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Abstract

Active learning methods, like uncertainty sam-
pling, combined with probabilistic prediction tech-
niques have achieved success in various prob-
lems like image classification and text classifi-
cation. For more complex multivariate predic-
tion tasks, the relationships between labels play
an important role in designing structured classi-
fiers with better performance. However, compu-
tational time complexity limits prevalent proba-
bilistic methods from effectively supporting ac-
tive learning. Specifically, while non-probabilistic
methods based on structured support vector ma-
chines can be tractably applied to predicting cuts
and bipartite matchings, conditional random fields
are intractable for these structures. We propose
an adversarial approach for active learning with
structured prediction domains that is tractable for
cuts and matching. We evaluate this approach
algorithmically in two important structured pre-
diction problems: multi-label classification and
object tracking in videos. We demonstrate bet-
ter accuracy and computational efficiency for our
proposed method.

1. Introduction

In many real-world applications, obtaining labeled instances
for training is expensive. This is particularly true for multi-
variate prediction tasks, in which many labels are required
for each training example. For example, an image can re-
quire many tags (e.g., mountain, sky, tree) as part of a multi-
label prediction task, and video tracking has many pairs
of bounding boxes between consecutive frames (Figure 1).
Exhaustively annotating datasets for these tasks is extremely
burdensome. Active learning (Settles, 2008; 2012) seeks to
reduce this annotation burden by requesting the most useful
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Figure 1. An example of a bipartite matching in a video tracking
application. When some assignments are uncertain, choosing the
most informative one can significantly reduce any uncertainty in
the remaining assignments.

annotations for learning. In this paper, we specifically con-
sider the multivariate active learning setting in which each
single variable’s value can be separately solicited.

Uncertainty sampling (Lewis & Gale, 1994; Settles, 2012),
the most popular active learning strategy, solicits annota-
tions of variables for which the predictor is most uncertain.
It can be naively applied to each variable independently in a
multivariate learning task. However, leveraging inherent la-
bel correlations is critical in multivariate domains for better
predictive performance. For instance, certain labels may co-
occur in many training samples, while other labels may be
mutually exclusive in multi-label learning (Ye et al., 2015).
Unfortunately, many important types of these correlations
reside on the boundaries of computational efficiency where
prevalent probabilistic structured prediction methods, such
as conditional random fields (Lafferty et al., 2001), are in-
tractable, while margin-based (non-probabilistic) methods,
such as structured support vector machines (Tsochantaridis
et al., 2005), are tractable. Margin-based classifiers have
been used for active learning in univariate settings by inter-
preting distance to margin as uncertainty (Tong & Koller,
2001) or using Platt scaling (Platt, 1999). However, ex-
tending these interpretations of margin for single variable
uncertainty to multivariate settings is not well-defined, mak-
ing margin-based structured prediction ill-suited for active
learning with single variable label solicitation.

We propose a novel approach to multivariate active learning
by leveraging adversarial structured prediction methods with
rich structural constraints (Behpour et al., 2018; Fathony
et al., 2018) to construct the worst-case probabilistic distri-
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butions of unknown variables. Using these distributions, we
assess the multivariate value of information expected from
different unlabeled variables to make solicitation choices.
We illustrate this approach on two prediction applications:
multi-label classification and object tracking in video. We
formulate these prediction problems as learning minimum
cuts and bipartite matchings—two settings for which effi-
cient probabilistic structured prediction methods have only
recently been developed. We demonstrate the benefits of our
approach against existing active learning methods that can
be efficiently applied to these learning settings.

The paper is organized as follows: Firstly, we introduce
background and related work, which include previous efforts
on univariate and multivariate active learning problems. We
then cover the main methodology of adversarial structured
prediction, Adversarial Robust Cut (ARC) and Adversarial
Bipartite Matching (ABM) methods, followed by the active
learning algorithm details for each method. We compare
our proposed method with state-of-the-art approaches on
real-world data sets in experiments before we conclude.

