
Efficient Optimization of Loops and Limits

A. Algorithm pseudocode

Algorithm 1 Optimization with randomized telescopes
Input: initial parameter ✓, gradient routine g(✓, i) which returns Ḡi(✓), compute costs C̄, exponential decay ↵, tuning
frequency K, horizon H̄ , reference learning rate ⌘̄
Initialize B = 0, next_tune= 0, Di,j = 0
repeat

if next_tune<= B then

D̄, q,W, S  tune(✓, D̄, g, C̄,↵, H̄)
expectedCompute, expectedSquaredNorm = compute_and_variance(D̄, C̄, S)
⌘  ⌘̄

expectedSquaredNorm
D̄0,H̄

B+ =
P

H̄

i=1 C̄(H̄)
next_tune + = C̄(H̄)

end if

N ⇠ q

for n = 1 to N do

Gn  g(✓, S[n])
end for

Ĝ 
P

N

n=1 GnW (n,N)

✓  ✓ � ⌘Ĝ
if compute reused then

B+ = C̄(S[N ])
else

B+ =
P

N

n=1 C̄(S[n])
end if

until converged

Algorithm 2 tune
Input: current parameter ✓, current squared distance estimates D̄i,j , gradient routine g(✓, i) which returns Ḡi(✓), compute
costs C̄, exponential decay ↵, horizon H̄

Ḡ0(✓) 0
for i = 1 to H̄ do

Ḡi(✓) g(✓, i)
end for

for i = 0 to H̄ do

for j = 1 to H̄ do

Di,j  ||Gi �Gj ||22
end for

end for

D̄  ↵D̄ + (1� ↵)D
S  greedy_subsequence_select(D̄, C̄)
q,W  q_and_W (D̄, C̄, S)
Return: updated estimates D̄i,j , sampling distribution q, weight function W , and subsequence S
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Algorithm 3 greedy_subsequence_select
Input: Norm estimates D̄, compute costs C̄
Initialize N = len(C)
Initialize S

+ = [N ], S
� = [1, ..., N ], converged=FALSE, bestAddCost=cost(D̄, S

+
, C̄),

bestRemoveCost=cost(D̄, S
�
, C̄)

while not converged do

for i 2 [i for i 2 [1...N ] if not i 2 S
+] do

trialS  sort(S+ + [i])
trialCost cost(D̄, C̄,trialS)
if trialCost < bestAddCost then

S
+  trialS

bestAddCost trialCost
converged False
BREAK

else

converged True
end if

end for

end while

converged False
while not converged do

for i 2 [i for i 2 S
� ifi 6= N do

trialS  [j for j 2 S
�ifj! = i]

trialCost sequence_cost(D̄, C, trialS)
if trialCost < bestRemoveCost then

S
�  trialS

bestRemoveCost trialCost
converged False
BREAK

else

converged True
end if

end for

end while

if bestRemoveCost> bestAddCost then

Return: S
�

else

Return: S
+

end if
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Algorithm 4 compute_and_variance
Input: Norm estimates D̄, compute costs C̄, sequence S

q, W  q_and_W (D̄, C̄, S)
expectedCompute 

P
i2[1...|S|] q(S[i]])C̄(S[i])

if RT-SS then

expectedSquaredNorm 
P

i2[1...|S|] q(S[i]])W (S[i], S[i])D̄S[i�1],S[i]

else if RT-RR then

expectedSquaredNorm 
P

i2[1...|S|]
P

j2[1...i] q(S[i]])W (S[j], S[i])D̄S[j],S[i]

else

Undefined: must specify RT-SS or RT-RR
end if

Return: expectedCompute, expectedSquaredNorm

Algorithm 5 sequence_cost
Input: Norm estimates D̄, compute costs C̄, sequence S

expectedCompute, expectedSquaredNorm = compute_and_variance(D̄, C̄, S)
Return: expectedCompute * expectedSquaredNorm

Algorithm 6 q_and_W
Input: D̄, C̄, and S

if RT-SS then

q(N) 
r

D̄S[N],S[N�1]

C̄(S[n])

W (n,N) 1
q(N)1{n = N}

else if RT-RR then

Q̃(N) 
r

D̄S[N],S[N�1]

C̄(S[n])�C̄(S[n�1])

(̃q)(N) max(0, Q̃(N)� Q̃(N � 1))

q(N) q̃(N)P
i
q̃(i)

W (n,N) 1
1�

P
i
q(i)1{n  N}

else

Undefined: must specify RT-SS or RT-RR
end if

Return: q, W
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B. Proofs

B.1. Proofs for section 2

B.1.1. PROPOSITION 2.1

Unbiasedness of RT estimators. The RT estimators in (2) are unbiased estimators of YH as long as

EN⇠q[W (n,N)1{N � n}] =
HX

N=n

W (n,N)q(N) = 1 8n .

