Overall, the time complexity is O(KM|Q(7)|1)
time per round. The amortized time complexity
per round under the max-weight policy is given as
O(max{M?log(M), MQMW1). Here, QMW is the time-

average backlog of Algorithm 1.

4.2. Analysis of Algorithm 1

In this section we present the guarantees of the Max-weight
algorithm. Specifically, we show Algorithm 1 is Pareto-
optimal when the oracle has certain asymptotic conver-
gence properties, which we make precise shortly.

(e(o), 6(0)) Oracle: An oracle is an‘(«, B) oracle’ if and
only if, for all (i) partial labels ¢, ¢ € [K], (ii) classifiers
i € [M], and (iii) classes k € [K], the oracle with access
to o exploration samples satisfies,

() |acc(€, k) — ace(l, k)| < o~ wp. > (1 —0F),

Q) |Py(0']i, 0) — Py(0)i,0)] < 0= wp. > (1 -0 P).

The following theorem provides guarantees for Algo-



Pareto Optimal Streaming Unsupervised Classification

rithm 1, under the assumption that an («, [3) oracle exists
with a;, 6 > 0. In Sec 5, we construct such an oracle.

Theorem 4.1. Given an OnUEL instance P=(¥, Ac., 0:1)
such that Assumption3.3 is valid, 0, > |pgleo, and
(New: Oin)(1 + €4) € A(T) for some €, > 0; and given
an («, B) oracle with o, 8 > 0; under Algorithm I with
parameters €5(T) = % and €y(1) = then

QI\/[W <0 (max()\iz,]VIQ))

sum €g Amin

)\el’ i P 67 ]{} k
(ZGT(&?}I,I(Iheg)) 2 Pu (€, k)pg( ))
Furthermore, the threshold accuracy of Algorithm 1 is Oy,

2 .
log(7)>’

where \pin =

S. Learning with Explored Samples

In this section, we describe the unsupervised learning of
the confusion matrices {C; : i € [M]} and the true proba-
bility distribution pg4. Specifically, our purpose is to design
a (a, B)-oracle that provides the ace(¢, k) and Py (?'|i, ¢)
for all £, ¢'. We require the following assumption which is
common in the literature.

Assumption 5.1. [Assumptions on OnDS]

(i) The entries of confusion matrix is strictly positive, i.e.
Vi € [M] and k, k' € [K], C;i(k, k") > p > 0.

(ii) The class distribution is also bounded from below, i.e.
forallk € [K]| py(k) > p' > 0.

(iii) Finally, for all classifiers i € [M] , the di-
agonal terms in the confusion matrix dominates, i.e.

| terms in the confision
e (Cilk B)=Cilk, k) > 5> 0

Existence of an (o, 8)-Oracle: Our algorithm is closely
related to the one-shot unsupervised learning in pa-
per (Zhang et al., 2014). The algorithm proposed in (Zhang
et al., 2014). ensures that for fixed constants 6y < 1 and
ey > 0, given O(%(K—&—M/éy)/e%) number of samples,
with probability at least (1 — dy7) the confusion matrices
C; for all ¢ € [M], and the true class distribution p, are
recovered with maximum error ey (Theorem 2 in (Zhang
et al., 2014)). Furthermore, as Py (¢'|i,¢) and acc(¥, k) are
function of the confusion matrices and the true class distri-
bution, the error in the corresponding term is also bounded.

Specifically, given (i) max;cps |Ci — é\l|oo < O(ey) and
(i) [Py — Pgloc < O(er), under Assumption 5.1, we have
lacc(€, k) — acc(l, k)| = O ((p,;iUM)z) This ensures that
with o samples, the error in the estimates Py (-) and ace(-)
are bounded from above by O(c~ %), for all & < 1/2, with

probability at least 1 — o~ for any 8 < 1. Therefore, an
(a, B) oracle exists for « > 0 and 5 < 1.

This shows that under the additional Assumption 5.1 Max-
weight algorithm is Pareto Optimal.

Algorithm 2 We design an online spectral learner algo-

Algorithm 2 Online Spectral Learner

1: Initialize: Eigenvectors {vy, : k € [K]}
2: for all round 7 > 1 do
3: Obtain Explore flag Ex(7) and new labels CI™

4: if Fx(7) is true then R > Moment Update
5: Update the moments M- and M3;
6: Generate whitened Tensor 7 = T'.
7 for all r € [K] do > Online RTP
8: while v, does not satisfy Eq.(3) do
9: Randomly pick v, on k-dim unit sphere.
. T, (I,v,,v,) .
10: Repeat Vp W, RU times.
Tr(I,v, 0, .
11: Repeat Uy < m, RU times.
12: LetT(pq1y < T — T (Vpy Uy ) - v§’3
13: Recover parameters using {vg:k€[K]}.
14: Answer acc(-) and P(-) queries.

-r

T, (v.0,v)| > max {1 G50l | 3)

rithm, Algorithm 2, as Algorithm 1 in (Zhang et al., 2014)
is inefficient for our problem (see appendix for details).