2. Background and Related Works

2.1. Univariate Active Learning

Active learning approaches have primarily considered sin-
gle variable prediction problems. Pool-based active learning
(Lewis & Gale, 1994) selects examples from an unlabeled
dataset D,, = {(z1,11), (%2,92),. .., (Zn,yn)}, to form
a labeled dataset D; for training. Here x € X is an in-
put/feature variable and y € ) is a label variable that we
seek to predict. U denotes the index set for the unlabeled
data. A sequence of examples are chosen from D, based
only on input values, x, and moved to the labeled data
D; once the label, y, is revealed. The goal of the active
learner is to choose a dataset so that the resulting classifier
f: X = Y learned from the available data has minimal er-
ror on additional testing data—either from all available data,
the remaining unlabeled pool or a separate sample. Query
by committee (Seung et al., 1992), uncertainty sampling
(Lewis & Gale, 1994), and active learning with the sup-
port vector machine (Tong & Koller, 2001) are among the
earliest approaches tackling active learning in binary clas-
sification problems. Uncertainty sampling (Lewis & Gale,
1994) works by selecting the unlabeled training instance
from the pool of unlabeled data D,, with the label that the
predictor, ]5 is currently most uncertain about:

argmax H (Y;|x;, D). (D
ieU

using the conditional Shannon entropy,

H(Y;|zi, Dy) = *Z P(yi|zi, Dy)log P(y;|as, Di), (2)

Yi

qf the unknown label Y; under the predictor’s distribution,
P, trained from available labeled data.

Guo and Greiner (2007) employ an active learning strategy
that selects the unlabeled instance whose label would pro-
vide maximum mutual information about the labels of the
remaining unlabeled instances, given the labeled data:

argmax H(Yy|Xv, D) —H (Y| Xovi, Di, (24, 9i))-
ic

The first term does not depend on the selected instance i,
therefore we can re-write it as:

argmin H (Y i, Di, (24, ¥i))- 3)
i€U

Thus, maximizing the conditional mutual information is
equivalent to minimizing the classification uncertainty (en-
tropy) of the unlabeled data set. This approach has been suc-
cessful in semi-supervised learning (Guo & Greiner, 2007;
Grandvalet & Bengio, 2005). We employ this heuristic in
the selection strategy of our proposed adversarial active
learning structured prediction framework.

Active learning with support vector machines uses a non-
probabilistic notion of uncertainty based on the distance
of each example to the decision boundary. This is used di-
rectly to solicit labels from examples closest to the boundary
(Tong & Koller, 2001) or by using Platt scaling (Platt, 1999)
with uncertainty sampling. Unfortunately, the unreliability
of Platt scaling (Lambrou et al., 2012) and the complications
of interpreting decision boundary distances of support vec-
tor machines for multiclass and structured prediction tasks
makes this approach difficult to generally apply.

2.2. Multivariate Active Learning

We consider multivariate active learning in this work. In-
stead of a univariate label, y, each example has a vector-
valued label y. We assume that the active learner can solicit
single variables in this label vector, y;, instead of soliciting
the entire vector, y, at each iteration of learning.

The simplest approaches to multivariate active learning re-
duce each example to a set of univariate examples and apply
univariate active learning methods. Binary Relevance (BR)
(Godbole & Sarawagi, 2004) decomposes a multi-label clas-
sification problem with /V labels to NV binary classification
problems. The decomposition in BR discards the joint in-
formation between different labels. The joint information
is modeled in many extensions of BR, including methods
that model multi-label classification as structured prediction
and consider the relevance information (Yang et al., 2009).
However, they suffer from a lack of reliability since they
employ SVM as the classifier and the final output is required
to be transferred to a probabilistic format using methods
like SVM Platts (Lambrou et al., 2012; Platt, 1999). Binary
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version space minimization (BinMin; (Brinker, 2006)) so-
licits the closest instance to the decision boundary for one
of the binary classifiers within BR. The sample selection
strategies for BR rely on the main assumption that there
is only one label for each instance. These methods are not
applicable in active learning for structured prediction since
label relevance information is not modeled. The selection
procedure of uncertainty sampling based on BR only cap-
tures the uncertainty produced by binary classifiers on the
labeled set and does not utilize the information relating
labeled instances and the remaining unlabeled instances. Ig-
noring the label and instance relation in this manner limits
the application of uncertainty approaches based on single
output variables in structured prediction domains. This mo-
tivates uncertainty measures that capture marginal or joint
information over unlabeled data.