Proof. A randomized telescope estimator which satisfies the above linear constraint condition has expectation:

E[ŶH ] =
HX

N=1

q(N)
NX

n=1

W (n,N)�n

=
HX

n=1

HX

N=1

�nW (n,N)q(N)1{n  N}

=
HX

n=1

�n

HX

N=n

W (n,N)q(N) =
HX

n=1

�n = YH

B.2. Proofs for section 4

B.2.1. THEOREM 4.1

Bounded variance and compute with polynomial convergence of  . Assume  converges according to  n  c

(n)p or
faster, for constants p > 0 and c > 0. Choose the RT-SS estimator with q(n) / 1/((n)p+1/2). The resulting estimator Ĝ
achieves expected compute C  (Hp� 1

2
H

)2, where Hi

H
is the Hth generalized harmonic number of order i, and expected

squared norm E[||Ĝ||22]  c
2
 
(Hp� 1

2
H

)2 := G̃
2. The limit limH!1 Hp� 1

2
H

is finite iff p >
3
2 , in which case it is given by the

Riemannian zeta function, limH!1 Hp� 1
2

H
= ⇣(p� 1

2 ). Accordingly, the estimator achieves horizon-agnostic variance and
expected compute bounds iff p >

3
2 .

Proof. Begin by noting the RT-SS estimator returns �n

qn
with probability q(n). Let q̄(n) = 1

n
p+1

2
and

P
H

n=1 q̄(n) = Z,
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such that q(n) = q̄(n)
Z

. First, note Z =
P

H

n=1
1

n
p+1

2
= Hp+ 1

2
H

. Now inspect the expected squared norm E||Ĝ||22:

HX

n=1

q(n)||�n

qn
||22 =

HX

n=1

q(n)
||�n||22
q2
n

= Z

HX

n=1

q̄(n)
||�n||22
q̄2
n

 Zc
2
 

HX

n=1

q̄(n)
n
2p+1

n2p

= Zc
2
 

HX

n=1

n
2p+1

n
3p+ 1

2

= Zc
2
 

HX

n=1

1

n
p� 1

2

= Zc
2
 

Hp� 1
2

H

= c
2
 

Hp� 1
2

H
Hp+ 1

2
H

 c
2
 
(Hp� 1

2
H

)2

Now inspect the expected compute, En⇠qn:

En⇠q =
NX

n=1

q(n)n

= Z

HX

n=1

n

n
p+ 1

2

= Z

HX

n=1

1

n
p� 1

2

= ZHp� 1
2

H

= Hp� 1
2

H
Hp+ 1

2
H

 (Hp� 1
2

H
)2

B.2.2. THEOREM 4.2

Bounded variance and compute with geometric convergence of  . Assume  n converges according to  n  cp
n,

or faster, for 0 < p < 1. Choose RT-SS and with q(n) / p
n. The resulting estimator Ĝ achieves expected com-

pute C  (1� p)�2 and expected squared norm ||Ĝ||22  c

(1�p)2 := G̃
2. Thus, the estimator achieves horizon-agnostic

variance and expected compute bounds for all 0 < p < 1.



Efficient Optimization of Loops and Limits

Proof. Let q(n) = q̄(n)
Z

, for q̄(n) = p
n. Note Z =

P
H

n=1 p
n = p

1�p
H

1�p
 1

1�p
. Now, note  n = c q̄(n). It follows

En⇠q||
�n

q(n)
||22 =

HX

n=1

q(n)
||�n||22
q(n)2


HX

n=1

q(n)
 
2
n

q(n)2

= c
2
 

HX

n=1

q(n)
q̄(n)2

q(n)2

= c
2
 
Z

2
HX

n=1

q(n)

= c
2
 
Z

2

Now consider the expected compute. We have

En⇠qn =
NX

n=1

nq(n)

=
NX

n=1

np
n

Z

=
1

Z

NX

n=1

np
n

= p
1

Z

1 +Hp
H+1 � (H + 1)pH

(1� p)2

=
1 +Hp

H+1 � (H + 1)pH

(1� p)(1� pH)

 1

(1� p)(1� pH)

 1

(1� p)2

B.2.3. THEOREM 4.3

Asymptotic regret bounds for optimizing infinite-horizon programs. Assume the setting from 4.1 or 4.2, and
the corresponding C and G̃ from those theorems. Let Rt be the instantaneous regret at the tth step of optimiza-
tion, Rt = L(✓t)�min✓ L(✓). Let t(B) be the greatest t such that a computational budget B is not exceeded. Use
online gradient descent with step size ⌘t = Dp

tE[||Ĝ||22]
. As B !1, the asymptotic instantaneous regret is bounded

by Rt(B)  O(G̃D

q
C

B
), independent of H .