Algorithm 2, in line 8, checks if the past eigenvector v,
for all » € [K] satisfies the condition (3) in (Anandkumar
et al., 2015). The rest of the steps are identical to the ap-
proach in (Zhang et al., 2014), and thus omitted for lack of
space. Specifically, line 5 in Algorithm 2 uses (2a) and (2b)
in (Zhang et al., 2014), and line 13 in Algorithm 2 uses (5)
in (Zhang et al., 2014). We do not require the expectation
maximization steps therein.

The following lemma states that Algorithm 2 is an (a, §)-
oracle with constant amortized time complexity. Here, we
treat dependence on M and K as constant.Further, the
Lemma implies that Algorithm 1 along with Algorithm 2
is Pareto optimal.

Lemma 5.2. Under Assumption5.1, Algorithm2 with
Ry = ©(1) is an («, B)-oracle for any o < 1/2 and any
B < 1. Furthermore, the amortized time complexity of Al-
gorithm2 is O(1).

6. Empirical Results

Experimental Setup: For our experiments, we create two
datasets where the classes of Cifar-10 (Krizhevsky & Hin-
ton, 2009) are merged into larger groups, effectively giving
us fewer classes. Our ensembles consist of deep convolu-
tional neural networks. Specifically, we consider two mod-
ifications of Cifar-10. In the first, we have three groups:
(airplanes, ships, trucks, cars), (birds, frogs cats), and
(dogs, deer, horses). In the second we have five groups:
(airplanes, ships), (trucks, cars), (birds, frogs) (cats, dogs)
and (deer, horses).



Pareto Optimal Streaming Unsupervised Classification

The first ensemble has 6 classifiers - three Alexnet, one
VGG-19, and two ResNet-18 neural nets (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014; He et al., 2016). The
second ensemble has 6 - one VGG-11 , one VGG-16, two
VGG-19, and two ResNet-18 neural nets. Each classifier is
individually trained.

The accuracies of the various net architectures are differ-
ent across the two variations of Cifar-10. The ResNet-18
neural nets out perform the other variants, whereas Alexnet
neural nets perform the worst. Therefore, the performance
of the first ensemble is worse than the other. The classifiers’
accuracies and confusion matrices are given in the supple-
mentary material. In the supplementary material, we show
that across a broad range of arrival rates the proposed algo-
rithm attains 2% to 5% higher average accuracy compared
to a random scheduler.

Convergence Property: We now study our algorithm’s
temporal dynamics. The arrival rate, A\, and threshold ac-
curacy, 0y, were set to 2 samples/round and 0.85, resp. In
Fig. 1a, we show that inside the Pareto region the sum of
queue lengths (a.k.a. backlog) fluctuates around an average
of 10.8. Further, the convergence to this average value hap-
pens within a few hundred rounds. The average accuracy
(i.e. departures with correct labels / total departures) of
the system also converges to an average 0.87 as showed in
Fig.1b. In Fig. 1¢c we observe that the online spectral learn-
ing effectively learns the parameters involved. The error
in this figure is the total error in estimating the confusion
matrices and the true class distributions. Specifically, the

error is given as (||pg —DPylli + 37 ey |C; — Ci||1)
Similar results are noted for the other dataset in Fig. 2a-2c.

Pareto Region: We study the Pareto regions of the two
ensembles in Fig. 1d and Fig.2d. In this figure, the cir-
cles’ sizes depict the logarithm of the average queue length
for a given (A, 0y,) pair. We see that for higher arrival
rates, the average queue lengths start increasing for smaller
thresholds, and vice versa. Furthermore, we observe that
the Pareto region of the first ensemble is smaller than the
second ensemble. This is consistent with more accurate en-
sembles supporting larger Pareto regions.

7. Related Work

Our work belongs to the family of techniques derived from
the Dawid-Skene model (Dawid & Skene, 1979). This
model performs unsupervised ensemble learning (UEL),
using an expectation maximization (EM) based algorithm.
The need for UEL appears in fields varying from anthropol-
ogy (Romney et al., 1986) to medical diagnostics (Zhou
et al., 2009). Most recently, UEL has been of interest to
the crowdsourcing community (Snow et al., 2008; Sheng
et al., 2008; Whitehill et al., 2009; Raykar et al., 2010).
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Figure 1: Performance of Ensemble-1 on 3-Group Dataset
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Figure 2: Performance of Ensemble-2 on 5-Group Dataset

This has led to the development of various approaches,
such as weighted majority voting (Li et al., 2013), message-
passing (Karger et al., 2011; 2014; Ok et al., 2016), and
spectral method based estimation (Zhang et al., 2014; Jain
& Oh, 2014; Jaffe et al., 2016), which all have provable
guarantees of classification error bounds and learning the
parameters defining the ensemble and data.

We have developed an adaptive task routing technique with
latent labels. In this sense, our work is most similar to
(Massoulié & Xu, 2016; Shah et al., 2017), but with some
important distinctions. The setting in (Massoulié¢ & Xu,
2016) allows for resampling of classifiers, whereas our
ensemble is fixed. In (Shah et al., 2017), the departure
decisions are not made by the ensemble, but in our ap-
proach, both the departure and labeling decisions are made
by the ensemble (thus statistically correlating the labels ac-
quired and departures). Finally, unlike (Massoulié & Xu,
2016; Shah et al., 2017), our technique requires no a priori
knowledge of the classifiers or incoming data.
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