Mutual Information (MI) is a dependency measure between
two variables and defines the amount of information that is
held in a random variable. The mutual information of two
discrete random variables Y, and Y}, is:

I(Ya:Yy) =) D Plya:yp)log (IM)’

YaEAYEDB

where P(ya,ys) is the joint probability function of y, and
Yb, and P(y,) and P(y;) are the marginal probability distri-
bution functions of y, and y; respectively (Cover & Thomas,
2012). The MI can be equivalently expressed as:

I(Ya;Yl-)) :H(Ya)+H(Yb)_H(Ya7n)v 4)

where H(Y,) and H(Y}) are the marginal entropy, and
H(Y,,Y}) is the joint entropy of Y, and Y}. Inspired by
the success of applying MI as the solicitation strategy in
recent studies like (Khodabandeh et al., 2017; Sun et al.,
2015), we leverage MI in the multivariate case as our active
learning uncertainty measurement in this paper.

Another line of work focusing on active learning for classi-
fication on graphs starts with a partially labeled graph and
utilizes a deterministic search strategy to query the next ex-
ample (Dasarathy et al., 2015). We instead take a probabilis-
tic approach using from adversarial structured prediction
methods and leverage resulting uncertainty measures.

3. Adversarial Structured Prediction
3.1. Minimax Game Formulation

Rather than seeking a predictor that minimizes the (regular-
ized) empirical risk,

min E [loss (Y, fo(X))] + All0]2, ®)
adversarial prediction methods (Topsge, 1979; Griinwald &

Dawid, 2004) instead introduce an adversarial approxima-
tion of the training data labels, P(g|x), and seek a predictor,

P(gj|), that minimizes the expected loss against the worst-
case distribution chosen by the adversary:

{loss(f’, Y)} (6)

min max E
p P

such that: EJ;NIS;;;@NP [¢(X7 Y)] = ¢,

ZENPU]‘INP;QleP

where the adversary is constrained by certain measured
statistics (i.e., based on feature function ¢) of the training
sample c—either with equality constraints, as shown, or in-
equality constraints. P represents the empirical distribution
of X [and Y] in the training data set.

While the empirical risk cannot be tractably optimized for
many natural loss functions of interest (e.g., the 0-1 loss or
Hamming loss), adversarially minimizing the loss measure
is often tractable (Asif et al., 2015). This adversarial min-
imization aligns the training objective to the loss measure
better than surrogate losses (e.g., the hinge loss), providing
better performance in practice for both classification (Asif
et al., 2015) and structured prediction (Behpour et al., 2018;
Fathony et al., 2018).

A key advantage of this adversarial approach for multivariate
active learning is that the adversary chooses a joint prob-
ability distribution, which provides correlations between
unknown label variables, P(y;, yj), that are useful for esti-
mating the value of information for different annotation
solicitation decisions. The benefit of this uncertainty in
structured predictions is most pronounced for settings in
which other probabilistic methods—namely, conditional
random fields (Lafferty et al., 2001)—are computationally
intractable, while adversarial structured prediction methods
can be efficiently employed. We focus on active learning
for two such structured prediction tasks in this paper: learn-
ing to make cuts in graphs and learning to make bipartite
matchings. In the remainder of this section, we review the
adversarial structured prediction methods for these settings.