Proof. First, we control t(B) using the central limit theorem. Note t!1 () B(t)!1. Consider B as a function
B(t) of t. We have B(t) =

P
t

⌧=1 Nt, where N ⇠ q. Thus, B(t)
t
! EN⇠qN by the central limit theorem. This implies that

in the limit, t = B

C
.

To complete the proof, plug in t(B) and ⌘t, as well as the upper bound on squared norm E||Ĝ||22  G̃
2 and upper bound on

diameter D, into standard results for stochastic gradient descent with convex loss functions (e.g. section 3.4 in (Hazan et al.,
2016))
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B.3. Proofs for section 5

B.3.1. THEOREM 5.1

Optimality of RT-SS under adversarial correlation. Consider the family of estimators presented in Equation 2. Assume
✓, r✓, and G are univariate. For any fixed sampling distribution q, the single-sample RT estimator RT-SS minimizes the
worst-case variance of Ĝ across an adversarial choice of covariances Cov(�i,�j) 

p
Var(�i)

p
Var(�j).

Proof. Recall Ĝ =
P

N

n=0 �nW (n,N). Let �2
i,j

= Cov(�i,�j) and �2
i
= Var(�i). The variance of Ĝ is:

Var(Ĝ) =
X

N

q(N)
h NX

i=0

NX

j=0

W (i, N)W (j,N)�2
i,j

i


X

N

q(N)
h NX

i=0

NX

j=0

W (i, N)W (j,N)�i�j
i

=
X

N

q(N)
⇣ NX

n=0

W (n,N)�n
⌘2

Note the above bound is tight as the adversary can choose Cov(�i,�j) = �i�j . Introduce ⇢(n,N) = W (n,N)q(N), and
note that the constraint from proposition 2.1 can equivalently be stated as

P
N�n

⇢(n,N) = 18n. We have the variance:

Var(Ĝ|N) 
X

N

1

q(N)

⇣ NX

n=0

⇢(n,N)�n
⌘2

Consider finding ⇢(n,N) which minimizes the variance for an arbitrary q. The constrained optimization has the Lagrangian:

J =
⇣X

N

1

q(N)
(

NX

n=0

⇢(n,N)�n)
2
⌘
+

X

n

�n(
X

N�n

⇢(n,N)� 1)

We can accordingly optimize by taking derivatives:

dJ

d⇢(n,N)
= 2Cq(N)(

NX

i=0

w(i, N)�i)�n + �n

dJ

d⇢(n,N)
= 0 =) �nq(N)

NX

i=0

w(i, N)�i = kn

=) �n

NX

i=0

⇢(i, N)�i = kn8N � n

=) ⇢(n,N) = 08N > n

B.3.2. THEOREM 5.2

Optimal q under adversarial correlation. Consider the family of estimators presented in Equation 2. Assume Cov(�i,�i)

and Cov(�i,�j) are diagonal. The RT-SS estimator with qn /
q

E[||�n||22
C(n) maximizes the ROE across an adversarial choice

of diagonal covariance matrices Cov(�i,�j)kk 
p
Cov(�i,�i)kkCov(�j ,�j)kk.

Proof. First, note that by the assumption of diagonal covariance between all terms, the expected squared norm decomposes
over indices k:

E||Ĝ||22 =
X

k

EĜ[k]2



Efficient Optimization of Loops and Limits

For all choices of q, the RT-SS estimator minimizes the worst-case variance and thus (due to unbiasedness) the expected
squared value of each entry in Ĝ. Because the squared norm decomposes, the RT-SS estimator minimizes the squared norm
for all q.