3.2. Adversarial Robust Cuts

The Adversarial Robust Cut (ARC) approach (Behpour et al.,
2018) learns binary associative Markov networks with attrac-
tive pairwise relationships. It is formulated as an adversarial
structured prediction problem with the Hamming loss as
payoffs, inequality constraints over properties of variable
pairs, and equality constraints over unary properties:

D (Vi £Y)

?

such that: B, p.o1p [Pu(Y,X)] = €, and
E [@,(Y,X)] <&,

(7

min max E

P . e~ Py |a~Piy|a~P
P(3lx) P(y1%) | |

x~P;y|x~P

After introducing Lagrangian multipliers, 6,, and 6, to en-
force the unary and pairwise constraints on the adversary,
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the optimization can be re-written as:

o T B [(m i B O ) 015, 0} ] 7
with the matrix defined as Cy x(9,9) = >, (4 # ¥:) +
¥(9, X), where Yy, x) = >, 0u - ¢(yi,x) + 3,2 0p -
®(Yi, ¥j,x). An example is shown in Table 1. Note that the
inner saddlepoint corresponds to a zero-sum game between
predictor and adversary over this game matrix C.

Table 1. Augmented Hamming loss matrix for n=3 samples.
g= | g= | I= | 9= | 9= | ¥= | y= | §=
000 001 010 011 100 101 110 111

0+ 1+ 1+ | 2+ 1+ | o2+ | o2+ 3+
%000 | toor | %oio | %oi1 | Yioo | o1 | Y10 | Yin

1+ 0+ 2+ 1+ 2+ 1+ 3+ 2+

§=000

y=001 %000 | oot | %oio | %oi1 | Yioo | o1 | Y10 | Yin
=010 1+ 2+ 0+ 1+ 2+ 3+ 1+ 2+
y= %000 | toor | %oio | %oi1 | Yioo | o1 | Y10 | Yin
i=011 2+ 1+ 1+ 0+ 3+ 2+ 2+ 24+
y= %000 | toor | %oio | %oi1 | Yioo | o1 | Y10 | Yin
§=100 1+ 2+ 2+ 3+ 0+ 1+ 1+ 24+

%000 | toor | %oio | %oi1 | Yioo | o1 | Y10 | Y

2+ 1+ 3+ 2+ 1+ 0+ 2+ 1+

y=101 %000 | toor | %oio | Yoi1 | Yioo | o1 | Y10 | Yin
i=110 2+ 3+ 1+ 24+ 1+ 2+ 0+ 1+
Y %000 | toor | voio | %oi1 | Yioo | o1 | Y10 | Yin
=111 3+ 2+ 2+ 1+ 24+ 1+ 1+ 0+
Y %000 | toor | %oio | %oi1 | Yioo | %101 | Y10 | Y

Though these zero-sum games (Table 1) can be solved using
a linear program in time that is polynomial in the size of
the game, the game size (played over the set of all possible
label assignments as actions) grows exponentially with the
number of predicted variables. The double oracle algorithm
(McMabhan et al., 2003) is a constraint generation method
that uncovers a (sparse) set of strategies for each player that
supports the equilibrium. It operates by repeatedly finding
the game’s equilibrium for the current set of strategies and
then alternatively adds each player’s best response against
the other player’s equilibrium distribution as a new row
or column for the game. For ARC, the adversary’s best
response against the predictor’s distribution, P(§|z), is:

arg;nax]Ep(y‘x) Z(Yz#yz) +Z¢u(yiax) ®)

+ > (Ui 1)-

i#]

This reduces to finding the minimum s-t cut for a graph
(Figure 2) with edges between predicted variables Y; and Y;
weighted by pairwise potentials, and edges from a source
node and to a sink node weighted by the expected loss

against the predictor’s distribution and the unary potentials.

The predictor’s best response is obtained independently for
each variable based on the expected loss and the marginal

()

D = B =

Figure 2. A directed graph to augment a Markov network (left) so
that the minimum cut (right) provides the most probable assign-
ment of each variable based on its connection to the source node
(0) or target node (1).

probability of the adversary’s distribution:

> (4 #Y3)| = argmax P(g;). (9)

argmin K p g,
Yy Yi

9

Lastly, the optimal Lagrangian multipliers values are ob-
tained using AdaGrad (Duchi et al., 2011) with gradients
computed as differences between the expected features un-
der the adversary’s distribution and the empirical features
calculated from the training data: E, 5 o, p [0(Y,X)] —

]Ex,y ﬁ,[qb(Y, X)]. The overall objective is convex, so con-

vergence to a global optimum is guaranteed.

3.3. Adversarial Bipartite Matching

We consider bipartite graphs G = (V, E) (i.e., graphs with
two disjoint vertex sets with no edges between nodes in the
same set) and perfect bipartite matchings, B, a set of edges
in which each vertex is incident to only one edge of B, as
illustrated in Figure 3.
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Figure 3. A bipartite matching graph of size six, |[M| = |N| = 6,
and the adjacency matrix.

This matching can be denoted as an assignment (or permu-
tation) 7, where m; € [n] indicates the item in the second
set that item 7 from the first set is paired with.

Adversarial Bipartite Matching (ABM) (Fathony et al.,
2018) seeks the predictive distribution over assignments
with the lowest expected loss against a constrained adver-
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sarial approximation of the training data assignments:

min max B 5. pooiop 7 # 7| (10)
P(rlw) Plrlay -~ TRlenPalend lZ} ]
such that EzNP;ﬂxmp [Z oi(x, 7?2)] =¢,

i=1

where 7, 7 are the node assignments chosen by the predictor
and the adversary, respectively. This approach also applies
the double oracle method (McMabhan et al., 2003) to gener-
ate active constraints (rows and columns of the game matrix)
supporting the game’s equilibrium. Best responses are ob-
tained using the Hungarian matching algorithm, also known
as the Kuhn-Munkres algorithm, to find the maximum-
weight matchings in a bipartite graph in O(|V|3) time.

4. Adversarial Multivariate Active Learning
4.1. Sample Selection Strategy

A label selection strategy that provides the most useful infor-
mation for learning is needed. The full impact of soliciting
a label is the combination of what it reveals about other
variables in the structured prediction and what influence
updating the model parameters will have on all other vari-
ables. Since the latter is very difficult to calculate exactly or
even estimate loosly, we focus on the former. The benefit
of observing a variable can be measured using information
theory. The total expected reduction in uncertainty over all
variables, Y7, ...,Y,, from observing a particular variable
Y; given labeled dataset D, (referred to as Vj) is:

uncertainty before
observing y;

expected uncertainty
after observing y;

n

v, ZZH(YHDl) - Z P(yj|Dl)ZH(Yi\Dzyyj)

i=1 =R i=1

= > 1(Yi;Y;|Dy). (11)
i=1

These mutual information values can be effectively com-
puted from the adversary’s equilibrium distribution using the
pairwise marginal probabilities of two variables, P(y;, y;),
which was our main motivation for employing adversar-
ial prediction methods for problems that are intractable for
other probabilistic structured prediction approaches.

4.2. Active Learning Adversarial Robust Cuts

Our active learning approach for Adversarial Robust Cuts
(ARC) solicits single variable values from the pool of unla-
beled variables in two steps: it first computes the value of
information Vj () for each variable j of the sample « and
chooses the most informative variable in the label vector

from all examples, max, ; V;(z) to solicit. After partially
labeling this sample, it is returned to both labeled and un-
labeled pools. The purpose of returning the sample to the
labeled pool is for updating gradients partially (just for la-
beled variables), and to the unlabeled pool is for providing
an opportunity for other variables of the sample to be se-
lected and labeled.