It remains to optimize q. We know ⇢(n,N) = 08N > n. Therefore to satisfy the constraint, we have ⇢(N,N) = 1. It
follows that:

ROE�1 =
�X

N

q(N)C(N)
��X

N

E||�N ||22
q(N)

�

We require
P

N
q(N) = 1. The constrained optimization has the Lagrangian:

J =
⇣X

N

q(N)C(N)
⌘⇣X

N

E||�N ||22
q(N)

⌘
+ �(

X

N

q(N)� 1)

Let C =
⇣P

N
q(N)C(N)

⌘
and V =

⇣P
N

E||�N ||22
q(N)

⌘
. We optimize q(N) by taking the derivative of the inverse ROE:

dROE�1

dq(N)
= C(N)V � C

�
2
N

q(N)2

dROE�1

dq(N)
= 0 =) q(N)2 / E||�N ||22C

C(N)V

=) q(N) /

s
E||�N ||22
C(N)

B.3.3. THEOREM 5.3

Optimality of RT-RR under independence. Consider the family of estimators presented in Eq. 2. Assume the �j are
univariate. When the �j are uncorrelated, for any importance sampling distribution q, the Russian roulette estimator
achieves the minimum variance in this family and thus maximizes the optimization efficiency lower bound.

Proof. By independence, we have E
�P

n
W (n,N)�n

�2
=

P
n
W (n,N)2E�2

n
. It follows that an RT estimator has

variance:

Var(Ĝ) =
X

N

q(N)
X

nN

W (n,N)2E�2
n

=
X

N

1

q(N)

X

nN

⇢(n,N)2E�2
n

Recall the constraint in proposition 2.1 requires
P

N�n
⇢(n,N) = 1 for all n. The Lagrangian of the constrained

minimization of Var(Ĝ) with respect to ⇢ is:

J = Var(Ĝ) +
X

n

�n(
X

N�n

⇢n � 1)

We optimize ⇢ by finding the minimum of the Lagrangian:

dJ

d⇢(n,N)
=

2

q(N)
⇢(n,N)E�2

n
+ �n

dJ

d⇢(n,N)
= 0 =) ⇢(n,N)

q(N)
= � �n

2E�2
n

=) W (n,N) = � �n

2E�2
n

, which is independent of N

=) W (n,N) =
1P

N 0�n
q(N 0)

to fulfill the constraint in proposition 2.1
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B.3.4. THEOREM 5.4

Optimal q under independence. Consider the family of estimators presented in Equation 2. Assume Cov(�i,�i) is

diagonal and �i and �j are independent. The RT-RR estimator with Q(i) /
q

E[||�i||22
C(i)�C(i�1) ], where Q(i) = Pr(n � i) =

P
H

j=i
q(j), maximizes the ROE.

Proof. First note that by theorem 5.3, for any q and for each element in the vector Ĝ, the RT-RR estimator minimizes the
variance of that element. Now note that due to independence of �i,�j and diagonality of Cov(�i,�i):

E||
NX

n=1

W (n,N)�n||22 =
NX

n=1

W (n,N)E||�n||22

=
X

k

NX

n=1

W (n,N)E�n[k]
2 =

X

k

EĜ[k]2

As the RT-RR estimator minimizes EĜ[k]2 for each coordinate k, it also minimizes E||Ĝ||22. It remains to optimize Q.
Consider the inverse ROE of the RT-RR estimator. By independence we have:

ROE(Ĝ)�1 = E||Ĝ||22EC =
⇣X

N

q(N)
X

nN

1

Q(n)2
E||�n||22

⌘⇣X

N

q(N)C(N)
⌘

Take the gradient of the inverse optimization efficiency lower bound w.r.t. q(n):

dROE(Ĝ)�1

dq(N)
= C(N)E||Ĝ||22 +

X

nN

1

Q(n)2
E||�n||22 �

X

i

q(i)
X

jmin(i,N)

2

Q(j)3
E||�j ||22

X

i

q(i)
X

jmin(i,N)

2

Q(j)3
E||�j ||22 =

X

jN

2

Q(j)2
E||�j ||22

P
i
q(i)1{i � j}
Q(j)

=
X

jN

2

Q(j)2
E||�j ||22 by definition of Q(j)

=) dROE(Ĝ)�1

dq(N)
= C(N)E||Ĝ||22 �

X

nN

1

Q(n)2
E||�n||22

Now optimize the objective w.r.t. Q by finding the critical point:

dROE(Ĝ)�1

dq(N)
= 0 =) C(N)E||Ĝ||22 =

X

nN

1

Q(n)2
E||�n||22

=) E||Ĝ||22
⇣
C(N)� C(N � 1)

⌘
=

1

2

E||�N ||22
Q(N)2

=) Q(N)2 / E||�n||22
C(N)� C(N � 1)