Partially-labeled examples pose challenges to the existing
ARC learning method, which is based on fully annotated
training examples. We resolve the problem in two ways:
Firstly, during label solicitation, we fix the variables that
have already been labeled to their true values before we
infer an adversarial distribution over cuts that do not violate
these assignments. Secondly, when updating model param-
eters, 0, and 6, we only calculate gradients based on the
subsets of variables that have been labeled, even though
the adversarial prediction is obtained for all variables in the
(partially labeled) example. Equivalently, when calculating
the gradients, the expectation of features is considered to
only be applied to the subset of variables that have been la-
beled. Here, we assume the parameters learned from labeled
variables should generalize to the partially labeled graph.

4.3. Active Learning Adversarial Bipartite Matching

One of the advantages of our adversarial approach is that it
tractably provides meaningful probabilistic predictions that
can also be useful for active learning label solicitation. We
employ pool-based active learning (Lewis & Gale, 1994) for
the bipartite matching problem using Adversarial Bipartite
Matching (ABM), as shown in Algorithm 1. It first selects
a subset of unlabeled data from D, and then chooses a
subset of edges (N nodes assignments) to be queried. It is
notable that the full assignment 7 may not be solicited and
only a subset of N nodes assignment for an instance may be
queried. The new labeled data are added to D; and removed
from D,,. The algorithm’s goal is to learn the best classifier
with the minimum number of labeled instances.

5. Experiments
5.1. Prediction Tasks, Datasets, and Features

Multi-label Classification: In our first application, we
consider active learning for multi-label classification. In this
setting, the learner chooses a single label variable from
which to increase its dataset and update its predictions.
We choose eight different datasets covering different do-
mains like text, images, and biology from the Mulan dataset
(Tsoumakas et al., 2011) for our experiments. The detailed
information for every dataset is presented in Table 2. The to-
tal number of labels ranges from 14 (Yeast) to 374 (Corel5K)
and the average cardinality (average number of active labels)
ranges from 2.402 (Bibtex) to 26.044 (CAL500).
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Algorithm 1 Active Learning Algorithm for Adversarial
Bipartite Matching (ABM).

Require: Features {¢;(-)}; Initial parameters 6; Initial la-
bels Tinitiat
D;: a small set of initially labeled examples;
D,,: the pool of unlabeled data for active selection;
1: Train an initial ABM model f on Dy;
2: repeat
3:  Make predictions with classifier using parameters 6
for all samples in D,,;
4:  Calculate v;(z) using Equation 11 for all nodes of
samples z € D,;
5:  Select the most informative sample according to
X* =max, ), v(z);
6:  Query the sample’s node assignments;
7:  Move X* from D, to D;;
8:  Train and update the ABM model f on Dy;
9: until stop criterion reached.
10: return final classifier parameters 6.

Table 2. Multi-label datasets used in the experiments.

| Dataset | Domain| # Instances| # Labels| Cardinality|

Bibtex text 7395 159 2.402
Bookmarks |  text 87856 208 2.028
CALS500 | images 502 174 26.044
Corel5K | images 5000 374 3.522
Enron text 1702 53 3.378
NUS-WIDE| images 269648 81 2.320
TMC2007 text 28596 22 2.158
Yeast biology 2417 14 4.237

We use the same feature representation as prior work (Beh-
pour et al., 2018) by defining unary and pairwise features
using features from Mulan (Tsoumakas et al., 2011) and
word2vec! features.

Object Tracking: In our second application, we con-
sider active learning for object tracking between video
frames(Mozhdehi & Medeiros, 2017). The active learning
selects two consecutive frames to add as labeled data to
its training dataset to improve performance. We follow the
same problem definition presented by Kim et al. (2012). In
this setting, a set of images (video frames) and a list of ob-
jects in each image are given. The correspondence matching
between objects in frame ¢ and objects in frame ¢ 4 1 is
also provided. Figure 1 provides an example of this setup.
The number of objects changes when a subset of the objects
may enter, leave, or remain in the consecutive frames. To
deal with this problem, we double the number of nodes in
every frame. We consider the number of objects in frame ¢
as Ny and N* be the maximum number of objects a frame

"https://code.google.com/p/word2vec/

can have, i.e., N* = max;cp N;. Starting from N* nodes
to present the objects, we consider N* more nodes as “invis-
ible”” nodes to let new objects enter and existing objects to
leave. Hence the total number of nodes in each frame dou-
bles to n = 2/N*. We follow the joint feature representation
in ABM and (Kim et al., 2012) to define the affinities and
correlations between node pairs in two consecutive frames.

We evaluate using a video tracking problem from the MOT
challenge dataset (Leal-Taixé et al., 2015). We consider the
TUD datasets and the ETH datasets as two different groups
of datasets in our experiment. Each dataset differs in the
number of samples (i.e., pairs of two consecutive frames to
be matched) and the number of nodes (i.e., the number of
pedestrian bounding boxes in the frame plus the number of
extra nodes to indicate entering or leaving). The detailed
information of datasets is described in Table 3. To make the
experiment more challenging and to avoid having examples
that are too similar in the training set, we combine each pair
of datasets that have similar characteristics. In particular,
this results in eight mixed datasets that we evaluate.

5.2. Comparison Methods for Multi-label Classification

We consider two sets of multi-label classification experi-
ments based on two solicitation strategies for each method.
The first solicitation strategy employs Mutual Information
(M) and the second one is random sampling.

ML-KNN: For our first comparison method for multi-
label classification, we consider ML-KNN which is one of
the well-known methods in multi-label classification. This
method is derived from the K-nearest neighbor (KNN) al-
gorithm. In this method, the K nearest neighbors of each
instance are first identified. Then, statistical information
of the neighbors’ instances are used in maximum a pos-
teriori (MAP) estimation of the label instances (Zhang &
Zhou, 2007). Since ML-KNN provides probabilistic output,
we can use it in the mutual information (MI) solicitation
strategy of active learning.

Robust Bias-aware Prediction: Our second comparison
method similarly considers each predicted variable as a sep-
arate binary classification problem and applies uncertainty
sampling using the robust bias-aware (RBA) learner (Liu &
Ziebart, 2014; Liu et al., 2015). RBA is a probabilistic clas-
sifier that adapts to different sample selection biases using
the log loss and statistics of the data moments as constraints
to find a minimax optimal classifier among conditional label
distributions under log loss prediction (Liu & Ziebart, 2014;
Liu et al., 2015). The resulting distribution moderates its
uncertainty by taking into account covariate shift between
labeled and unlabeled datasets:
Py (z)

P 0. f(0,y) 50/
P(ylz) = ePe@ TR0 50 ey e P T
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Figure 4. Hamming loss (Loss) values for the first 100 datapoints of active learning averaged over 30 randomized withheld evaluation

dataset splits.

Omitted Baseline Comparisons: We evaluate two addi-
tional sets of baselines for comparison purposes. However,
the performance for these is significantly worse than the
reported baselines and, thus, we omit these from Figure 4.

The first set of additional baselines that we consider is a
standard logistic regression (LR) model that treats each pre-
dicted variable as a separate binary classification problem.
We follow the same solicitation strategies in these experi-
ments: MI and random sampling. However, the performance
of both experiments was very low in comparison with the
other baseline methods.

As a second set of baselines, we employ a solicitation strat-
egy that selects the least confident sample for each classifier.
The performance is better or close to the random selection
strategy but worse than the mutual information strategy.

5.3. Comparison Method for Object Tracking

Structured support vector machines with Platt scaling:
For our bipartite matching setting, we consider active learn-
ing with structured support vector machines (SSVM) as a
baseline to evaluate the performance of our approach. We
implement the SSVM model (Taskar et al., 2005; Tsochan-
taridis et al., 2005) following (Kim et al., 2012) using SVM-
Struct (Joachims, 1998). We apply Platt scaling (Platt, 1999)

to transform our potential functions to probabilistic out-
puts under the SSVM. It works by fitting a Sigmoid func-
tion to the decision values for each class through optimiz-
ing parameters a and b of a Sigmoid function (called the
scoring algorithm) parameters, in the following expression:
m, where z is an input potential value. We first
follow a learning algorithm on a subset of data to learn and
fit @ and b in a multi-class setting. In solicitation step of
active learning, we compute the probabilistic value of the
bipartite graph edges by passing the potential value of the
edge to the Sigmoid scoring function. The entropy of every
node is calculated by summing over the entropy of its edges
and the entropy of every training sample is computed by
summing the nodes entropies. The sample and the node with
highest entropy is chosen to be solicited. This matches our
active learning ABM solicitation strategy, which is applied
to query the most informative node assignment.

5.4. Experimental Results

We report our multi-label classification experiment results
in Figure 4. Though the initial performance differences be-
tween methods are mixed across datasets, our proposed
method, denoted ActiveARC, provides less loss in compari-
son with other methods (ActiveRBA and ActiveMLKNN)
over all datasets after roughly 40 data points are solicited
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Figure 5. Hamming loss (Loss) values for the first 100 datapoints of active learning averaged over 30 randomized withheld evaluation

dataset splits.

Table 3. Dataset properties for tracking experiments.

DATASET # ELEMENTS | # EXAMPLES
CAMPUS 12 70
STADTMITTE 16 178
SUNNYDAY 18 353
BAHNHOF 34 999
PEDCROSS2 30 836

by active learning. We attribute this advantage to ARC’s im-
proved ability to incorporate correlations between variables
into both its prediction and its label solicitation strategy.

We report the results of our object tracking experiments in
Figure 5. Apart from somewhat mixed performance in the
early iterations of active learning, our proposed active learn-
ing framework (Active ABM) provides better performance
compare to Active SSVM. We attribute this advantage to
the better uncertainty model that our approach provides
compared with the Platt scaling approach used by SSVM.

5.5. Inference Running Time

The key difference for inference under our approach (and
advantage when learning) is that it uses multiple min-
cuts/permutations to construct an equilibrium. The (average)
numbers of mincuts/permutations (denoted as Perms in the
table) to arrive at an equilibrium for different datasets are
presented in Table 4 for both experiments. We can conclude
from Table 4 that inference from scratch is roughly 6-20
times slower than SSVM and other methods that use a sin-
gle mincut or permutation. During training, however, the
strategies from the previous equilibria can be cached and
reused, making training time comparable to other methods.

Table 4. Inference running times for tracking (ACTIVE ABM) and
multi-label (ACTIVE ARC) experiments.

ACTIVE ABM ACTIVE ARC
DATASET | # PERMS DATASET [ # MINCUTS
ETH-BAHNOF 11.3 BIBTEX 20.4
TUD-CAMPUS 8.7 BOOKMARKS 14.5
TUD-STAD 9.4 CAL500 12.4
ETH-SUN 10.3 COREL5K 20.2
BAHN-PED2 8.3 ENRON 8.6
CAMP-STAD 10.9 NUS-WIDE 12.8
SUN-PED2 15.1 TMC2007 16.8
BAHN-SUN 5.6 YEAST 9.4

6. Conclusion

In this paper, we investigated active learning for two struc-
tured prediction tasks: learning to make cuts in graphs and
learning bipartite matchings. Though structured support vec-
tor machines can be efficiently employed for these tasks,
they are not very useful for guiding label solicitation strate-
gies. Conditional random fields, which do provide useful
correlation estimates for computing value of information
cannot be applied efficiently for these tasks (e.g., #P-hard for
bipartite matchings). We introduced active learning based on
adversarial structured prediction methods that enjoy lower
computational complexity than existing probabilistic meth-
ods while providing useful correlations between variables.
We demonstrated the benefits of this approach on two struc-
tured prediction tasks: multi-label image tagging as a cut
learning task and object tracking through consecutive video
frames as a bipartite matching task.
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